Appendix B-5 Delineation of Waters of the United States and Department of Fish and Game Jurisdictional Habitats for the Eldorado—Ivanpah Transmission Project, March 2010 This page intentionally left blank

Delineation of Waters of the United States and Department of Fish and Game Jurisdictional Habitats for the Eldorado-Ivanpah Transmission Project San Bernardino County, California and Clark County, Nevada

> Prepared for: Southern California Edison (SCE)

Prepared by: Garcia and Associates (GANDA) 516 Civic Center Drive Oceanside, CA 92054

March 2010

Table of Contents

List of Figures

Figure 1.	Project vicinity map	3
Figure 2.	Soils map	8

List of Tables

Table 1.	Summary of potential USACE jurisdiction by watershed.	18
Table 2.	Summary of impacts to potential USACE – jurisdictional waters.	21
Table 3.	Species composition of CDFG – jurisdictional wash habitats	25
Table 4.	Summary of impacts to potential CDFG – jurisdictional habitats	26

Appendices

Appendix A.	Pant species observed in the EITP project site.
Appendix B.	Representative Photographs of Jurisdictional Features.
Appendix C.	Maps of potential USACE – Jurisdictional Waters
Appendix D.	Maps of potential CDFG – Jurisdictional Habitats

1.0 Introduction

Southern California Edison (SCE) is proposing to construct the Eldorado-Ivanpah Transmission Project (EITP) to service proposed solar generation facilities near the California-Nevada border near P rimm, N evada. T he project will consist of the replacement of a 3 5-mile portion of a n existing S CE transmission line connecting the new Ivanpah S ubstation t o t he e xisting S CE Eldorado Substation near Boulder City, Nevada, upgrading the support facilities at the Eldorado Substation to accommodate the connection of the new transmission lines, and construction of a telecommunications line (telecom line) to c onnect t he project t o e xisting S CE telecommunications systems.

This report presents the findings of a delineation of Waters of the United States and California Department of Fish and Game Jurisdictional Habitats for the SCE-proposed EITP project. The information pr esented in t his r eport is intended to a ssist the U.S. Army C orps of E ngineers (USACE) determine the extent of jurisdictional Waters of the U.S. within the proposed project area. D ata h ave b een collected i n accordance with the 1 987 C orps of E ngineers Wetlands Delineation M anual and a dditional s upplemental m anuals (USACE 1987, 2008a, and 2008b). This report is a lso intended to a id the California Department of F ish and G ame (CDFG) with determination of the extent of jurisdictional habitats in the California portion of the project.

2.0 Project Description

Transmission line

The transmission line rebuild involves the removal of the existing 115kV transmission line and installation of a new d ouble-circuit 220kV transmission line be tween the proposed Ivanpah Substation and the existing E ldorado Substation. Due to differences in the tower he ights and span lengths for the new line, new towers will not generally be sited in the same location as the original t owers, with the exception of c orner points and the part of the route t hrough the McCullough Range where the locations are limited by topography and a djacent transmission lines. New spurs roads will be required for the new towers since the existing towers have no spur roads (they were built in 1930 - 31).

Permanent impacts include the new tower locations (25 foot clearance around tower legs) and spur roads. Temporary impacts include: 115kV tower removal areas and conductor pulling sites; new 115kV steel pole installation (around the Ivanpah Substation), conductor pulling, splicing, and tensioning areas; 220kV tower installation areas, conductor pulling, tensioning, and splicing sites; laydown and staging areas for equipment and supplies; and, temporary access routes.

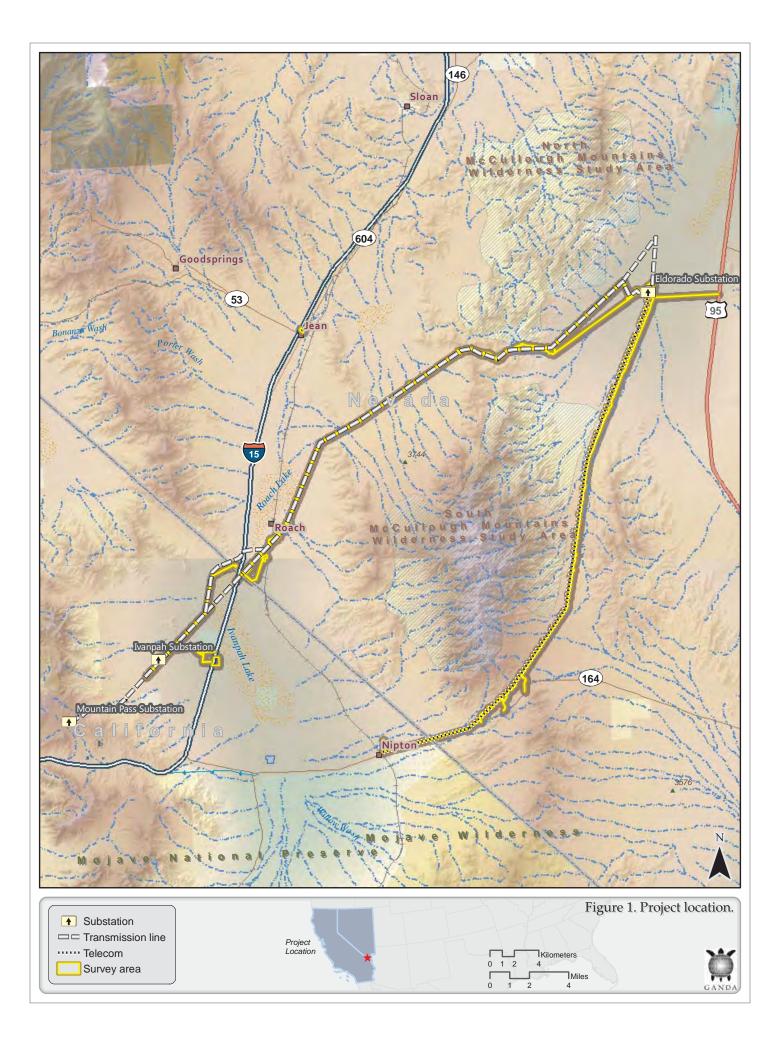
The to tal le ngth of the transmission line r oute is a pproximately 3 6 linear miles. In to tal, construction of t his portion of t he project will result in a pproximately 385 a cres te mporary

impacts and ap proximately 4 1 ac res of p ermanent i mpacts across all of h abitat t ypes f alling within the project alignment.

Telecommunication line

Two telecommunication paths are required for the project. The first telecom line will be OPGW (optical ground wire) on the new 220kV transmission line, and the second telecom line will be comprised of OPGW on the existing E ldorado-Lugo 500kV transmission line from E ldorado Substation to Nipton Road (Highway 164) where it will then be undergrounded along the north side of Nipton Road to the town of Nipton, California. Installing the OPGW on the 500kV line will require some towers (approximately 45 towers) to be reinforced. All towers have existing access r oads. At N ipton, the t elecom line e xtends nor th a pproximately 0.6 m iles t o a new microwave tower, and then by microwave to the Ivanpah S ubstation. The microwave site at Nipton will also require installing a wood pole distribution line for power.

Permanent impacts include: underground vault locations for the underground fiber optic cable; wood distribution pole locations; and, the microwave site. Temporary impacts include: OPGW pulling, splicing, and tensioning locations and work areas around towers requiring retrofitting; underground fiber optic cable installation, pulling and splicing areas; installation of wood poles and conductors for the distribution line.


The total length of the telecommunication line route is approximately 30 linear miles. In total, construction of t his por tion of t he pr oject will r esult i n a pproximately 27 a cres t emporary impacts and approximately 0.25 a cres of permanent impacts across all of habitat types falling within the alignment.

Substations

Grading and contouring for the proposed Ivanpah Substation site will be done by the company building the solar generating station and will permitted separately. Substation construction will take place within the substation footprint with the exception of poles or towers required to bring the transmission lines into the substation. Construction at Eldorado Substation will take place within the existing fenced substation area.

2.1 Project Location

The pr oposed pr oject i s l ocated i n t he M ojave D esert i n e astern S an B ernardino C ounty, California, and Clark County Nevada (Figure 1). The project is predominantly located on l and managed by the Bureau of Land Management (BLM). In California, the project spans Township 16N R anges 14E and 16E, and Township 17N Ranges 14E and 15E. In N evada, the project spans T ownship 27S R anges 59E, 61E and 62E; Township 26S R anges 59E, 60E, and 62E; Township 25S Ranges 59E, 60E, 61E, and 62E; and Township 28S Ranges 60E and 61E. One segment of the project (the 35-mile long transmission line) runs from the proposed Ivanpah

substation 7 miles west of the California-Nevada border to the existing Eldorado Substation near Boulder C ity, N evada. The second segment of the project (the telecom line) r uns from the Eldorado Substation southwest to Highway 164, and then proceeds west paralleling the highway to the town of Nipton (Figure 1).

The Ivanpah Substation site and associated transmission line can be accessed off Interstate 15 at Yates W ell R oad and o ff East P rimm B oulevard ne ar P rimm. The E ldorado S ubstation and portions of the transmission and telecom lines can be accessed off Interstate 95. The southern portion of the telecom line can be accessed directly off Highway 164, and the central portions can be accessed off existing dirt roads north of Highway 164 approximately 5.5 miles east of Nipton.

2.2 Environmental Setting

The project starts on an alluvial fan in the Ivanpah Valley at an elevation of approximately 1,000 meters. The transmission line crosses Ivanpah Lake, then runs along the eastern edge of Roach Lake before turning east and ascending another large complex of alluvial fans. The transmission line pe aks a t a pproximately 3,4 00 m eters e levation a s i t cr osses the M cCullough M ountain Range before descending the east side of the range to the Eldorado Substation at approximately 1,800 m eters. From t he E ldorado S ubstation, t he t elecom l ine ascends a b ajada within th e Eldorado Valley and runs s outh be tween the M cCullough M ountain R ange and t he Highland Range be fore t urning s outhwest a nd crossing t he hilly, southern extent of t he M cCullough Range. The line then parallels Highway 164 and descends another bajada through the town of Nipton. A large portion of the project is located on alluvial fans, or bajadas that are crossed by ephemeral wash drainages.

2.2.1 Climate

The hot, dry climate of the project site is typical of the Mojave Desert region. The area receives less than 10 i nches (250 mm) of r ain a year on av erage, mostly oc curring during the winter months, though t hunderstorms of ten oc cur during the summer. P recipitation c an be highly variable from place to place within the Mojave Desert. Flash floods are a common oc currence when pr ecipitation e vents occur, c ontributing t ot he extensive f ormation of alluvial f ans throughout the region.

Summer daily high temperatures can exceed 100°F with lows in the 70°F range. On average, the region experiences 300 sunny days per year with no m easureable precipitation. S ummers are dry, but thunderstorms typically de velop in J uly and A ugust. Pacific s torms produce s ome rainfall during the winter months, however the Sierra Nevada mountain range produces a barrier to m oisture (rain s hadow ef fect), contributing t o t he d ry climate o f th e r egion. Winter temperatures average near 60°F and can fall as low as 20°F on valley floors and below 0°F at higher elevations, how ever during long periods between storms, valley temperatures can reach

80°F. Wind is very common throughout the region. Winds over 50 m ph can occur associated with thunderstorms. Prevailing wind direction in the area is typically from the southwest.

Though pr ecipitation c an vary w idely over s hort di stances in t he M ojave D esert ar ea, t he National Oceanic and Atmospheric Association (NOAA) reported 2009 as the 8th driest year on record for Las Vegas, receiving only 1.59 inches of rain. However, by the time field work began on this project on F ebruary 15, Las Vegas had received 2.71 inches of rain in 2010 (the most significant s torms d uring th is time p eriod w ere: 1.7 inches b etween J anuary 20 and 23; 0.34 inches on J anuary 27; 0.36 inches on F ebruary 6; a nd 0.13 i nches on F ebruary 10) (NOAA 2010).

2.2.2 Hydrology

The majority of the project area falls within the Great Basin Watershed region (NDEP 2009), which does not have an outlet to the ocean. The California portion of the project falls within the Ivanpah Unit of the South Lahontan Hydrologic region (CalWater 1999). The project site drains to a s eries of dry lakes: Ivanpah Lake (mostly in California), and Roach, Jean, and Eldorado Lakes (all in Nevada). A small portion of the project is in the Piute Wash Watershed, which drains to the Lower Colorado River. S urface water is only present within the project area in response to storm events, and ground water is generally deeper than 80 inches (NRCS 2006 and 2007).

2.2.3 Vegetation

The project area crosses s ix d istinct h abitat types: D esert S altbush S crub (DSS), J oshua T ree Woodland (JTW), Mojave Creosote Bush Scrub (MCBS), Mojave Desert Wash Scrub (MDWS), Rabbitbrush S crub (RS), a nd r uderal. W ith the exception of J oshua T ree W oodland a nd Rabbitbrush Scrub, all habitat types are found in both California and Nevada (JTW and RS are only found in Nevada within the project boundary). Each habitat type is described briefly below.

Desert Saltbush Scrub – California and Nevada

The washes near the dry lake margins of Ivanpah Lake and Roach Lake are dominated by Desert Saltbush S crub. D esert S altbush Scrub c orresponds to the Holland t ype of t he s ame n ame (Holland 1986) and corresponds to the *Atriplex polycarpa* Shrubland Alliance (Allscale scrub) of *A Manual of California Vegetation* (Sawyer, K eeler-Wolf and E vens 2009). D esert S altbush Scrub is c omposed of low, widely spaced shrubs with much bare ground in between, strongly dominated by a single *Atriplex* species. S ites supporting Desert S altbush S crub are typically found surrounding playas, and are generally characterized by fine-textured, poorly drained soils with high alkalinity. Allscale (*Atriplex polycarpa*) is the dominant species, and creosote bush (*Larrea tridentata*), and white bursage (*Ambrosia dumosa*) are common associates. Cheesebush (*Hymenoclea salsola*) and g alleta grass (*Pleuraphis rigida*) w ere frequently o bserved in th is

habitat t ype w ithin t he pr oject a rea. T wo s pecies of c acti, buc khorn c holla (*Opuntia acanthocarpa*) and beavertail pricklypear (*Opuntia basilaris*) are also observed.

Joshua Tree Woodland - Nevada

The higher elevation habitats near the southern extent of the McCullough Range are dominated by Joshua Tree Woodland. Joshua Tree Woodland corresponds to the Holland (1986) type of the same na me and c orresponds t o t he Yucca brevifolia Woodland A lliance o f A Manual of California Vegetation (Sawyer, Keeler-Wolf and Evens 2009). Joshua Tree Woodland is an open woodland type habitat with Joshua tree (Yucca brevifolia) as the only arborescent species, and num erous s hrub s pecies be tween 1 and 4 meters t all. T here is little or no he rbaceous understory during the majority of the year. D ominant plant forms of this habitat type include evergreen trees and shrubs, deciduous shrubs, and succulents. Sites are generally characterized by well-drained alluvial soils, and this habitat is primarily found on gentle alluvial fans, ridges, and moderate slopes within the project area. The dominant plant species of this association are Joshua t ree, bl ackbrush (Coleogyne ramosissima), w hite bur sage, w ooly bursage (Ambrosia eriocentra), cat claw aca cia (Acacia greggii), d esert almond (Prunus fasciculata), c heesebush, and California buc kwheat (Eriogonum fasciculatum var. polifolium). O ther common species encountered in this habitat within the project boundary were snakeweed (Gutierrezia sp.), banana yucca (Yucca baccata), M ojave yucca (Yucca schidigera), N evada ep hedra (Ephedra nevadensis), Anderson's desert thorn (Lycium andersonii), desert sage (Salvia dorrii), Apache plume (Fallugia paradoxa) buckhorn cholla, and bladdersage (Salazaria mexicana).

