

Southern California Edison

Preliminary Geotechnical Investigation Report

SCE TLRR Program Gorman-Kern River Project Revision 0

March 2022

Preliminary Geotechnical Investigation Report

TLRR Program,

Gorman-Kern River Project

March 2022

Prepared By:

Arcadis U.S., Inc. 445 South Figueroa Street, Suite 3650 Los Angeles California 90071 Phone: 213 486 9884 Fax: 213 486 9894

Our Ref: 30002905.01325.C

Mith R. Srint

Nicholas R. Trimble, PE, GE Senior Geotechnical Engineer

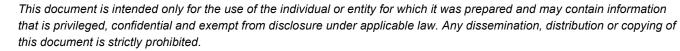
Wm C Beally

Steven C. Beadle, Ph.D, PG, CEG Senior Engineering Geologist

Prepared For:

2 Innovation Way

IFIED


Southern California Edison

Major Project Organization

Scott Richtmyer, PG, CEG

Pomona, California 91768

Transmission and Distribution

Contents

A	cronyn	ns and Abbreviations	v
1	Intr	oduction	1
	1.1	Project Location	1
	1.2	Project Description	2
	1.3	Purpose and Scope of Work	2
2	Reg	ional Geologic Setting	3
	2.1	Topography	3
	2.2	Regional Geology and Soils	6
	2.3	Hydrology and Hydrogeology	7
	2.4	Seismicity	8
3	Fiel	d Investigation	8
	3.1	Field Observations	9
	3.2	Field Sampling and Testing	9
4	Lab	oratory Testing	9
5	Sub	surface Conditions1	0
	5.1	Artificial Fill 1	0
	5.2	Alluvium1	0
	5.3	Bedrock1	1
	5.4	Groundwater 1	1
6	Geo	ologic Hazards 1	1
	6.1	Flooding and Erosion1	2
	6.2	Subsidence1	2
	6.3	Seismic Hazards 1	3
	6.3.1	I Liquefaction1	3
	6.3.2	2 Seismically Induced Settlement 1	4
	6.3.3	3 Fault Crossings 1	4
	6.4	Settlement 1	5
	6.5	Expansive Soils 1	5
	6.6	Corrosion1	5
	6.7	Landslides and Rockfall1	6
7	Des	ign and Construction Considerations and Recommendations1	7

.1	Foundations	. 17
.2	Constructability	. 18
.3	Earthwork	. 19
7.3.1	Site Preparation	. 19
7.3.2	Excavation Conditions and Lateral Earth Pressures	. 19
7.3.3	Fill Materials	. 20
.4	Recommendations for Future Geotechnical Investigation	. 21
Limi	itations	. 21
Refe	erences	. 22
	.2 .3 7.3.1 7.3.2 7.3.3 .4 Limi	 2 Constructability

Tables

Table 1. Boring Summary
Table 2. Laboratory Results Summary
Table 3. Soil Liquefaction Summary
Table 4. Structure Summary
Table 5. Soil Corrosivity Summary

Figures

Figure 1. Site Vicinity Map Figure 2. Proposed Alignment and Boring Locations Figure 3. Soil Liquefaction Summary Figure 4a-c. Floodplain and Boring Location Map Figure 5a-d. Alquist-Priolo Special Studies Zones Map Figure 6a-c. Soil Corrosion to Steel Figure 7a-c. Soil Corrosion to Concrete Figure 8a-c. Potential Landslide Susceptibility Figure 9a-j. Potential Landslide Susceptibility Areas Figure 10. Mapped Landslide Deposits

Appendices

- Appendix A. Reconnaissance Report Appendix B. Photograph Log Appendix C. Boring Logs Appendix D. SPT Hammer Energy Reports Appendix E. Geotechnical Laboratory Reports
- Appendix F. Liquefaction Triggering Calculation Summary

Acronyms and Abbreviations

Arcadis	Arcadis U.S., Inc.
ASTM	American Society for Testing and Materials
bgs	below ground surface
bpf	blows per foot
CalTrans	California Department of Transportation
CDWR	California Department of Water Resources
CPUC	California Public Utilities Commission
g	Earth's gravity
GIR	Geotechnical Investigation Report
GKR	Gorman-Kern River
HSA	hollow-stem auger
ICC	International Code Council
ID	inside diameter
kV	kilovolt
LST	lattice steel tower
LWS	lightweight steel
Mod Cal	modified California
msl	mean sea level
NRCS	National Resource Conservation Service
OD	outside diameter
OSHA	Occupational Safety and Health Administration
psf	pounds per square foot
SCE	Southern California Edison
SPT	standard penetration testing
TLRR	Transmission Line Rating and Remediation
TSP	tubular steel pole
USGS	United States Geological Survey
USDOC	United States Department of Commerce

1 Introduction

Arcadis U.S., Inc. (Arcadis), prepared this Preliminary Geotechnical Investigation Report (GIR) for Southern California Edison (SCE) for the Gorman-Kern River (GKR) Project of the Transmission Line Rating and Remediation (TLRR) Program. The TLRR Program involves the repair of ground discrepancies related to the overhead electrical conductors. The GKR Project subtransmission line is located in Kern and Los Angeles Counties, California (Figure 1). The GKR Project alignment is approximately 65 miles long.