Mojave Creosote Bush Scrub - California and Nevada

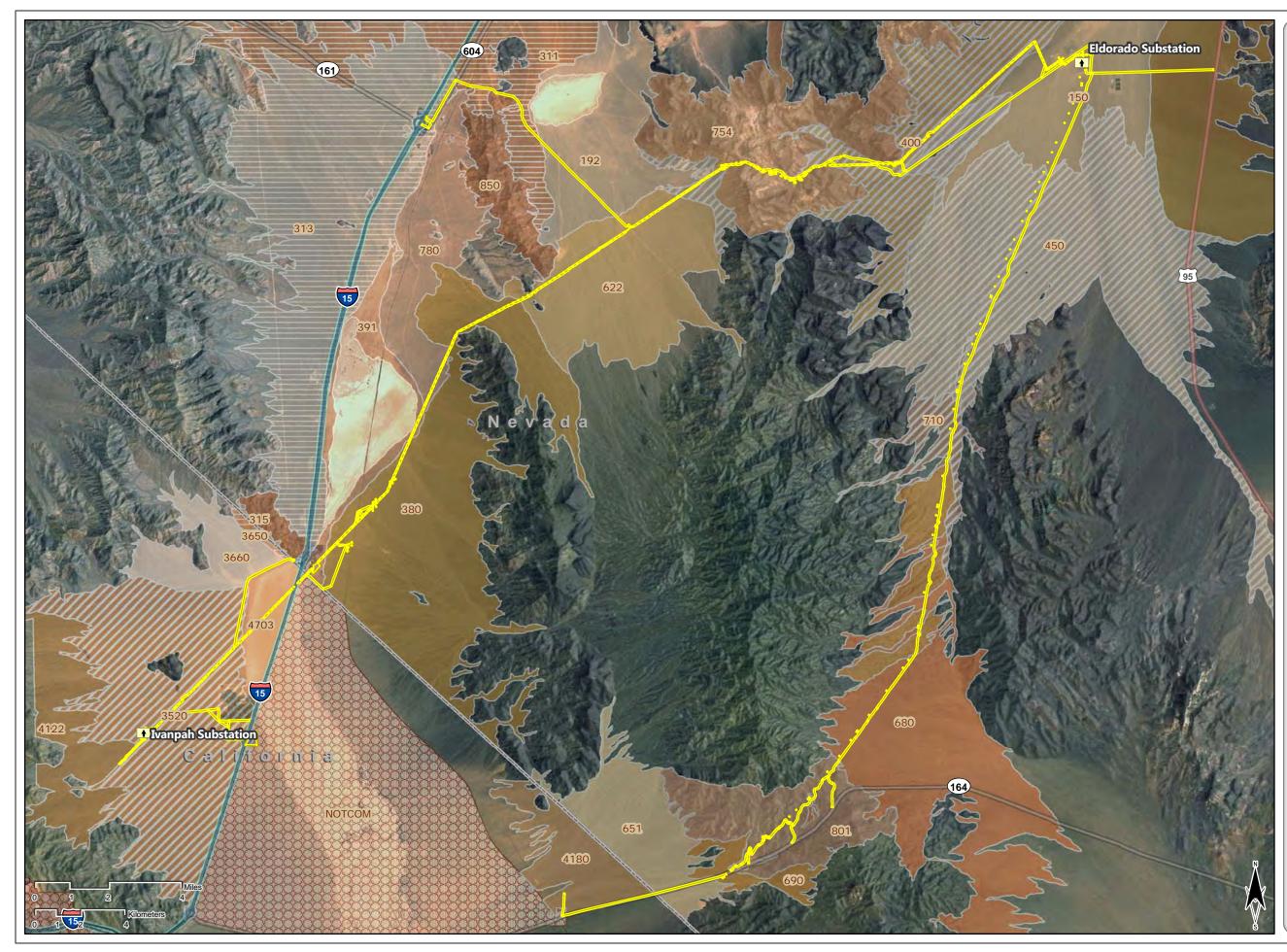
Many of the alluvial fan and valley areas of the project site are dominated by Mojave Creosote Bush Scrub. Mojave Creosote Bush Scrub corresponds to the Holland (1986) type of the same name, and corresponds to the *Larrea tridentata* Shrubland Alliance (Creosote bush scrub) of *A Manual of California Vegetation* (Sawyer, K eeler-Wolf and E vens 2009). M ojave C reosote Bush Scrub is an open, shrub-dominated habitat type composed of shrubs less than 3 meters tall, with an open, intermittent, seasonal herbaceous layer. This vegetation type generally occurs on alluvial fans, bajadas, upland slopes, and on m inor washes. S oils are well drained, sometimes with desert pavement. Creosote bush is the dominant in this community, with white bursage as a co-dominant. A dditional species encountered in this habitat type within the project area include galletta grass, littleleaf ratany (*Krameria erecta*), pencil cholla (*Opuntia ramosissima*), allscale, buckhorn cholla, Mojave yucca, and Nevada ephedra.

Mojave Desert Wash Scrub - California and Nevada

The majority of the larger washes on the project site were dominated by Mojave Desert Wash Scrub. Mojave Desert Wash Scrub corresponds to the Holland (1986) type of the same name, and for some washes corresponds to the *Acacia greggii* Shrubland Alliance (Catclaw a cacia thorn s crub) of *A Manual of California Vegetation* (Sawyer, K eeler-Wolf and E vens 2009).

Mojave Desert W ash S crub is a diverse s crubby a ssociation found typically in s andy a rroyos, washes, and bajadas. Soils are coarse and well drained. The shrub canopy is generally less than 3 meters high, open to intermittent, and herbaceous cover is sparse with seasonal annuals. The dominant s pecies i n t his community are ch eesebush, cat claw acacia, white b ursage, w ooly bursage, creosote bush, and Mojave rabbitbrush (*Chrysothamnus paniculatus*). O ther common species i nclude P arish's g oldeneye (*Viguiera parishii*), s weetbush (*Bebbia juncea*), C alifornia buckwheat, spiny senna (*Senna armata*), buckhorn cholla, bladdersage, Nevada ephedra, pencil cholla, and littleleaf ratany.

Rabbitbrush Scrub - Nevada


Portions of the project area are dom inated by Rabbitbrush S crub, which c orresponds t o the Holland (1986) type of the same name. Rabbitbrush Scrub also corresponds with the *Ericameria paniculata* Shrubland A lliance (Black-stemmed r abbitbrush s crub) of *A Manual of California Vegetation* (Sawyer, Keeler-Wolf and Evens 2009). (*Ericameria paniculata* is the revised name for *Chrysothamnus paniculatus*). Rabbitbrush scrub is an association dominated by rabbitbrush, generally 1 meter tall, with fairly even spacing between shrubs. Soils are generally well drained, coarse t o f ine s and. T he dom inant s pecies i n t his a ssociation i nclude M ojave r abbitbrush, cheesebush, and cat claw acacia w ith w hite b ursage, s hortleaf baccharis (*Baccharis brachyphylla*), s piny s enna, w ooly bur sage, c reosote bus h, C alifornia buc kwheat, and N evada ephedra.

Ruderal – California and Nevada

There is a small section within the project area that has been classified as Ruderal. This habitat may correspond to the Tamarisk S crub association of H olland (1986), and the *Tamarix* spp. Semi-natural S hrubland S tands (Tamarisk t hickets) of *A Manual of California Vegetation* (Sawyer, Keeler-Wolf and Evens 2009). This habitat association is generally found in arroyos, ditches, washes, and other watercourses. On the project site, this habitat consists of what appears to be a periodically maintained drainage ditch long the parking lot of the Primm Valley casinos. The area is v egetated with s parse t amarisk (*Tamarix* sp.) s hrubs, and R ussian thistle (*Salsola tragus*). This area is directly adjacent to the Ivanpah Lake margin; sparse allscale and creosote bush are present in addition to the non-native invasive species.

2.3 Soils

The project area crosses numerous soil types (Figure 2). Information was not available for all project areas. S ome areas of Clark County do not have soils data available (NRCS 2006), and mapping has not yet been completed for the Mojave Desert Area. Brief descriptions of each soil type are presented below. Where given, soil colors follow the Munsell Soil Colors Chart.

Figure 2. Soil mapping units. Survey area Soil Mapping Units Arizo association- 450 Arizo loamy sand, 2 to 8 percent slopes- 3520 Arizo-Cafetal association- 400 Arizo-Lanfair-Riverwash association - 710 Birdspring association- 850 Bluepoint association- 192 Colosseum Association, 2 to 4 percent slopes- 3660 Haleburu-Hiddensun association - 754 Hoppswell-Ustidur association- 690 Hypoint gravelly sandy loam, 0 to 4 percent slopes- 150 Lanfair-Hoppswell association- 680 Nippeno-Newera association- 801 Orwash-Arizo-Lanip association - 622 Peskah-Arizo association- 4180 Peskah-Arizo association- 651 Popups sandy loam, 4 to 30 percent slopes- 4122 Prisonear fine sand, 2 to 8 percent slopes- 780 Tipnat-Bluepoint-Hypoint association - 391 Tonopah-Arizo association- 380 Typic Haplosalids, 0 to 2 percent slopes- 4703 TTX Unmapped areas- NOTCOM Weiser Association- 315 Weiser association, 2 to 8 percent slopes- 3650 Weiser-Oldspan-Wechech association - 313 Weiser-Threelakes association- 311

Arizo Association - California and Nevada

The Arizo series consists of very deep, excessively drained soils that formed in mixed alluvium. Arizo soils develop on recent alluvial fans, inset fans, fan aprons, fan skirts, stream terraces, and floodplains of intermittent streams and channels. Slopes range from 0 to 15 percent. Arizo soils with s andy l oam a nd l oam s urface t extures ha ve m oderate t o ve ry rapid pe rmeability. T he surface horizon (0 to 8 i nches) is light brownish gray (10YR 6/2) very gravelly fine sand (dark grayish brown (10YR 4/2) moist), with a w eak co arse p laty structure and m oderate al kalinity (pH 8.2). B elow 8 i nches the soil is light brownish gray (10YR 6/2) extremely gravelly s and (dark grayish brown (10YR 4/2) moist) with moderate alkalinity (pH 8.2).

Arizo Loamy Sand, 2 to 8 Percent Slopes - California

Arizo loamy sands form on fan aprons from metamorphic and sedimentary derived alluvium and are excessively drained. The top 0-2 inches are loamy sand, with gravelly sand below 2 inches.

Colosseum Association, 2 to 4 percent slopes - California

The Colosseum Association consists of deep, somewhat excessively drained soils that formed in alluvium derived from limestone and dolomite. Colosseum soils are found on f an aprons and drainageways. Slopes range from 2 to 4 percent. The typical profile for the Colosseum series is 0 to 1 inch pale brown (10YR 6/3) fine sandy loam, (brown (10YR 5/3) moist) with moderate thick platy structure and moderate alkalinity (pH 8.2). F rom 1 to 4 i nches pale brown (10YR 6/3) gravelly loamy sand, (brown (10YR 5/3) moist) with weak fine subangular blocky structure with m oderate a lkalinity (pH 8.2). F rom 4 t o 45 i nches the soil is pale brown (10YR 6/3) extremely gravelly loamy sand, (brown (10YR 5/3) moist) with massive structure and moderate alkalinity (pH 8.4). From 45 t o 59 i nches the soil is light yellowish brown (10YR 6/4) very gravelly fine s andy loam, (yellowish brown (10YR 5/4) moist) with massive parting t o w eak medium subangular blocky structure and moderate alkalinity (pH 8.4).

Copperworld Association, 30 to 60 percent slopes - California

The Copperworld series consists of very shallow or shallow to be drock, somewhat excessively drained s oils that formed in r esiduum and c olluvium from m etamorphic r ocks. Copperworld soils are on mountains. Slopes range from 30 to 60 percent. The surface 0 to 1 inches is gravelly sandy loam, dark yellowish brown (10YR 3/4) moist with weak medium platy structure and a neutral pH (pH 7.2). From 1 to 6 inches the soil is gravelly sandy loam, dark brown (10YR 3/3) moist, with massive parting to weak fine subangular blocky structure and slight alkalinity (pH 7.4). Below 6 inches is indurated metamorphic bedrock.

Copperworld-Lithic Ustic Haplargids Association, 30 to 60 percent slopes - California

The C opperworld-Lithic U stic H aplargids A ssociation c onsists of s hallow, s omewhat excessively drained soil formed from residuum and colluviums derived from metamorphic rock. These soils are found on mountains, and slopes range from 30 to 60 percent. The typical profile

for this series is 0 to 1 inches: very gravelly loamy coarse s and; 1 to 7 i nches: very gravelly sandy clay loam; below 7 inches: bedrock.

Peskah-Arizo Association - California and Nevada

The P eskah s eries consists of de ep t o a du ripan, w ell dr ained s oils t hat f ormed i n a lluvium derived f rom vo lcanic r ocks. P eskah s oils a re on f an r emnants. S lopes r ange f rom 2 t o 8 percent. The surface 0 to 1 inch is pale brown (10YR 6/3) extremely gravelly fine sandy loam, (brown (10YR 4/3) m oist) with m oderate t hin a nd m edium pl aty s tructure a nd i s m oderately alkaline (pH 8.2). F rom 1 t o 4 i nches the soil is very pale brown (10YR 7/3) gravelly sandy loam, (dark yellowish brown (10YR 4/4) moist) with strong thick platy structure and moderate alkalinity (pH 8.4). From 4 to 8 inches the soil is strong brown (7.5YR 5/6) gravelly sandy clay loam, (strong br own (7.5YR 4/ 6) m oist) w ith s trong f ine a nd m edium s ubangular bl ocky structure and moderate alkalinity (pH 8.2). The Arizo series has been described above.

Playas - California and Nevada

The p layas are composed of 1 acustrine d eposits and a revery poor ly drained. P onding is frequent, and slopes range from 0 to 1 percent. The typical playa profile is 0 to 6 inches: Silty clay loam; 6 to 60 inches: Clay. Playa soils are included on the National Hydric Soils List.

Popups Sandy Loam, 4 to 30 percent slopes - California

The P opups s eries c onsists of m oderately d eep, w ell dr ained s oil ov er duripan de rived from mixed a lluvium. T he typical profile is 0 t o 2 i nches, br own (10YR 5/3) very gravelly s andy loam, (dark brown (10YR 3/3) moist) with weak medium platy structure and slight alkalinity (pH 7.6). F rom 2 t o 12 i nches the soil is yellowish brown (10YR 5/4) gravelly s andy loam, (dark yellowish br own (10YR 4/4) m oist) w ith w eak m edium s ubangular bl ocky s tructure and a slightly alkaline pH (pH 7.6). F rom 12 to 33 inches the soil is light brown (7.5YR 6/4) gravelly sandy loam, (brown (7.5YR 4/4) moist) with moderate coarse subangular blocky structure, and is moderately alkaline (pH 8.0). F rom 33 t o 60 i nches the soil is very p ale brown (10YR 8/2) weakly cemented duripan (pale brown (10YR 6/3) moist) with massive structure.

Typic Haplosalids, 0 to 2 percent slopes - California

The Typic Haplosalids are somewhat poorly drained lacustrine deposits derived from volcanic and sedimentary rock and are found on playas. These soils occasionally pond. A typical profile is 0 to 1 inches: Clay loam; 1 to 8 inches: Clay loam; 8 to 59 inches: Loam.

Weiser Association - California and Nevada

The W eiser s eries consists of v ery deep, w ell d rained s oils that f ormed in a lluvium from limestone and dolomite. Weiser soils are on fan remnants and inset fans. Slopes range from 2 to 8 percent. The surface horizon (0 to 2 inches) is very pale brown (10YR 7/3) extremely gravelly loam, (dark yellowish b rown (10YR 4/4) m oist) with s trong very thick platy s tructure and is

moderately alkaline (pH 8.4). From 2 to 10 inches the soil is light yellowish brown (10YR6/4) gravelly loam, (dark yellowish brown (10YR 4/4) moist) with weak medium subangular blocky structure and is moderately alkaline (pH 8.4).

Arizo-Cafetal Association - Nevada

The A rizo-Cafetal A ssociation consists of deep, excessively drained soils that form in mixed alluvium often derived from basalt and andesite. Arizo-Cafetal soils form on inset fans and fan remnants. S lopes range from 2 to 8 percent. The typical profile for the Arizo is 0 to 4 inches: Extremely stony sandy loam;

4 to 60 inches: Stratified very gravelly loamy sand to extremely stony coarse sand. The typical profile for the Cafetal is 0 to 3 inches, pale brown (10YR 6/3) extremely stony loam, (brown (10YR 4/3) moist) with strong thin and medium platy structure and moderate alkalinity (pH 8.4). From 3 to 13 inches the soil is light brown (7.5YR 6/4) very cobbly loam, (brown (7.5YR 4/4) moist) with moderate fine and medium subangular blocky structure and a moderately alkaline pH (pH 8.4). F rom 13 to 22 inches the soil is pink (7.5YR 7/4) extremely stony loam, (brown (7.5YR 5/4) moist) with massive structure and a strongly alkaline pH (pH 8.6). From 22 to 38 inches the soil is pale brown (10YR 6/3) stratified extremely cobbly loam to loamy sand, (dark yellowish brown (10YR 4/4) moist) with massive structure and moderate alkalinity (pH 8.4). From 38 to 60 i nches the soil is pale brown (10YR 6/3) extremely cobbly coarse s andy loam, (dark yellowish brown (10YR 4/4) moist) with massive structure and is moderately alkaline (pH 8.4).

Arizo-Lanfair-Riverwash Association - Nevada

The Arizo-Lanfair-Riverwash Association consists of deep, excessively drained soils that form in mixed a lluvium on i nset f ans, f an r emnants, a nd dr ainageways. S lopes r ange f rom 2 t o 8 percent. The Arizo series is described above. The typical profile for Lanfair is 0 to 2 i nches, pale br own (10YR 6/3) extremely gravelly s andy loam, (brown (10YR 4/3) moist) with w eak thick platy structure and is moderately alkaline (pH 8.4). F rom 2 t o 9 i nches the soil is light yellowish b rown (10YR 6/4) gravelly s andy loam, (brown (10YR 4/3) moist) with m oderate medium subangular blocky structure and is moderately alkaline (pH 8.4). From 9 to 15 i nches the soil is yellowish b rown (10YR 5/4) very gravelly s andy loam, (brown (10YR 4/3) moist) with moderate fine subangular blocky structure and is moderately alkaline (pH 8.4). From 15 to 26 inches the soil is light yellowish b rown (10YR 6/4) very gravelly coarse sand, (brown (10YR 4/3) moist) with massive structure and is moderately alkaline (pH 8.4). From 26 to 60 inches the soil is pale brown (10YR 6/3) very gravelly coarse s and, (dark yellowish brown (10YR 4/4) moist) with massive structure and is moderately alkaline (pH 8.4). The typical p rofile f or Riverwash series is 0 to 6 i nches: extremely gravelly co arse sand; 6 to 60 i nches: stratified extremely gravelly coarse sand to gravelly sand.

Birdspring Association - Nevada

The Birdspring series consists of very shallow, somewhat excessively drained soils that formed in residuum and colluvium from limestone and dolomite. Birdspring soils occur on mountains. Slopes range from 8 to 75 percent. The surface horizon (0 to 1 inch) is very pale brown (10YR 7/3) extremely gravelly fine s andy loam (brown (10YR 5/3) moist) with moderate thick platy structure and moderate alkalinity (pH 8.2). The lower horizon (1 to 4 inches) is very pale brown (10YR 7/3) very gravelly fine s andy loam, (yellowish br own (10YR 5/4) moist) with weak medium subangular blocky structure and moderate alkalinity (pH 8.4). Below 4 inches is hard limestone bedrock.

Bluepoint Association - Nevada

The Bluepoint series consists of very deep, somewhat excessively drained soils that formed in eolian materials from mixed rock sources. Bluepoint soils are on dunes and sand sheets (and on the playas within the project boundary). Slopes range from 0 to 30 percent. The Surface horizon (0 t o 2 i nches) i s very pa le br own (10YR 7/3) f ine s and, (brown (10YR 5/3) m oist) w ith moderate thin and medium platy structure and moderate alkalinity (pH 8.2). From 2 to 14 inches the soil is very pale br own (10YR 7/3) fine s and, (brown (10YR 5/3) moist) with weak, very thick platy structure (due to stratification), and is moderately alkaline (pH 8.0).

Haleburu-Hiddensun Association - Nevada

The Haleburu series consists of shallow (and very shallow) to bedrock, well drained soils that formed in c olluvium and residuum from mainly volcanic sources. The Haleburu soils are on mountains and hills. Slopes range from 4 to 75 percent. The surface horizon (0 to 2 inches) is pale brown (10YR 6/3) extremely gravelly s andy loam, (dark yellowish brown (10YR 4/4) moist) with moderate medium platy structure and moderate alkalinity (pH 8.4). From 2 to 8 inches the s oil is pale brown (10YR 6/3) very gravelly sandy loam, (dark yellowish brown (10YR 4/4) moist) with weak subangular blocky structure and moderate alkalinity (pH 8.4). The Hiddensun s eries consists of s omewhat s hallow, well drained s oils that f ormed i n r esiduum weathered f rom v olcanic r ock i nfluenced b y calcareous loess. Hiddensun s oils are found i n mountains. Slopes range from 8 to 30 percent. The typical Hiddensun profile is 0 to 3 inches: very gravelly fine s andy loam; 3 to 15 i nches: very cobbly fine s andy loam; 15 to 25 inches: Bedrock.

Hoppswell-Ustidur Association - Nevada

The H oppswell s eries c onsists of very deep, well drained soils that formed in alluvium from igneous sources. Hoppswell soils are on fan remnants. Slopes range from 2 to 15 percent. The surface hor izon (0 to 2 i nches) is brown (7.5YR 5/4) extremely gravelly s andy l oam, (dark brown (7.5YR 3/4) m oist) with m oderate m edium a nd t hick pl aty structure, and m oderate alkalinity (pH 8.0). From 2 to 15 inches the soil is yellowish red (5YR 5/6) very gravelly sandy clay loam, (yellowish red (5YR 4/6) moist) with moderate fine and medium subangular blocky structure and moderate alkalinity (pH 8.0). The Ustidur series consists of shallow, well drained

soils formed from alluvium derived from metamorphic rock. S lopes range from 4 to 8 percent. The typical Ustidur profile is 0 to 2 inches: extremely gravelly sandy loam; 2 to 15 inches: very gravelly s andy clay loam; 15 to 64 i nches: stratified ex tremely gravelly coarse s and t o v ery gravelly sandy loam.

Hypoint Gravelly Sandy Loam, 0 to 4 percent slopes - Nevada

The H ypoint series c onsists of very deep, s omewhat excessively drained s oils that formed in mixed alluvium. Hypoint soils are on fan aprons, fan skirts and alluvial fans. Slopes range from 0 to 4 p ercent. The surface hor izon (0 to 2 i nches) is p ale brown (10YR 6/3) gravelly sandy loam, (brown (10YR 4/3) moist) with weak medium subangular blocky structure, with a 1/4 inch surface crust and moderate alkalinity (pH 8.4). From 2 to 60 inches the soil is pale brown (10YR 6/3) and light yellowish brown (10YR 6/4) stratified sand to very gravelly coarse sand, (brown (10YR 4/3) and dark yellowish brown (10YR 4/4) moist) and is strongly alkaline (pH 8.6).

Lanfair-Hoppswell Association - Nevada

The Lanfair s eries c onsists of ve ry d eep, w ell dr ained s oils t hat f ormed i n a lluvium f rom metamorphic sources. Lanfair soils are on inset fans or alluvial fans. Slopes range from 2 to 8 percent. The surface horizon (0 to 2 inches) is pale brown (10YR 6/3) extremely gravelly sandy loam, (brown (10YR 4/3) moist) with w eak thick pl aty s tructure and m oderate alkalinity (pH 8.4). From 2 to 9 i nches the soil is light yellowish brown (10YR 6/4) gr avelly s andy loam, (brown (10YR 4/3) moist) w ith m oderate m edium s ubangular bl ocky s tructure and m oderate alkalinity (pH 8.4). The Hoppswell Association is described above.

Nippeno-Newera Association - Nevada

The N ippeno s eries c onsists of s hallow, w ell dr ained s oils t hat f ormed i n r esiduum a nd colluvium from metamorphic and altered granitic rocks. Nippeno soils are found on mountains. Slopes r ange from 8 t o 50 pe rcent. T he s urface h orizon (0 t o 2 inches) i s yellowish br own (10YR 5/4) ve ry gravelly l oam, (dark yellowish br own (10YR 4/4) m oist) w ith w eak f ine subangular blocky structure and slight alkalinity (pH 7.6). From 2 to 6 inches the soil is brown (7.5YR 4/4) v ery gravelly s andy clay loam, (brown (7.5YR 4/4) m oist) w ith m oderate fine subangular blocky structure with slight alkalinity (pH 7.6). From 6 t o 15 i nches is gravel (95 percent an gular pebbles). The N ewera series is a shallow, s omewhat excessively drained s oil formed fr om colluvium and/or r esiduum w eathered f rom vol canic a nd m etamorphic r ock. Newera soils occur on hills. Slopes range from 15 to 50 percent. The typical Newera profile is 0 to 2 inches: extremely gravelly sandy loam; 2 to 6 inches: very gravelly sandy clay loam; 6 to 16 inches: bedrock.

Orwash-Arizo-Lanip Association - Nevada

The Orwash series consists of very deep, somewhat excessively drained soils that formed from mixed alluvium derived from granitic sources. Orwash soils are formed on fan aprons, fan skirts,

and alluvial flats. Slopes range from 2 to 8 percent. The surface horizon (0 to 2 inches) is light yellowish brown (10YR 6/4) gravelly s andy loam, (dark yellowish brown (10YR 4/4) moist) with strong medium platy structure and moderate alkalinity (pH 8.4). F rom 2 to 16 inches the soil is light yellowish brown (10YR 6/4) loamy sand, (dark yellowish brown (10YR 4/4) moist) and is strongly alkaline (pH 8.6). The Arizo series is described above. The Lanip series consists of deep, well drained soils formed from mixed alluvium on fan remnants. Slopes range from 2 to 8 percent. The typical Lanip series profile is 0 to 2 inches: gravelly sandy loam; 2 to 15 inches: gravelly loam; 15 to 39 inches: clay loam; 39 to 48 inches: gravelly sandy loam; 48 to 60 inches: very gravelly sandy loam.

Prisonear Fine Sand, 2 to 8 percent slopes - Nevada

The Prisonear series consists of moderately deep to a petrocalcic horizon, somewhat excessively drained soils that formed in eolian sands over alluvium from limestone. Prisonear soils are on sand sheets over fan remnants. Slopes range from 2 to 8 pe rcent. The surface 0 to 3 i nches is light brown (7.5YR 6/4) fine s and, (brown (7.5YR 5/4) m oist) with m oderate m edium pl aty structure and is strongly alkaline (pH 8.8). From 3 to 9 inches the soil is light brown (7.5YR 6/4) fine s and, (brown (7.5YR 5/4) m oist) with w eak c oarse s ubangular bl ocky s tructure a nd i s strongly alkaline (pH 8.8).

Tipnat-Bluepoint-Hypoint Association - Nevada

The Tipnat series consists of very deep, well drained soils that formed in mixed alluvium. The Tipnat soils are on a lluvial flats. S lopes range from 0 to 4 percent. The surface 0 to 1 inch is pale brown (10YR 6/3) loamy sand, (brown (10YR 4/3) moist) with strong medium and thick platy structure and is strongly alkaline (pH 8.6). From 1 to 3 inches the soil is light yellowish brown (10YR 6/4) loamy sand, (brown (7.5YR 5/3) moist) with strong alkalinity (pH 8.6). From 3 to 13 inches the soil is light brown (7.5YR 6/4) sandy clay loam, (brown (7.5YR 4/4) moist) with weak medium and coarse prismatic structure parting to moderate medium and thick platy structure and is very strongly alkaline (pH 9.2). The Bluepoint and H ypoint series have been described above.

Tonopah-Arizo Association - Nevada

The Tonopah series consists of very deep, excessively to well drained soils that formed in mixed alluvium. Tonopah s oils are on f an r emnants and f an pi edmonts. Slopes r ange from 2 t o 8 percent. T he surface 0 to 1 i nch is brown (10YR 5/3) extremely gravelly s andy loam, (dark brown (10YR 4/3) moist) with weak medium platy structure and is moderately alkaline (pH 8.2). From 1 to 8 inches the soil is pale brown (10YR 6/3) very gravelly sandy loam, (dark yellowish brown (10YR 4/4) moist) with weak fine s ubangular blocky structure and moderate alkalinity (pH 8.4). The Arizo series has been described above.

Weiser-Oldspan-Wechech Association - Nevada

The Weiser series has been described above. The Oldspan series consists of deep, well drained soils formed from limestone and sandstone derived mixed alluvium. Oldspan soils form on fan remnants. S lopes range from 2 t o 8 percent. A typical Oldspan profile is 0 t o 3 i nches, light yellowish brown (10YR 6/4) gravelly fine sandy loam, (dark yellowish brown (10YR 4/4) moist) with strong thick and very thick platy structure and moderate alkalinity (pH 8.2). From 3 to 10 inches the soil is light y ellowish brown (10YR 6/4) fine s andy loam, (dark yellowish brown (10YR 4/4) moist) with weak medium subangular blocky structure and a moderately alkaline pH (pH 8.4). From 10 to 20 inches the soil is light yellowish brown (10YR 6/4) loam, (yellowish brown (10YR 5/4) m oist) with weak coarse s ubangular blocky s tructure and i s m oderately alkaline (pH 8.4). From 20 to 40 inches the soil is light yellowish brown (10YR 6/4) stratified extremely gravelly loam to extremely gravelly loamy coarse sand, (yellowish brown (10YR 5/4) moist) with massive structure and is strongly alkaline (pH 9.0). From 40 to 60 inches the soil is light yellowish brown (10YR 6/4) stratified extremely gravelly fine s andy loam to extremely gravelly loamy coarse s and, (dark yellowish brown (10YR 4/4) moist) with massive structure and is strongly alkaline (pH 8.8). The Wechech series consists of shallow, well drained soils formed from limestone and dolomite derived alluvium. S lopes range from 2 t o 8 pe rcent. A typical profile for Wechech is 0 to 2 inches, very pale brown (10YR 7/4) very gravelly sandy loam, (dark yellowish brown (10YR 4/4) moist) with strong medium platy structure and strong alkalinity (pH 8.6). F rom 2 t o 7 i nches the soil is light yellowish brown (10YR 6/4) very gravelly sandy loam, (dark yellowish brown (10YR 4/6) moist) with moderate fine and medium subangular blocky structure and is strongly alkaline (pH 8.6). From 7 to 13 inches the profile is light brown (7.5YR 6/4) very gravelly s andy loam, (brown (7.5YR 5/4) moist) with massive structure and is strongly alkaline (pH 8.6). From 13 to 60 i nches the soil is very pale brown (10YR 8/2) inducated petrocalcic hardpan, (very pale brown (10YR 7/3) moist) with massive structure and strong alkalinity (pH 8.8).

Weiser-Threelakes Association - Nevada

The Weiser series has been described above. The Threelakes series consists of very deep, well drained soils that formed in mix ed alluvium mainly from limestone. Threelakes soils form on fan aprons. Slope ranges from 2 to 8 percent. From 0 to 3 inches the soils are pale brown (10YR 6/3) e xtremely gravelly fine s andy l oam, (brown (10YR 5/3) m oist) with mo derate me dium subangular blocky structureand are strongly alkaline (pH 8.6). From 3 to 9 inches the soils are pale brown (10YR 6/3) extremely gravelly fine sandy loam, (yellowish brown (10YR 5/4) moist) with weak fine s ubangular blocky structure and are strongly alkaline (pH 8.6). F rom 9 to 31 inches the soils a re p ale brown (10YR 6/3) extremely gravelly fine sandy loam, (yellowish brown (10YR 5/4) moist) with massive structure and are strongly alkaline (pH 9.0). From 31 to 60 inches the soils are pale brown (10YR 6/3) stratified extremely gravelly fine sandy loam to extremely gravelly l oamy c oarse s and, (yellowish brown (10YR 5/4) m oist) with massive structure and strong alkalinity (pH 9.0).

2.3.1 Hydric Soils

The m ajority of t he s oils in t he project area are d eep, well d rained s oils t hat f ormed f rom alluvium. The National Hydric Soils List (NRCS 2010) includes Playas (NRCS 2007) and the Tipnat-Bluepoint-Hypoint series on playas (NRCS 2006) as the only hydric soils present in the project area.

3.0 Delineation of Waters of the United States

3.1 Regulatory Background

Section 404 of the Clean Water Act (33 U.S.C. 1344) requires authorization for all discharges of dredged or fill material in waters of the United States, including jurisdictional wetlands. Waters of the United States are defined in 33 CFR Part 328.3 as:

1) All waters which a re currently us ed, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters, which are subject to the ebb and flow of the tide;

2) All interstate waters including interstate wetlands;

3) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), m udflats, s andflats, w etlands, s loughs, pr airie pot holes, w et m eadows, playa lakes, or natural ponds, the use, de gradation or d estruction of w hich c ould affect interstate or foreign commerce including any such waters:

(i) Which ar e o r could b e u sed b y i nterstate o r f oreign t ravelers for recreational or other purposes; or

(ii) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or

(iii)Which are used or could be used for industrial purpose by industries in interstate commerce;

4) All impoundments of waters otherwise defined as waters of the United States under the definition;

- 5) Tributaries of waters identified in paragraphs (1) through (4) above;
- 6) The territorial seas;
- 7) Wetlands adjacent to waters identified in paragraphs (1) through (6) above.

The project is located in a region of the arid Southwest where the dominant hydrologic features are braided ephemeral channels typically located on large alluvial fans which drain into playa lakes that are dry for most of the year. Other than the playa lakes themselves, no wetlands occur within the project area, and jurisdictional features are limited to ephemeral channels meeting one or more of the criteria defining waters of the United States listed above.

In the absence of a djacent w etlands, the e xtent of the C orps j urisdiction is de fined by the "Ordinary Highwater Mark" (OHWM). In 33 C FR Part 329.1, the "Ordinary Highwater Mark" for non-tidal rivers is defined as the line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of the soil, destruction of terrestrial vegetation or the presence of litter

and debris. In dryland fluvial systems typical of the desert areas, the most common physical characteristics indicating the OHWM for a channel usually include, but are not limited to: a clear natural s cour line impressed on t he bank; r ecent bank erosion; destruction of native terrestrial vegetation; and the presence of litter and debris (USACE 2001). A complete list of potential geomorphic and ve getation O HWM i ndicators c an be f ound i n U SACE (2008b). Drainage features t hat di ssipate i nto s heet f low, a nd hi storic c hannels t hat c onvey f low onl y dur ing extremely l arge s torm e vents generally do not fall unde r C orps j urisdiction (USACE 2001, 2008b).

3.2 Methods

All project-related temporary and permanent impact areas including a 50 ft. buffer surrounding all impact areas and access roads were surveyed for desert washes potentially falling under the regulatory jurisdiction of USACE. Field investigations were carried out from February 16th through February 27th 2010, during which all project-related temporary and permanent impact areas and newly proposed roads were surveyed on f oot, and all existing a ccess roads were surveyed either on foot or by vehicle. Washes falling within the survey buffer of access roads were mapped only in cases where the washes crossed the road. The width and depth at ordinary high water mark (OHWM), habitat type, and up to six of the dominant and/or characteristic plant species and their cover were recorded for each drainage feature. Foliar cover was scored on a scale of 1 -4 (4= a bundant, 3 = c ommon, 2 = s cattered, 1 = s parse). A phot ograph of each mapped feature was taken along with notes on channel characteristics and hydrologic indicators. All potentially jurisdictional drainage channels with positive OHWM indicators (USACE 1987, 2001, 2007b) were m apped in t he field us ing a T rimble G eoXT G PS uni t with sub-meter accuracy. Many washes lacking the channel characteristics indicative of jurisdictional washes were also mapped, and not es justifying their exclusion from consideration as jurisdictional waters were taken.

Following the field work, the subwatershed and terminal water body of each mapped drainage was determined using the digital hydrologic unit boundary layer data set available from NRCS (2009). R ecent J urisdictional D eterminations issued b y USACE for ne arby pr ojects a nd communications with USACE staff (Patricia McQueary personal communication) were used to determine the likely jurisdictional status of the tributaries in each watershed traversed by the project. T ributaries to is olated waters with nonexus to interstate or foreign commerce were excluded from further c onsideration as jurisdictional features. All of the remaining mapped features were further analyzed using Geographic Information Systems (GIS) software and high resolution a erial ima gery, a nd drainage f eatures o bserved t o d issipate o r o therwise l ack connectivity to jurisdictional water bodies were excluded from further consideration. Finally, the total a creage of a ll p otentially ju risdictional features o ccurring in p ermanent imp act areas, temporary impact areas, and in the surrounding buffers were calculated using GIS software.

3.3 Results

3.3.1 Waters of the United States

Determination of Jurisdictional Status

The p roject area t raverses five w atersheds in C alifornia and N evada including t ributaries o f Ivanpah Lake (CA, NV), Roach Lake (NV), Jean Lake (NV), Eldorado Valley Dry Lake (NV), and P iute W ash (NV), a t ributary t o t he C olorado R iver. The ju risdictional s tatus o f th e tributaries in each of these watersheds and the rational for their status under Section 404 of the Clean water Act is summarized in Table 1. The rational is explained further in the paragraphs that follow.

Watershed	USACE Status	Section 404 Rational
Ivanpah Lake - Interstate tributaries	Jurisdictional	Interstate waters
Ivanpah Lake Playa	Jurisdictional	Nexus to interstate or foreign commerce
Piute Wash tributaries	Jurisdictional	Nexus to Traditional Navigable Water
Roach Lake tributaries	Jurisdictional	Nexus to interstate or foreign commerce
Eldorado Valley Dry Lake tributaries	Non-Jurisdictional	Isolated -No nexus to interstate or foreign commerce
Ivanpah Lake intrastate tributaries	Non-Jurisdictional	Recent determination by USACE
Jean Lake tributaries	Non-Jurisdictional	Isolated -No nexus to interstate or foreign commerce

Table 1. Summary of potential USACE jurisdiction by watershed.
--

Ivanpah Lake is the terminal water body for subwatersheds occurring in both California and Nevada. Tributaries to Ivanpah lake that cross the border between California and Nevada are interstate waters falling under the jurisdiction of USACE. Additionally, the playa surface at Ivanpah Lake is used for l and s ailing and has be ende termined to jurisdictional under the interstate c ommerce clause of the C lean Water A ct (Patricia M cQueary personal communication). However, a recent J urisdictional D etermination i ssued by USACE for proposed s olar generating facilities in the Ivanpah V alley found the intrastate tributaries to Ivanpah Lake to be non-jurisdictional (USACE 2009). Therefore, following this precedent, all intrastate tributaries to Ivanpah Lake o ccurring in the project area are considered non -jurisdictional in this report.

Roach Lake has been proposed as the site of a new Las Vegas airport and its jurisdictional status is currently under review. It is likely that it will be considered a jurisdictional feature under the interstate commerce clause, and tributaries to Roach lake are therefore considered to be USACE-jurisdictional in this report.

A small portion of the project area in Nevada contains ephemeral drainages that are tributaries to Piute W ash, w hich i s itself a tributary t o t he Colorado R iver, a t raditional n avigable w ater (TNW). U nder guidance issued by USACE Headquarters, non-navigable tributaries of TNWs that typically f low y ear-round or ha ve c ontinuous f low a t l east seasonally are considered jurisdictional (USACE 2007). Additionally, jurisdiction is asserted over water bodies that are not relatively permanent if that b ody is determined t o h ave a s ignificant n exus with a T NW (USACE 2007). In this report it is assumed that the tributaries to Piute Wash have a significant nexus to the Colorado river and are therefore considered to be jurisdictional.

Jean Lake and Eldorado Valley Dry Lake are isolated intrastate playa lakes with no significant nexus to interstate or foreign commerce. Tributaries to these waters are therefore considered non-jurisdictional under the Clean Water Act in this report.

Description of Jurisdictional Features

Two general types of features qualifying as waters of the United States occur within the project area: Ivanpah Lake, a playa lake that is dry for most of the year, and numerous ephemeral desert washes. The portion of Ivanpah dry lake that is within the project area is composed of lacustrine deposits that are very poorly drained. P onding is frequent following sufficient rain events, and the lake bed is devoid of vegetation. S urrounding the lake are alkaline soils supporting Desert Saltbush Scrub dominated by allscale and creosote bush.

The project area is dissected by numerous ephemeral desert washes and drainage channels supporting six vegetation communities. A list of the dominant and/or characteristic plant species observed within the proposed project areas is presented in Appendix A. Because of the timing of the survey, it was not possible to compile a complete vascular plant species list. About a quarter of the mapped potentially jurisdictional washes have s andy or gravelly unvegetated channel bottoms, and banks with vegetation that is not distinct from the surrounding Mojave Creosote Brush Scrub (Holland 1986), the predominant vegetation type for most of the project area. A majority of the mapped drainage features are vegetated with M ojave D esert Wash S crub (Holland 1986), which supports species such as cheesebush and catclaw acacia that are indicative of regular surface flows during rain events. W ashes near the margins of Roach Lake typically have s andy bot toms a nd s upport D esert S altbush S crub (Holland 1986). A long t he telecommunications route within the watershed north-west of Highway 164 that drains to Piute Wash, the uplands are dominated by Joshua Tree Woodland (Holland 1986), and the margins of many of the mapped drainages, and occasionally the channel bot toms are dominated by this habitat type. O ther channels within this area have channels dom inated by species more characteristic of active channels such as catclaw acacia, desert almond, and wooly bur-sage. The habitat of one potentially jurisdictional wash in this area was characterized as Rabbitbrush Scrub (Holland 1986), but this habitat type b ecomes more a bundant a long the telecommunications route in the watershed that drains to Eldorado Valley Dry Lake. Finally, several highly degraded drainages that cross the state line near Primm, Nevada are characterized as ruderal habitat, and are d ominated by n on-native s pecies s uch as tamarisk and R ussian t histle. R epresentative

photographs of typical washes vegetated with each of the observed habitat types are presented in Appendix B.

3.3.2 Summary of Potentially Jurisdictional Features

Overall, the construction of the project will result in 13.857 acres of temporary and 1.699 acres of permanent impacts to potential waters of the United States. Impacts to jurisdictional features including the geographic coordinates, the habitat type, and type of construction impact of each feature are summarized in Table 2. Maps depicting all potential waters of the United States including waters likely to be permanently or temporarily impacted by the construction of the project, and waters occurring within a 50 ft survey buffer surrounding all project construction sites, laydown areas and access roads are presented in Appendix C.

Table 2. Summary of impacts to potential USACE – jurisdictional w

						Permanent Ir	mpacts (acres)	Temporary Impacts (acres)						
Feature	Location UTM NAD 83	Watershed	Habitat type	OHWM width (ft.)	OHWM depth (in.)	220kV clearance	Microwave tower	115kV tower rem ² .	220 kV P-S-T sites ³	220kV tower const	Fiber optic underground	Fiber optic work areas	Laydown areas	Buffe (acres
Ivanpah lk.	11S 644475.6 3939582.2	N/A	Playa	N/A	N/A	1.651		3.714	0.689	8.876				N/A
CA-357	11S 656984.5 3926552.9	Ivanpah Lake - Interstate	MDWS	3	1						0.001			0.00
CA-375	11S 657027.2 3926881	Ivanpah Lake - Interstate	MDWS	3	2						0.002			0.01
CA-380	11S 657035.4 3926999.8	Ivanpah Lake - Interstate	MDWS	10	2						0.009			0.03
CA-382	11S 657036.8 3927024.9	Ivanpah Lake - Interstate	MCBS	3	2						0.001			0.00
CA-383	11S 657036.6 3927032.9	Ivanpah Lake - Interstate	MCBS	3.25	1						0.001			0.00
CA-384	11S 657042.9 3927045.4	Ivanpah Lake - Interstate	MCBS	4.5	1						0.002			0.01
CA-389	11S 657034.1 3927135.8	Ivanpah Lake - Interstate	MDWS	9	1.5						0.009			0.04
CA-392	11S 657036.6 3927175.1	Ivanpah Lake - Interstate	MCBS	4.5	4						0.002			0.00
CA-396	11S 657041.2 3927207	Ivanpah Lake - Interstate	MDWS	5	2						0.002			0.01
CA-400	11S 657042.8 3927279.1	Ivanpah Lake - Interstate	MDWS	5	1.5						0.003			0.01
CA-402	11S 657036.9 3927301.2	lvanpah Lake - Interstate	MDWS	4	1		0.010							0.01
CA-455	11S 645841.9 3941220.6	Ivanpah Lake - Interstate	DSS	7	0.5	0.004		0.012		0.070				0.13
CA-457	115 645939.3 3941284.3	Ivanpah Lake - Interstate	DSS	4	2									0.00
NV-001	11S 645995.9 3941340.5	Ivanpah Lake - Interstate	Ruderal	2.5	3					0.005				0.00
NV-002	11S 646209.5 3941510.6	lvanpah Lake - Interstate	Ruderal	2.5	1.5								0.034	0.00
NV-005	11S 647350.1 3941681.2	Roach Lake	MCBS	3.5	3									0.00
NV-009	11S 648101.7 3943507.7	Roach Lake	MCBS	6	3			0.002						0.02
NV-011	11S 663981.4 3927924.6	Ivanpah Lake - Interstate	MCBS	2.5	1							0.009		0.00
NV-013	11S 663977.6 3927974.9	Ivanpah Lake - Interstate	MDWS	6	1									0.05
NV-014	11S 663969.9 3927983.1	Ivanpah Lake - Interstate	MDWS	3.5	1									0.00
NV-016	115 648478.2 3944148.3	Roach Lake	DSS	2.5	1									0.00
NV-018	11S 648649.5 3944055.7	Roach Lake	DSS	3.5	1									0.00
NV-021	115 664585.8 3928407.2	Ivanpah Lake - Interstate	MDWS	2.5	1									0.00
NV-028	115 664803 3928505.2	Ivanpah Lake - Interstate	MDWS	3	1									0.01
NV-029	11S 664779.1 3928538.5	Ivanpah Lake - Interstate	MDWS	3	1									0.01
NV-031	115 665092.9 3928563.5	Ivanpah Lake - Interstate	RS	3.5	1									0.01
NV-033	115 649299.5 3944694.7	Roach Lake	DSS	2	1									0.00
NV-038	115 665743 3929637.4	Ivanpah Lake - Interstate	MDWS	2.25	2									0.00
NV-039	115 665852.8 3929727.7	Ivanpah Lake - Interstate	MDWS	2.5	2									0.00
NV-041	115 666389.7 3930063.8	Ivanpah Lake - Interstate	MDWS	2.5	2									0.00
NV-041	115 000389.7 3930003.8 115 667270.7 3930618.3	Ivanpah Lake - Interstate	JTW	2.5	2									0.00
NV-047	115 667662.7 3931080.1	Ivanpah Lake - Interstate	JTW	2.25	2									0.00
NV-047	113 667876.2 3931306.8	Ivanpah Lake - Interstate	JTW	2.25	2									0.00
NV-057	113 66770.1 3931505.7	Ivanpah Lake - Interstate	JTW	3	0.5									0.00
NV-059	115 668322.1 3932052.1	Ivanpah Lake - Interstate	JTW	3.5	2									0.01
		Roach Lake				0.008				0.012				0.01
NV-060 NV-066	11S 651443.2 3949194.8 11S 668927.5 3932787.7	Piute wash	DSS JTW	3.75 3.5	2	0.008				0.012				0.01
					2									
NV-067	11S 669095.5 3933009.5	Piute wash	JTW	2.5	2							0.000		0.00
NV-070 NV-073	11S6690973933177.811S652074.63950581	Piute wash Roach Lake	JTW MDWS	2.25 4	3							0.008		0.01

						Permanent Ir	npacts (acres)			Temporary Ir	npacts (acres)			
Feature	Location UTM NAD 83	Watershed	Habitat type	OHWM width (ft.)	OHWM depth (in.)	220kV clearance	Microwave tower	115kV tower rem ² .	220 kV P-S-T sites ³	220kV tower const	Fiber optic underground	Fiber optic work areas	Laydown areas	Buffer (acres)
NV-074	11S 669359.5 3933374.6	Piute wash	JTW	2.25	1									0.006
NV-075	11S 652094.1 3950667	Roach Lake	MCBS	2.5	1	0.002		0.004		0.010				0.013
NV-076	11S 652114 3950660.3	Roach Lake	MCBS	4	1	0.007				0.014				0.031
NV-078	11S 669470.9 3933522.2	Piute wash	JTW	2.75	1									0.007
NV-079	11S 652230.7 3950853.1	Roach Lake	MDWS	3	2					0.001				0.009
NV-080	11S 652229.6 3950890.3	Roach Lake	MDWS	4	2			0.007		0.019				0.018
NV-081	11S 652317.8 3951070.2	Roach Lake	MDWS	12.5	2					0.006				0.032
NV-082	11S 669626.1 3933846	Piute wash	JTW	2.75	2							0.010		0.013
NV-083	11S 652419.1 3951347	Roach Lake	MCBS	6.75	2	0.006		0.014		0.014				0.020
NV-084	11S 652581.9 3951696.2	Roach Lake	MDWS	13.5	2				0.042					0.080
NV-086	11S 653179.9 3952133.4	Roach Lake	MDWS	3	1			0.005		0.011				0.019
NV-087	11S 670598.9 3935062.6	Piute wash	JTW	3.5	2									0.010
NV-088	11S 653472 3952248.3	Roach Lake	MDWS	3.25	1			0.002						0.015
NV-089	11S 653466.5 3952268.6	Roach Lake	MDWS	15	1			0.018	0.064					0.096
NV-090	11S 653615.5 3952334.5	Roach Lake	MDWS	3.5	2	0.001		0.007		0.016				0.009
NV-091	11S 670736.9 3935237.3	Piute wash	JTW	2.5	1									0.013
NV-092	11S 653789.2 3952395.2	Roach Lake	MCBS	2.25	3									0.012
NV-094	11S 670896 3935463.6	Piute wash	JTW	3.25	2									0.008
NV-096	11S 653978.7 3952504.8	Roach Lake	MDWS	3.5	2									0.011
NV-097	11S 654026.2 3952514.1	Roach Lake	MDWS	11	2					0.028				0.037
NV-098	11S 654182.2 3952599.1	Roach Lake	MDWS	22.5	1									0.055
NV-099	11S 654207.1 3952631.6	Roach Lake	MCBS	4.25	1									0.009
NV-100	11S 654226.4 3952637.4	Roach Lake	MDWS	13.5	1					0.049				0.051
NV-101	11S 654309.5 3952663.8	Roach Lake	MCBS	2.75	1									0.008
NV-103	11S 654486.9 3952774.2	Roach Lake	MCBS	4.5	1					0.004				0.029
NV-106	11S 671373.9 3936125.4	Piute wash	JTW	2.5	2									0.014
NV-107	11S 654671.2 3952879.5	Roach Lake	MCBS	2.5	1			0.008		0.001				0.002
NV-111	11S 654876.7 3952976.6	Roach Lake	MDWS	2.5	1			0.007		0.006				0.008
NV-112	11S 654948.6 3952969.9	Roach Lake	MCBS	3.5	1									0.009
NV-114	11S 655043.2 3953024.8	Roach Lake	MDWS	3.5	1									0.009
NV-116	11S 655168.6 3953083.6	Roach Lake	MCBS	2.5	1									0.006
NV-117	11S 655216.6 3953101.9	Roach Lake	MCBS	2.5	1									0.007
NV-118	11S 655272.9 3953123.7	Roach Lake	MCBS	4	1									0.010
NV-122	11S 655495.5 3953287.4	Roach Lake	MCBS	3	1	0.004		0.006		0.005				0.007
NV-123	11S 655524.6 3953296	Roach Lake	MCBS	3	1	0.004				0.013				0.009
NV-126	11S 655664.8 3953303	Roach Lake	MCBS	3.5	1									0.010
NV-165	11S 651499.5 3961152.4	Roach Lake	Ruderal	9.5	3									0.235
					Totals	1.688	0.010	3.808	0.795	9.160	0.033	0.027	0.034	1.560

¹Habitat types: Playa = Ivanpah Lake bed; DDS = Desert Saltbush Scrub; JTW = Joshua Tree Woodland; MCBS = Mojave Creosote Brush Scrub; MDWS = Mojave Desert Wash Scrub; Ruderal = Disturbed area devoid of native vegetation ² 115 kV tower removal areas

³ 220 kV pulling, splicing and tensioning areas

4.0 Delineation of CDFG Jurisdictional Habitats

4.1 Regulatory Background

California Fish and Game Code section 1602 applies to all perennial, intermittent, and ephemeral rivers, s treams, and l akes in t he s tate, and r equires a ny pe rson, s tate or l ocal governmental agency, or public utility to notify the Department of Fish and Game (CDFG) before beginning any activity that will do one or more of the following:

- 1) substantially obstruct or divert the natural flow of a river, stream, or lake;
- 2) substantially change the bed, channel, or bank of a river, stream, or lake;
- 3) use any material from the bed, channel, or bank of a river, stream, or lake; and/or
- 4) deposit or dispose of debris, waste, or other material containing crumbled, flaked, or ground pavement where it can pass into a river, stream, or lake.

This requirement may apply to any work undertaken within the 100-year floodplain of a body of water or its tributaries, in cluding in termittent s treams and d esert washes (CDFG 1 994). In addition, under the Porter-Cologne Water Quality Control Act, a water quality certification from the Regional Water Quality C ontrol B oard is required for discharge or fill into any waterway falling under the jurisdiction of CDFG.

4.2 Methods

Field investigations to identify desert washes potentially falling under the regulatory jurisdiction of CDFG were carried out from F ebruary 16th through F ebruary 27th 2010, c oncurrently with surveys to identify USACE jurisdictional washes. In California, all temporary and permanent impact a reas i ncluding a 50 f t. buf fer s urrounding a ll i mpact a reas a nd a ccess roads were surveyed on foot. Washes falling within the survey buffer of access roads were mapped only in cases where the washes crossed the road. The overall wash width, width and depth at OHWM (as defined by USACE), habitat type, and up to six of the dominant and/or characteristic plant species and their cover were recorded in the field for each feature. Foliar cover estimates for each dominant or characteristic species were scored on a scale of 1-4 (4= abundant, 3 = common, 2 = scattered, 1 = sparse). A photograph of each mapped feature was taken along with notes on channel characteristics and hydrologic indicators. A ll drainage features larger than one ft. in width were mapped in the field using a T rimble G eoXT G PS unit with sub-meter accuracy. Features less than about 5 ft wide were mapped as line features greater than about 5 ft. wide were mapped as polygons and their acreages calculated directly.

The location of all riparian trees greater than two inches diameter at breast height (dbh) were marked with a GPS unit in the field.

4.3 Results

Description Of Jurisdictional Features

In California, all desert wash channels were mapped, including many washes that are likely to carry flows only during extreme storm events, and therefore do not support vegetation typical of channels t hat are f requently w etted. Although s uch c hannels a re n ot c onsidered t o be jurisdictional b y USACE (2001, 2008b), CDFG may exert jurisdiction these features (CDFG 1994). The following habitat types were observed within potentially CDFG-jurisdictional areas subject t o di sturbance by t he pr oposed p roject: the pl aya s urface of Ivanpah Lake, Desert Saltbush Scrub, Mojave Creosote Brush Scrub, Mojave Desert Wash Scrub, and a ruderal area devoid of native vegetation.

The p laya s urface of Ivanpah Lake is composed of l acustrine de posits that are v ery poor ly drained, pondi ng i s f requent f ollowing s ufficient r ain e vents, a nd t he l ake be d i s d evoid of vegetation. T he ha bitat of one w ash w ithin California w as c haracterized a s r uderal a nd w as vegetated exclusively by the invasive species R ussian thistle. T he species composition of the remaining w ash h abitats oc curring w ithin t he C alifornia por tion of t he pr oject area i s summarized in Table 3.

4.3.1 Summary of Potentially Jurisdictional Areas

In California, the proposed project will result in a total of 15.436 acres of temporary impacts and 1.970 acres of permanent impacts t o pl aya and de sert wash ha bitats l ikely t o f all under t he jurisdiction of CDFG. The total acreage of temporary and permanent impacts to potential CDFG jurisdictional ha bitats br oken dow n b y h abitat t ype and t ype o f construction i mpact i s summarized in Table 4. Maps depicting all potential CDFG jurisdictional habitats likely to be permanently or t emporarily i mpacted b y t he construction of t he project i n a ddition t o these habitats occurring within a 50 ft survey buffer surrounding all project construction sites, laydown areas and access roads are presented in Appendix D.

The application for a stream alteration agreement under section 1602 of the Fish and Game Code requires the reporting of the number of all riparian trees greater than four inches in diameter at breast height (DBH). The only riparian tree species occurring within the project impact areas is catclaw acacia. S ix cat claw ac acias greater than four inches D BH o ccur within t emporary impact ar eas and four catclaw ac acias o ccur within permanent impact areas. The location of these trees and all cat claw aca cias o ccurring within the 50 ft. survey buffer is depicted in the CDFG maps of Appendix D.

Mojave Desert Wash Scrub		Mojave Creosote Brush Scrub	Desert Saltbush Scrub		
Species	Ave Cov ¹	Species	Ave Cov ¹	Species	Ave Cov ¹
Ambrosia dumosa	3	Ambrosia dumosa	3	Atriplex polycarpa	3
Hymenoclea salsola	2.5	Larrea tridentata	2.5	Ambrosia dumosa	1
Achnatherum speciosum	2	Eriogonum fasciculatum var. polifolium	2	Larrea tridentata	1
Encelia virginensis	2	Achnatherum speciosum	1.5		
Eriogonum fasciculatum var. polifolium	2	Ephedra sp.	1.5		
Larrea tridentata	2	Opuntia echinocarpa	1.5		
Acacia greggii	1.5	Pleuraphis rigida	1.5		
Ephedra sp.	1.5	Salsola tragus	1.5		
Krameria erecta	1.5	Atriplex polycarpa	1		
Porophyllum gracile	1.5	Echinocactus polycephalus	1		
Unknown	1.5	Ephedra nevadensis	1		
Baccharis brachyphylla	1	Eriogonum inflatum	1		
Echinocereus engelmannii	1	Erioneuron pulchellum	1		
<i>Encelia</i> sp.	1	Hymenoclea salsola	1		
Ephedra nevadensis	1	Krameria erecta	1		
Eriogonum inflatum	1	<i>Lycium</i> sp.	1		
Erioneuron pulchellum	1	Opuntia acanthocarpa	1		
Lycium andersonii	1	Opuntia basilaris	1		
<i>Lycium</i> sp.	1	Opuntia ramosissima	1		
Mammillaria tetrancistra	1	Porophyllum gracile	1		
Menodora spinescens	1	Yucca schidigera	1		
Opuntia acanthocarpa	1	Salazaria mexicana	0.5		
Opuntia basilaris	1				
Opuntia echinocarpa	1				
Opuntia ramosissima	1				
Prunus fasciculata	1				
Salazaria mexicana	1				
Sphaeralcea ambigua	1				
Yucca schidigera	1				

Table 3. Species composition of CDFG – jurisdictional wash habitats

	Permanent Ir	npacts (acres)	Temporary Impacts (acres)						
Habitat type ¹	220kV clearance	Microwave tower	115kV tower removal	220 kV P-S-T sites ²	220kV tower const.	Culvert replacement	Fiber optic underground	Laydown or equip yard	Buffer (acres)
Playa	1.651		3.714	0.689	8.875				
DSS	0.003		0.040		0.124			0.055	0.496
MCBS	0.054		0.134	0.036	0.176	0.055	0.035	0.048	1.393
MDWS	0.252	0.010	0.801	0.307	0.337		0.095		5.261
Ruderal								0.002	0.000
Totals	1.960	0.010	4.690	1.031	9.513	0.055	0.130	0.106	7.151

Table 4. Summary of impacts to potential CDFG – jurisdictional habitats.

¹Habitat types: Playa = Ivanpah Lake bed; DDS = Desert Saltbush Scrub; MCBS = Mojave Creosote Brush Scrub; MDWS = Mojave Desert Wash Scrub; Ruderal = Disturbed area devoid of native vegetation

² 220 kV pulling, splicing and tensioning areas

5.0 References

- CalWater W atershed D elineations. 1999. Natural R esources C onservation S ervice W ebsite. Accessed at: <u>http://www.ca.nrcs.usda.gov/features/calwater/</u>
- California Department of Fish and Game (CDFG). 1994. A Field Guide to Lake and Streambed Alteration Agreements, Sections 1600-1607. Environmental Services Division.
- Hickman, J.C. (ed). 1993. *The Jepson Manual: Higher Plants of California*. U niversity of California Press, Berkeley.
- Holland, R.F. 1986. *Preliminary Descriptions of the Terrestrial Natural Communities of California*. California Department of Fish and Game. Unpublished Report.
- National O ceanographic and A tmospheric A dministration (NOAA). 2010. National W eather Service F orecast O ffice. C limate o f Las V egas, N evada. Accessed at : <u>http://www.wrh.noaa.gov/vef/climate/index.php</u>
- Natural Resources Conservation Service (NRCS) 2009. Watershed Boundary Dataset for Clark Co., NV, and San Bernardino Co., CA. Accessed at: <u>http://datagateway.nrcs.usda.gov</u>
- Natural Resources Conservation S ervice (NRCS). 2007. *Soil Survey of Mojave Desert Area,* Northeastern P art, C alifornia. Web S oil S urvey W ebpage. A ccessed at : <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>
- Natural Resources Conservation Service (NRCS). Official Soil Series Descriptions. A ccessed at: <u>http://ortho.ftw.nrcs.usda.gov/cgi-bin/osd/osdname.cgi</u>
- Natural R esources C onservation S ervice (NRCS). 2006. Soil Survey of Clark County Area, Nevada. National Cooperative Soil Survey.
- Natural Resources Conservation Service (NRCS). 2010. N ational Hydric Soils List by State. Accessed at: <u>http://soils.usda.gov/use/hydric/lists/state.html</u>
- Nevada D ivision of E nvironmental P rotection (NDEP) W atershed M aps. 2009. B ureau of Water Quality Planning. Accessed at: <u>http://ndep.nv.gov/bwqp/file/great_basin.pdf</u>
- Patricia McQueary, USACE. Personal communication with AECOM biologist Joey Betzler.
- Sawyer, J.O., T. Keeler-Wolf and J.M. Evens. 2009. *A Manual of California Vegetation*, second edition. California Native Plant Society, Sacramento.

- U.S. A rmy C orps of E ngineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. T echnical R eport Y -87-1. E nvironmental Laboratory, U.S. A rmy E ngineer Waterways Experiment Station, Vicksburg, MS.
- U.S. A rmy C orps o f E ngineers (U SACE). 2001. F inal S ummary R eport: G uidelines f or Jurisdictional D eterminations f or W aters o f th e U nited S tates in the A rid S outhwest. South P acific D ivision. A ccessed at: <u>http://www.spk.usace.army.mil//organizations/cespk-co/regulatory/pdf/jd_guide.pdf</u>
- U.S. Army Corps of Engineers, (USACE). 2007. U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook. May 30, 2007.
- U.S. A rmy C orps of Engineers (USACE). 20 08a. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), e d. J.S. Wakeley, R.W. Lichvar, and C.V. Noble. E RDC/EL TR-08-28. V icksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Army Corps of Engineers (USACE). 2008b. A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States: A Delineation Manual. R.W. Lichvar and S.M. McColley. E RDC/CRREL TR-08-12. Hanover, NH: U.S. Army Engineer Research and Development Center.
- U.S. A rmy C orps of Engineers (USACE). 2009. J urisdictional d etermination le tter f or application File No. SPL-2007-00415-SLP. Issued by Mark Durham, Office of the Chief Regulatory Division, Los Angeles, CA.

Appendix A

Dominant and/or characteristic plant species observed in the wash habitats of the EITP project site

Scientific Name ¹	Common Name	Indicator Status ³			
	common Name	CA (Reg. 0)	NV (Reg. 8)		
Gymnosperms					
Ephedraceae	Mormon-tea family				
Ephedra sp.	ephedra				
Ephedra nevadensis	Nevada ephedra				
Pinaceae	Pine family				
Pinus monophylla	singleleaf pinyon				
Dicots					
Anacardiaceae	Sumac family				
Rhus trilobata	skunkbush sumac	NI	NI		
Asteraceae	Aster family				
Adenophyllum cooperi	Cooper's dogweed				
Ambrosia dumosa	white bursage				
Ambrosia eriocentra	woolly bur-sage				
Baccharis brachyphylla	shortleaf baccharis				
Bebbia juncea	sweetbush				
Brickellia sp.	brickellbush				
Chrysothamnus paniculatus	Mojave rabbitbrush				
Encelia sp.	brittlebush				
Encelia farinosa	brittlebush				
Encelia frutescens	button brittlebush				
Encelia virginensis	Virgin River brittlebush				
Ericameria laricifolia	turpentine bush				
Gutierrezia sp.	snakeweed				
Hymenoclea salsola	cheesebush				
, Malacothrix glabrata	smooth desertdandelion				
Porophyllum gracile	slender poreleaf				
Viguiera parishii	Parish's goldeneye				
Bignoniaceae	Trumpet-creeper family				
Chilopsis linearis	desert willow	FACW	FAC		
Boraginaceae	Borage family				
Cryptantha spp.	cryptantha				
Cactaceae	Cactus family				
Coryphantha* sp.	beehive cactus				
Echinocereus engelmannii	Engelmann's hedgehog cactus				
Ferocactus cylindraceus	California barrel cactus				
, Mammillaria tetrancistra	common fishhook cactus				
Opuntia acanthocarpa	buckhorn cholla				
Opuntia basilaris	beavertail pricklypear				
Opuntia echinocarpa	silver cholla				
Grusonia parishii*	club cholla				

Scientific Name ¹	Common Name	Indicato	r Status ³
	common Name	CA (Reg. 0)	NV (Reg. 8
Opuntia ramosissima	pencil cholla		
Chenopodiaceae	Goosefoot family		
Atriplex canescens	fourwing saltbush	FACU	UPL
Atriplex polycarpa	allscale	FACU	FACU
Salsola tragus	prickly Russian thistle		
Fabaceae	Pea family		
Acacia greggii	catclaw acacia	FACU	FACU
Psorothamnus fremontii	Fremont's dalea		
Senna armata	spiny senna		
Krameriaceae	Krameria family		
Krameria sp.	ratany		
Krameria erecta	littleleaf ratany		
Lamiaceae	Mint family		
Salazaria mexicana	bladdersage		
Salvia dorrii	desert sage		
Malvaceae	Mallow family		
Sphaeralcea ambigua	desert globemallow		
Oleaceae	Olive family		
Menodora spinescens	spiny desert olive		
Polygonaceae	Buckwheat family		
Chorizanthe rigida	devil's spineflower		
Eriogonum sp.	buckwheat		
Eriogonum deflexum	flatcrown buckwheat		
Eriogonum fasciculatum var. polifolium	California buckwheat		
Eriogonum inflatum	desert trumpet		
Rosaceae	Rose family		
Coleogyne ramosissima	blackbrush		
Fallugia paradoxa	Apache plume		
Prunus fasciculata	desert almond		
Scrophulariaceae	Figwort family		
Penstemon bicolor	pinto beardtongue		
Solanaceae	Potato family		
	desert-thorn		
Lycium sp.			
Tamaricaceae	Tamarix family		
Tamarix sp.	tamarisk		
Zygophyllaceae	Creosote-bush family		
Larrea tridentata	creosote bush		
Monocots			
Agavaceae	Century-plant family		
Yucca baccata	banana yucca		
Yucca brevifolia	Joshua tree		
Yucca schidigera	Mojave yucca		
Poaceae	Grass family		
Achnatherum sp.	needlegrass		
Achnatherum speciosum	desert needlegrass		
Aristida sp.	threeawn		

Scientific Name ¹	Common Nomo	Indicator Status ³	
Scientific Name	Common Name	CA (Reg. 0)	NV (Reg. 8)
Bouteloua sp.	grama		
Erioneuron pulchellum	fluff grass		
Pleuraphis rigida	galleta grass		
Schismus sp.	Mediterranean grass		

¹ Names follow Hickman (1993) except where indicated by *.

³ National List of Plant Species that Occur in Wetlands (Reed 1988).

Plants for which no indicator status is presented are not included on the 1988 list.

FACW = Facultative Wetland Species; Estimated probability of 67% to 99% chance of occurring in wetlands. FACU = Facultative Upland Species; Estimated probability of 1% to 33% chance of occurring in wetlands.

NI = No Indicator; Insufficient information was available to determine an indicator status.

UPL = Upland Species; Occurs in wetland is another region, but occurs almost always under natural conditions in nonwetlands in the Regions listed in the table. Estimated <1% probability of occurring in a wetlands

Appendix B.

Representative Photographs of Jurisdictional Features

Photo 1. Desert Saltbush Scrub. USACE-jurisdictional wash NV-016.

Photo 2. Desert Saltbush Scrub. CDFG-jurisdictional wash.

Photo 3. Joshua Tree Woodland. USACE-jurisdictional wash NV-082

Photo 4. Mojave Creosote Brush Scrub. USACE-jurisdictional wash NV-103.

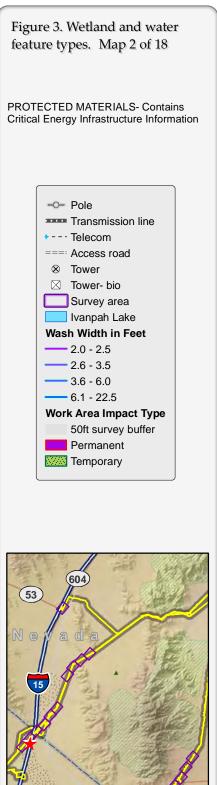
Photo 5. Mojave Desert Wash Scrub. USACE-jurisdictional wash NV-084

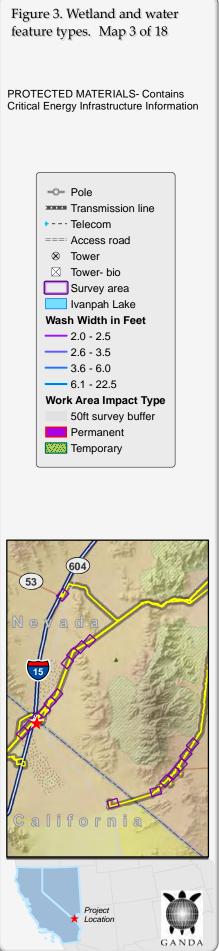
Photo 6. Mojave Desert Wash Scrub. CDFG-jurisdictional wash.

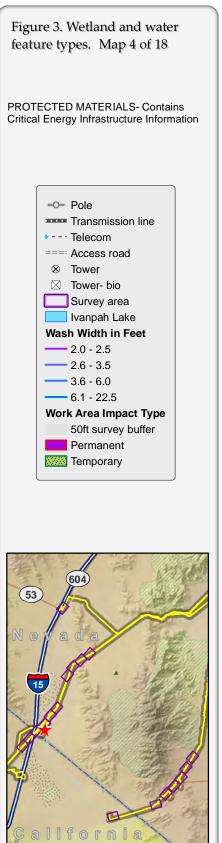
Photo 7. Playa at Ivanpah Lake

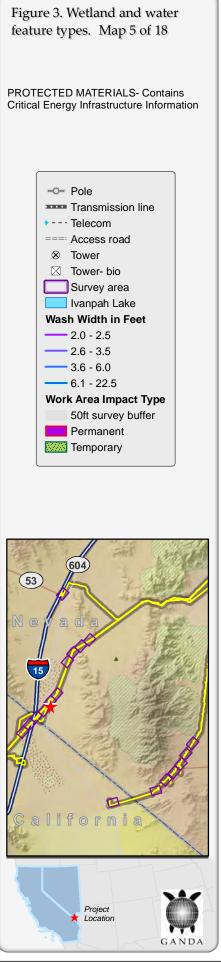
Photo 8. Rabbitbrush Scrub. USACE-jurisdictional wash NV-031.

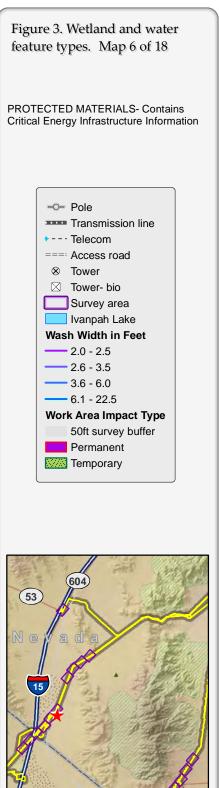
Photo 9. Ruderal habitat. USACE-jurisdictional wash NV-165.


Appendix C Maps of potential USACE – Jurisdictional Waters

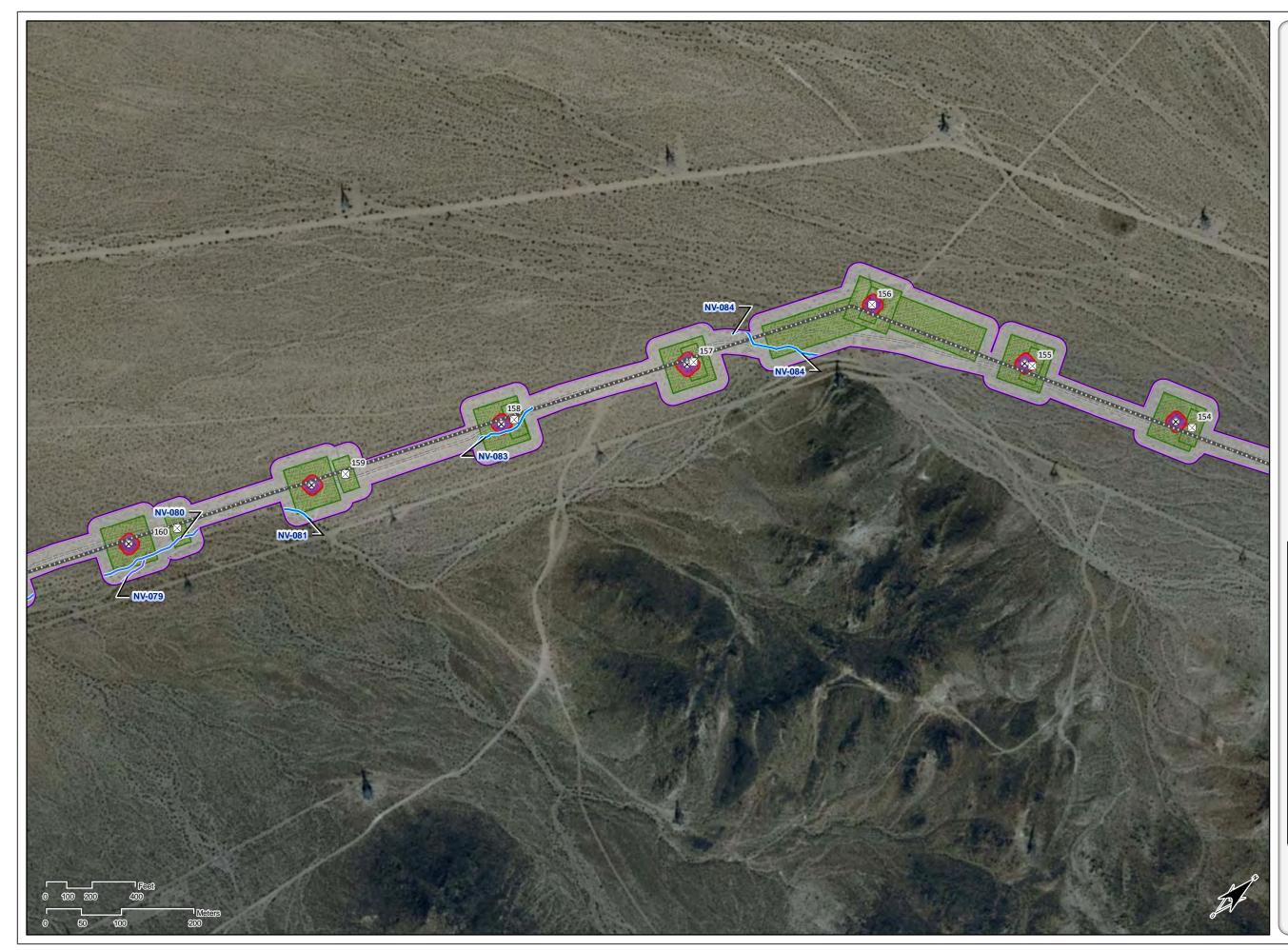

Figure 3. Wetland and water feature types. Map 1 of 18

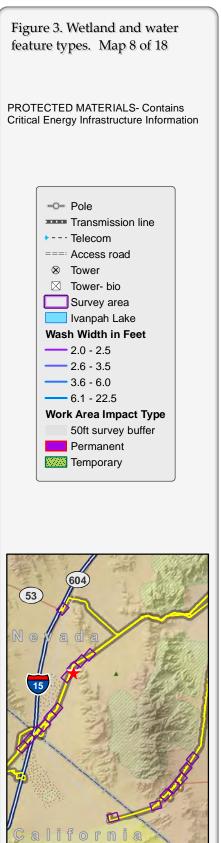

iforni Sections! GANDA Project

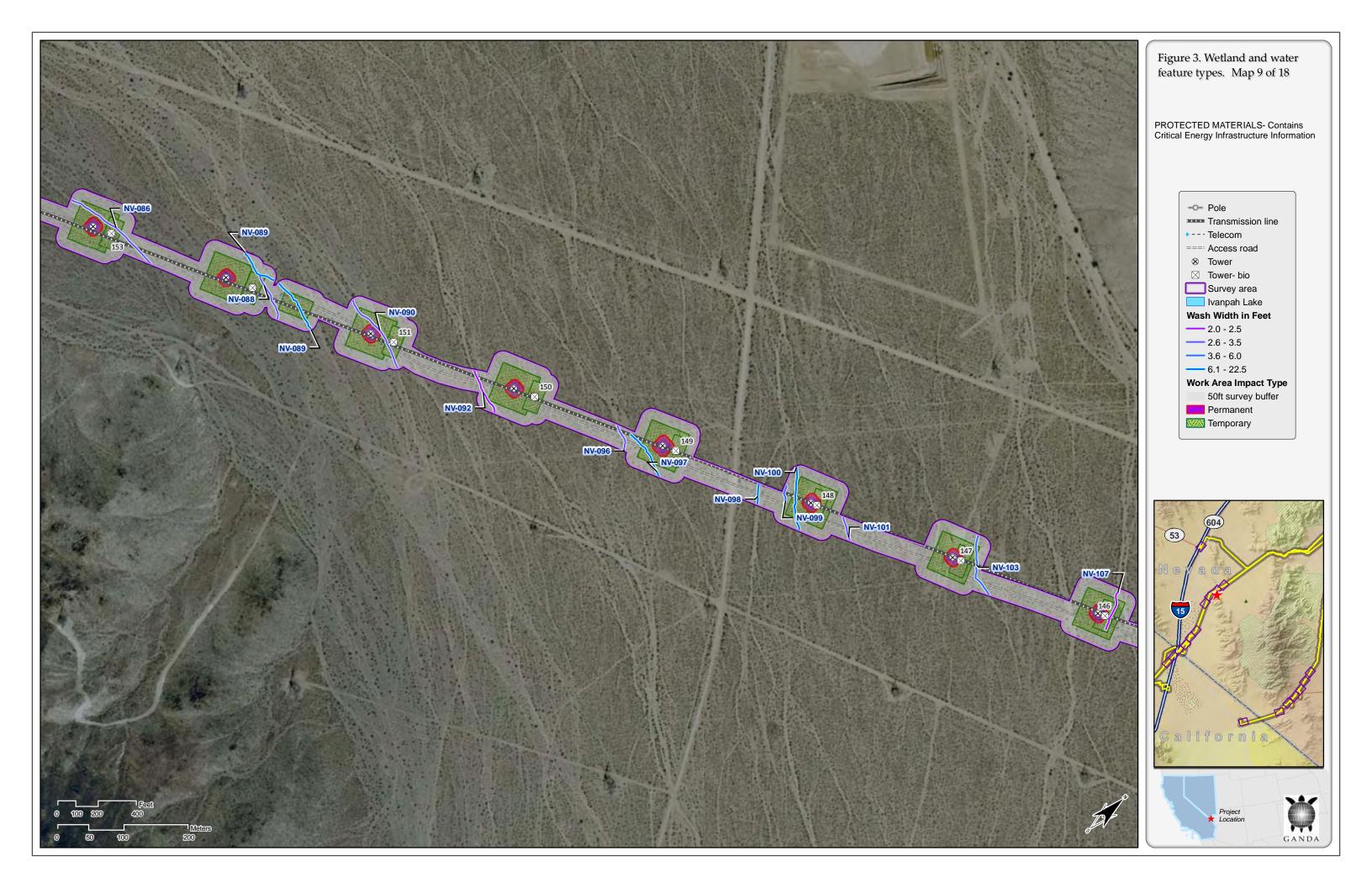

Project

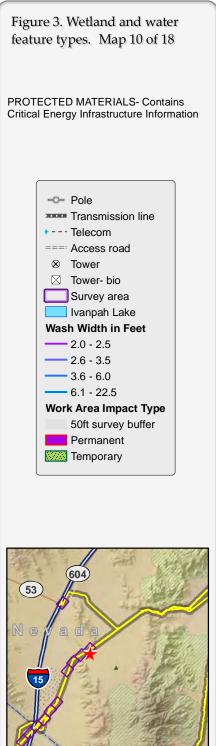


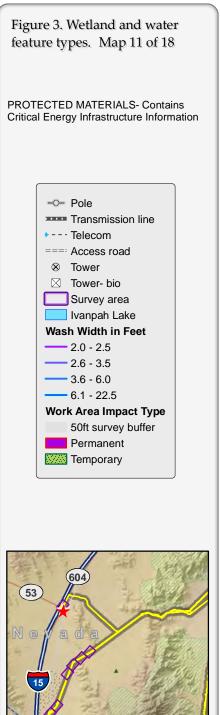
Project Location





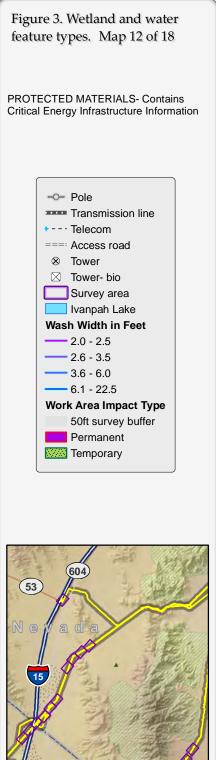

California Project Location



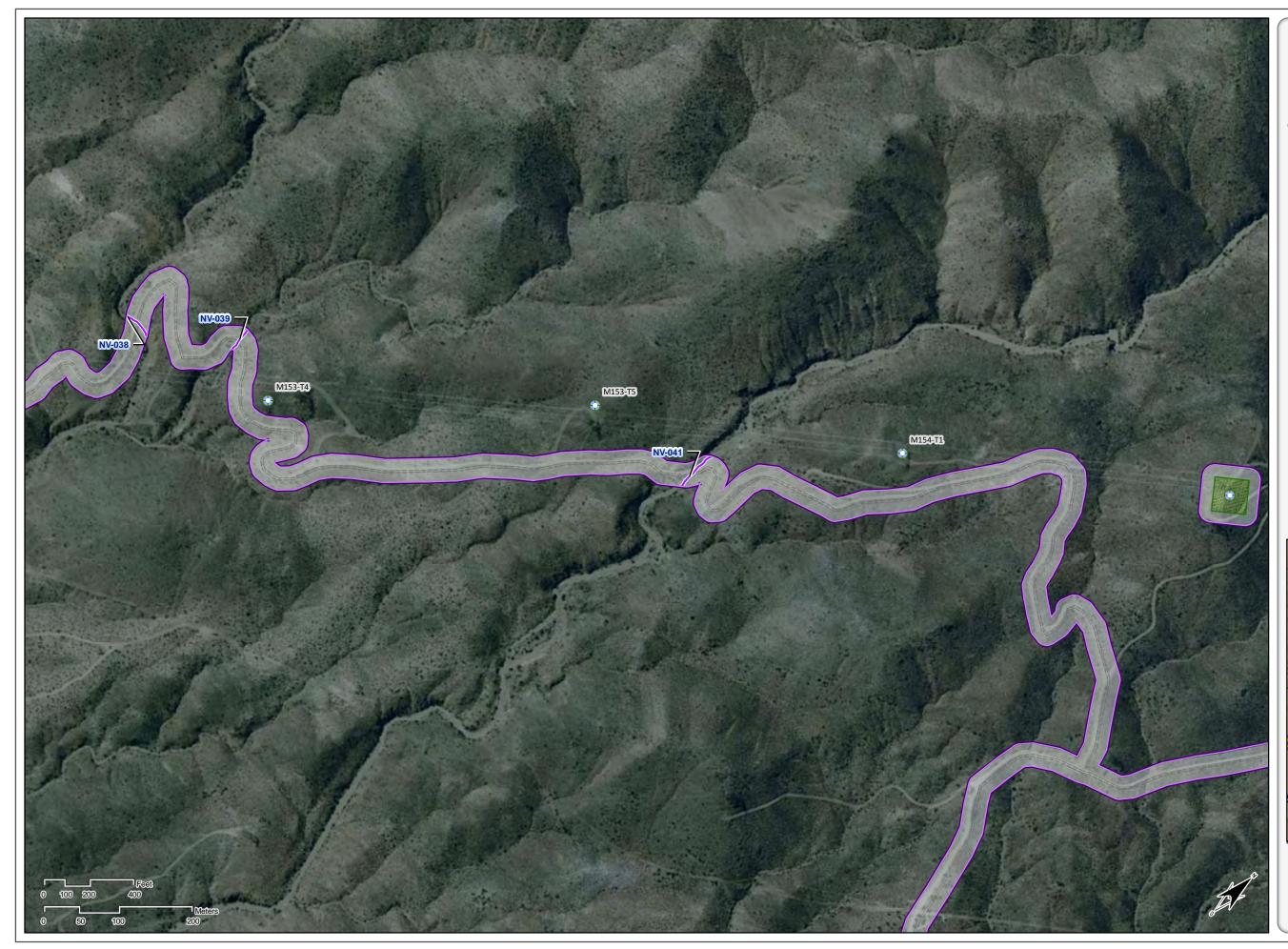

forni

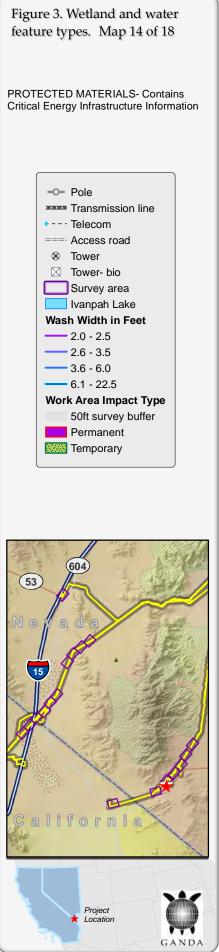
Project

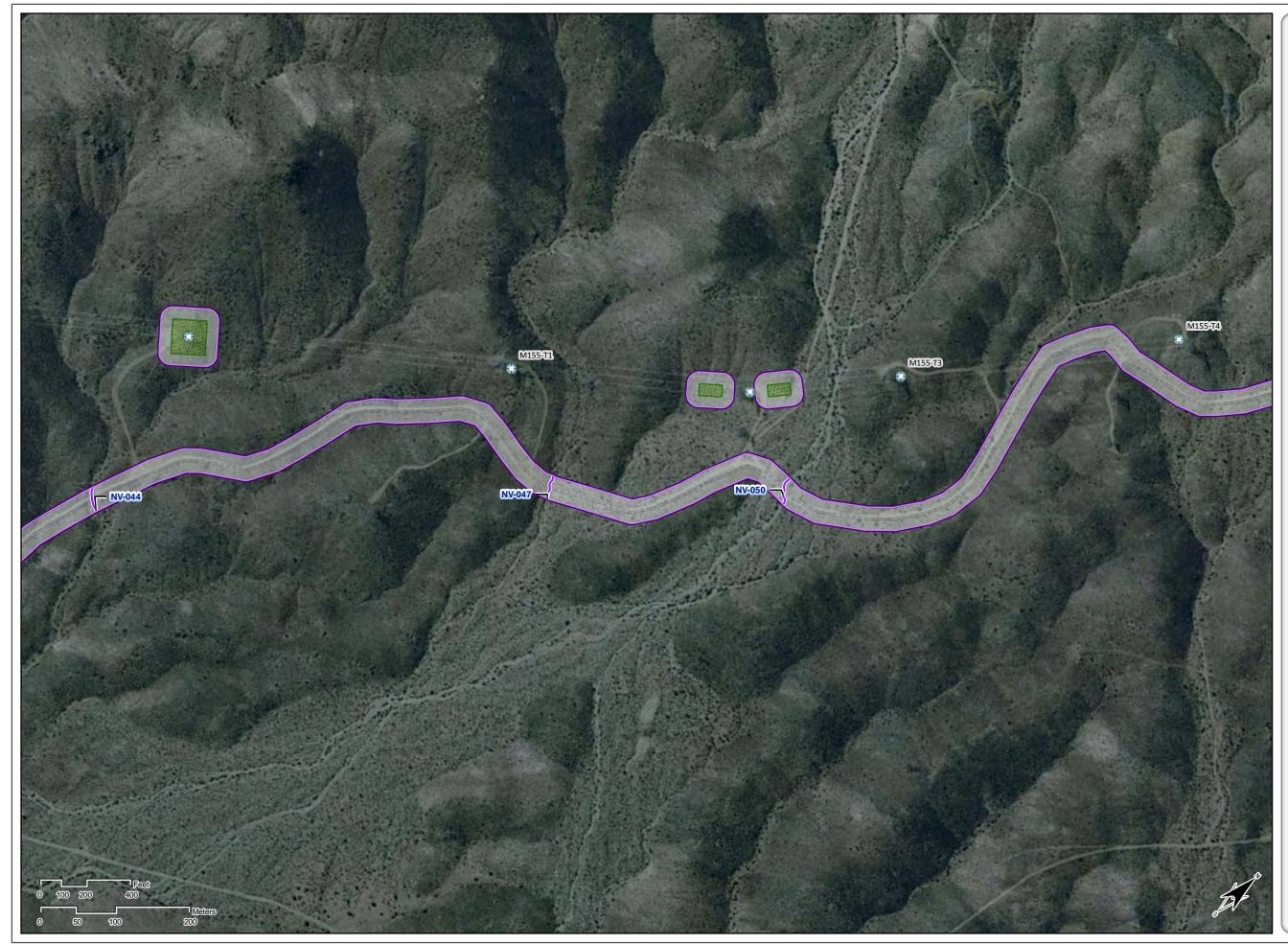
And the second

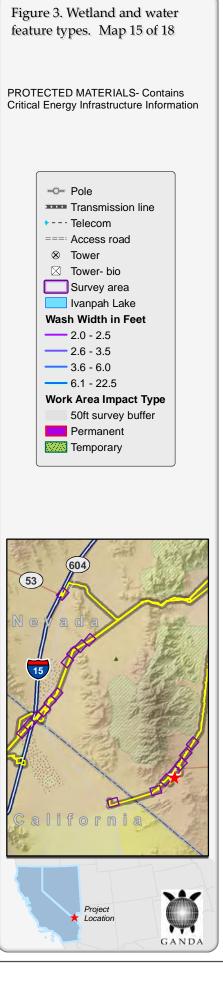

GANDA

- Aller

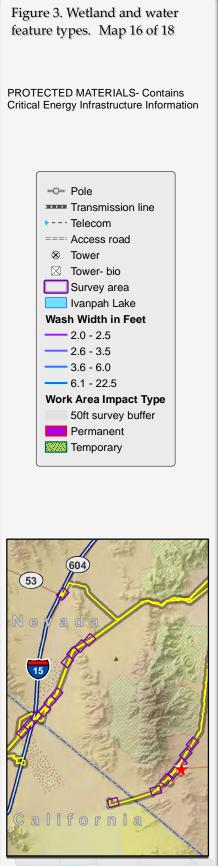

GANDA

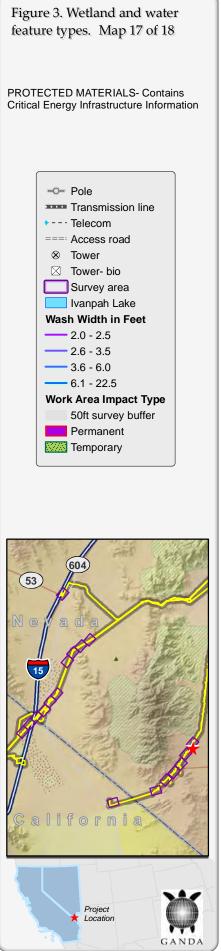

Project Location

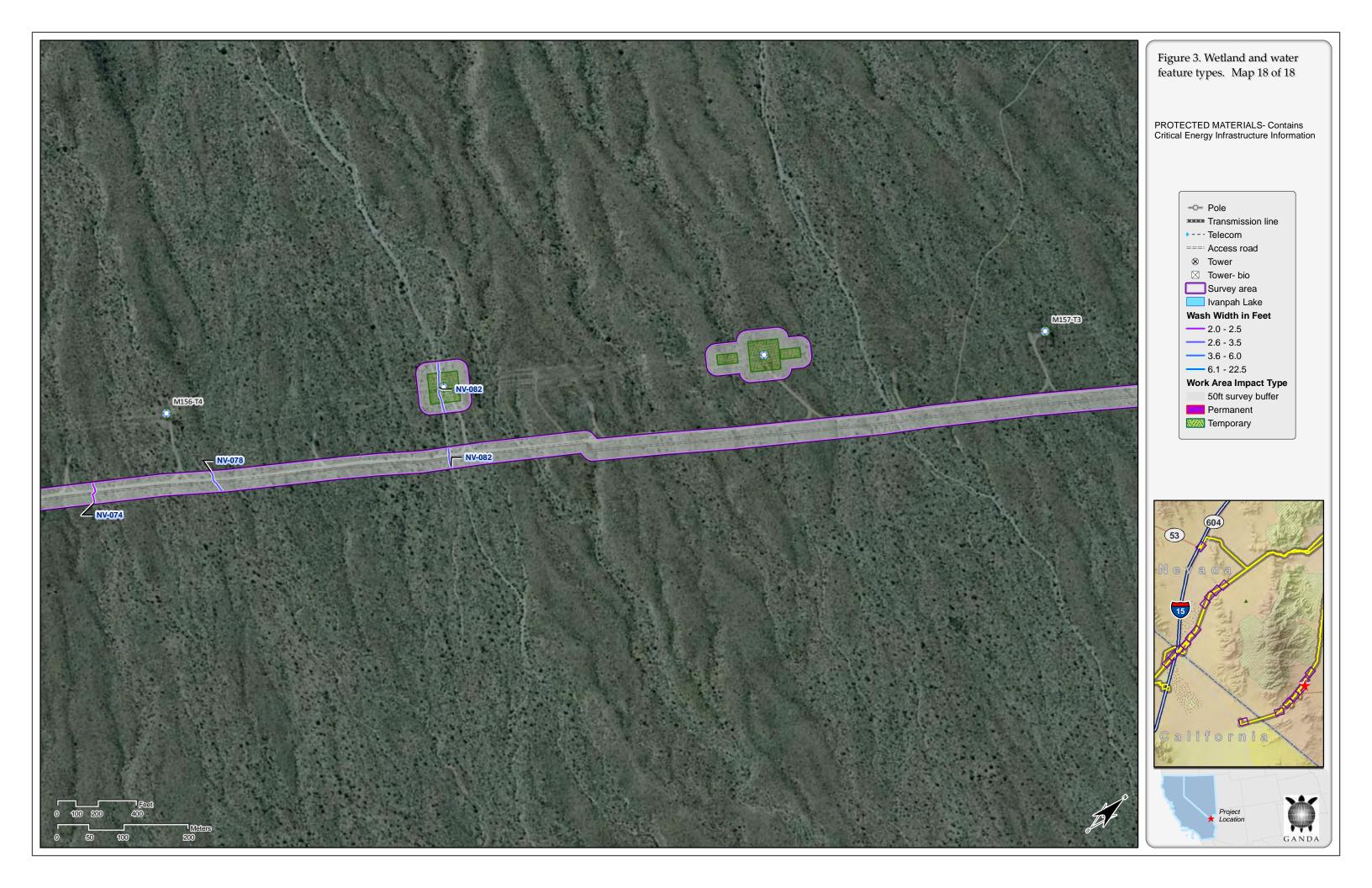



Figure 3. Wetland and water feature types. Map 13 of 18 PROTECTED MATERIALS- Contains Critical Energy Infrastructure Information ---- Pole Transmission line +--- Telecom ===: Access road ⊗ Tower 🛛 Tower- bio Survey area lvanpah Lake Wash Width in Feet 2.0 - 2.5 _____ 2.6 - 3.5 3.6 - 6.0 6.1 - 22.5 Work Area Impact Type 50ft survey buffer Permanent Contraction Temporary (53)



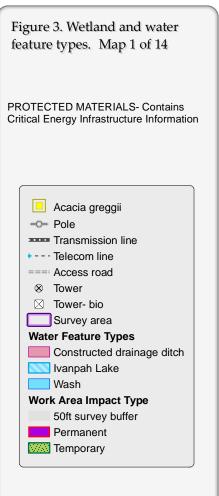


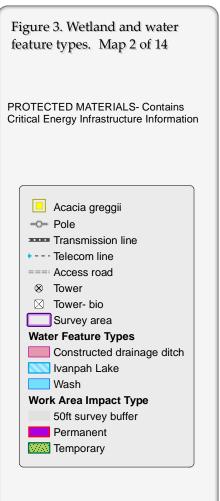


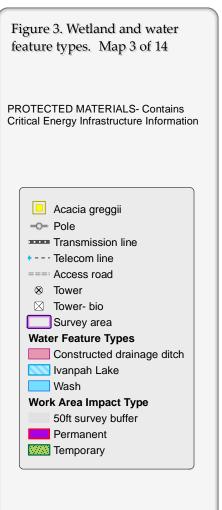


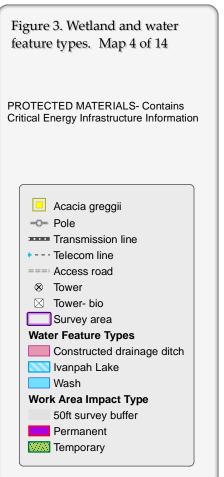
GANDA

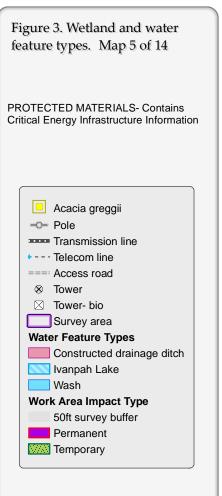
Project

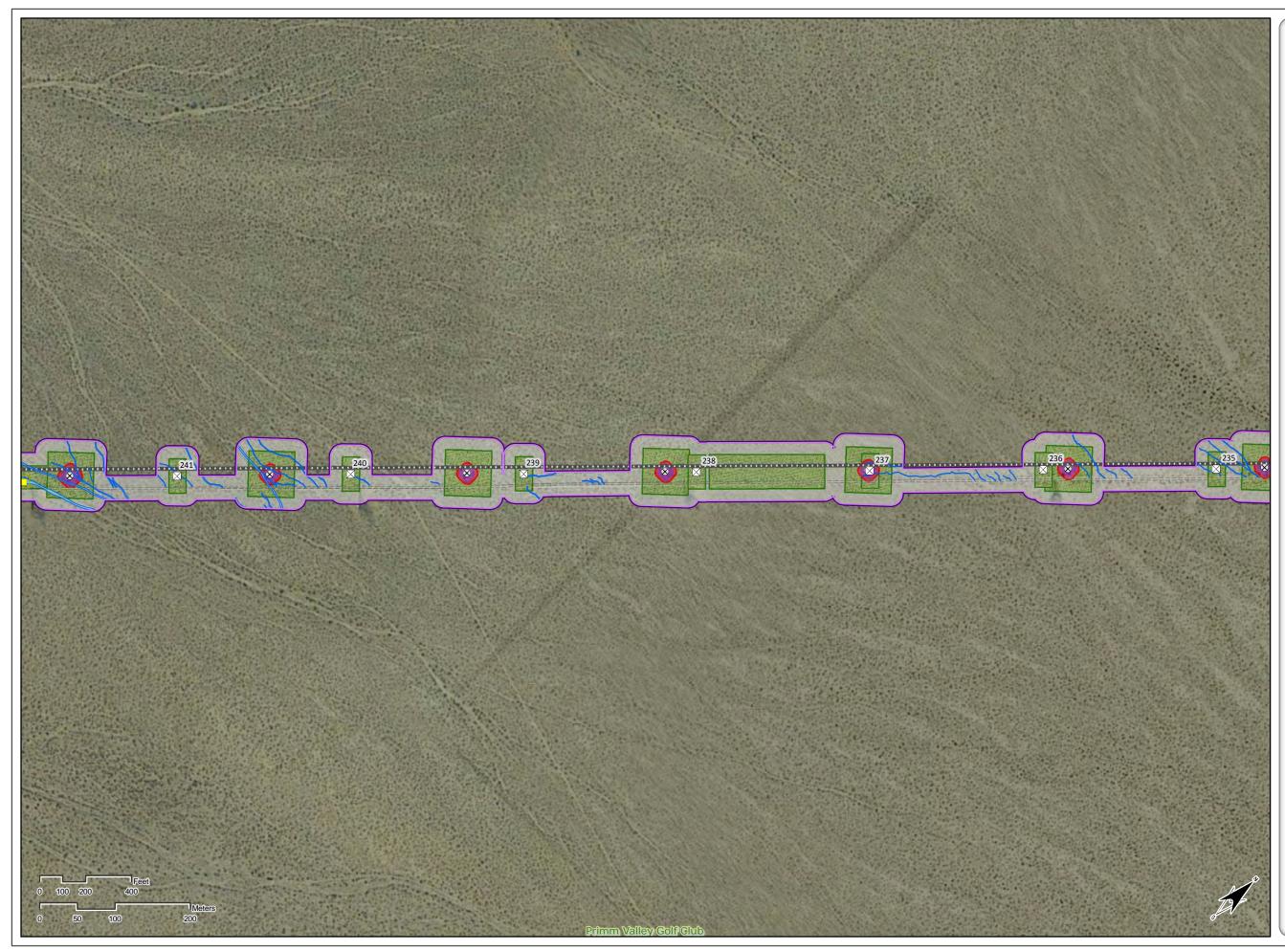


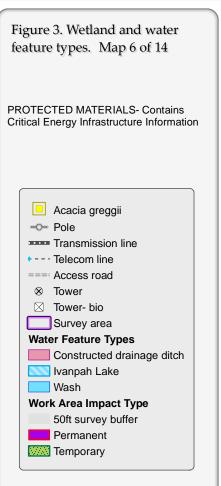

Appendix D Maps of potential CDFG – Jurisdictional Habitats

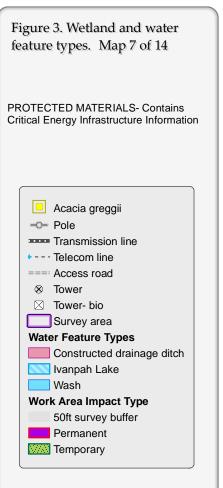


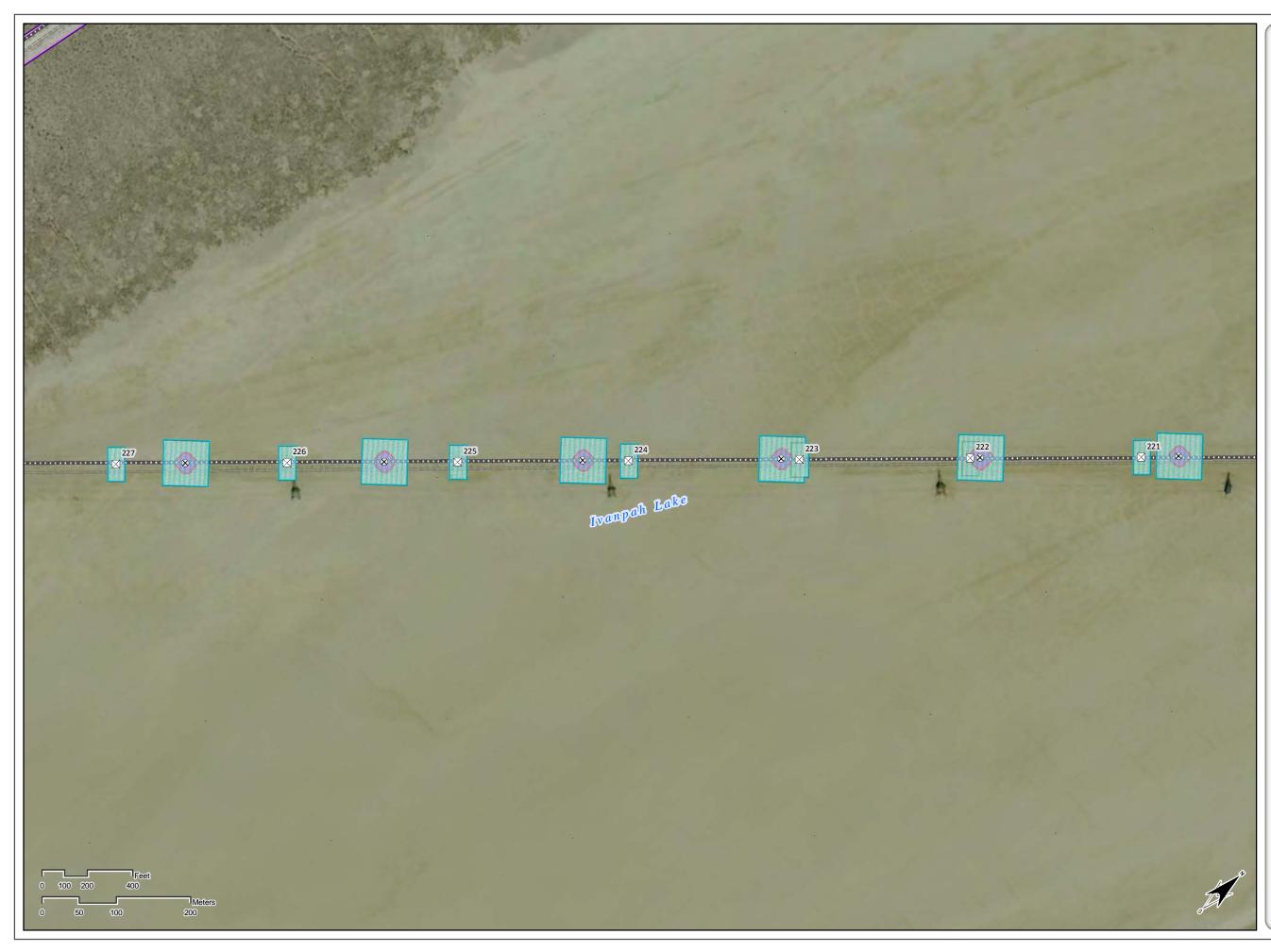


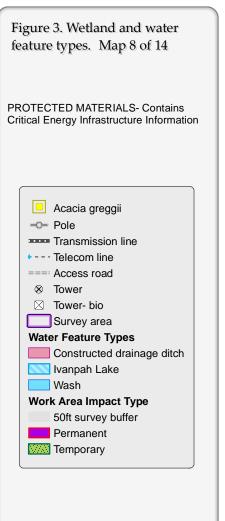


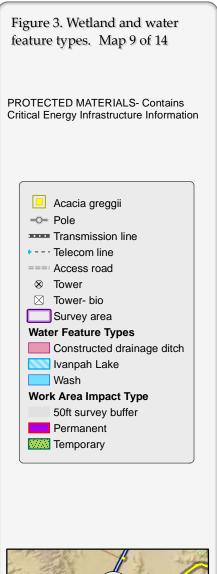














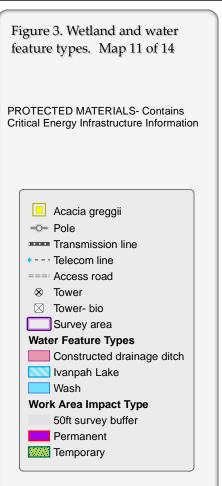


Figure 3. Wetland and water feature types. Map 10 of 14 PROTECTED MATERIALS- Contains Critical Energy Infrastructure Information Acacia greggii -O- Pole Transmission line + - - - Telecom line ===: Access road ⊗ Tower 🛛 Tower- bio Survey area Water Feature Types Constructed drainage ditch 📐 Ivanpah Lake Wash Work Area Impact Type 50ft survey buffer Permanent