The subtransmission lines included in the GKR Project are 66 kilovolt (kV) subtransmission circuits supported on lattice steel towers (LSTs), lattice steel H-frames, wood poles, and wood H-frames. In some areas of the GKR Project, the horizontal and vertical clearances between the conductors and the ground, buildings, or other objects are not compliant with the clearances required by the California Public Utilities Commission (CPUC). The compliance issues reflect a combination of line and facility rating changes since installation, installation of new infrastructure beneath the lines, and inaccuracies in previous surveying, engineering, and construction.

The TLRR Program is intended to remediate clearance discrepancies. Following approval by the CPUC and federal agencies, Arcadis anticipates that the GKR Project will include removal of existing LSTs, wood poles, and H-frames, and installation of new poles as replacements. New conductor and new optical ground wire will be installed on the new structures.

The GKR Project also includes upgrades at existing substations along the alignment including installation of new buried and overhead lines.

1.1 **Project Location**

The GKR Project alignment is located in Kern County and Los Angeles County within the State of California at the locations shown on Figure 1. Detailed descriptions of the areas crossed by the GKR Project alignment are provided in the Desktop Geologic Hazards Study (Arcadis 2021b) and the Proponent's Environmental Assessment (Arcadis 2022).

The GKR Project includes work along the following existing assets: the Banducci-Kern River 1 66 kV Subtransmission Line, the Frazier Park-Gorman 66 kV Subtransmission Line, the Gorman-Kern River 1 66 kV Subtransmission Line, and the substations associated with those lines. These subtransmission lines are divided into five segments.

- Segment 1 extends from the Kern River Substation south 20.4 miles.
- Segment 2 extends from the southern terminus of Segment 1 approximately 26.5 miles south to Lebec, California.
- Segment 3 extends from Lebec, California south approximately 4.1 miles to the Gorman Substation.
- Segments 4 and 5 extend from the southern terminus of Segment 1 approximately 14 miles east to the Banducci Substation near Stallion Springs, California.

Segments 1, 2, and 3 extend generally north-south for approximately 51 miles from the Kern River Substation to the Gorman Substation and fourteen miles of Subtransmission Line (segments 4 & 5) extend over to the Banducci Substation in approximately the middle of the alignment (see Figure 1). Most of the GKR Project alignment is in Kern County, California, but the southernmost part is in Los Angeles County, California.

1.2 **Project Description**

The purpose of the GKR Project is to comply with CPUC General Order 95 by remediating discrepancies identified through SCE's TLRR Program. The GKR Project is intended to remediate documented ground discrepancies by rebuilding approximately 65 miles of the existing 66 kV subtransmission lines listed in Section 1.1. For each of the subtransmission lines to be rebuilt, existing LSTs, lattice steel H-frames, wood poles, and wood H-frames will be replaced with new lightweight steel (LWS) poles (or functional equivalent) and tubular steel poles (TSPs), generally at or near the existing alignment. New conductor and new optical ground wires will be installed on the new structures, and the existing structures and conductors will be removed. As part of the GKR Project, staging and work areas will be established to support the reconstruction of the subtransmission lines.

The TSPs will be approximately 2 to 5 feet in diameter at the base and extend approximately 50 to 120 feet above ground. TSPs will be either direct buried, attached to concrete foundations, or installed on a concrete cap supported on micropiles. Concrete foundations will be approximately 4 to 8 feet in diameter and will extend underground approximately 10 to 30 feet with approximately 1 to 2 feet of concrete visible above ground. If used, each concrete-encased micropile would be 7 to 10 inches in diameter and will extend underground to similar depths as the proposed concrete foundations, with the micropiles embedded at the surface in a reinforced concrete pile cap approximately 4 to 8 feet in diameter on which the TSP will be installed.

LWS poles will generally be direct buried to a depth of approximately 7 to 14 feet below the ground surface and extend approximately 50 to 106 feet above the ground. The diameter of the LWS poles will be approximately 1.5 to 3 feet at ground level and will taper to the top of the pole. Depending on field conditions at the time of construction, hybrid LWS poles may be installed at some locations. Hybrid LWS poles have a concrete base (either poured in-place or pre-cast) with the steel portion of the pole installed on the concrete base. In some locations, caissons (corrugated steel tubes) may be installed first, and then the LWS pole will be installed within the caisson.

Guys are typically used to provide support to LWS poles when they are located on angles or corners. Guys may also be used on tangent/suspension poles as field conditions dictate. Guying consists of a guy wire (down guy) that is fastened to a LWS pole and attached to an anchor; when there is not adequate space for the required down guy, a shorter guy pole (stub pole) is typically placed with a down guy and anchor in a location that has sufficient room for these facilities. The need for and location of guy wires and anchors for poles will be determined during final engineering and construction on a case-by-case basis.

The foregoing descriptions are based on planning level assumptions. Actual work scope will be determined following completion of final engineering and will be based on identification of field conditions; availability of labor, material, and equipment; and compliance with applicable environmental and permitting requirements following GKR Project licensing.

1.3 Purpose and Scope of Work

The purpose of this GIR is to support the licensing and permitting of the GKR Project including an analysis of potential impacts to construction and operation. The analysis includes an evaluation of geohazards along the GKR Project alignment. This GIR is intended to supplement and validate mapped information provided in the Desktop Geologic Hazards Study (Arcadis 2021b) with information collected in the field. This GIR includes preliminary confirmation of subsurface soil and groundwater conditions, a geologic hazard analysis that included

flooding and erosion, subsidence, liquefaction, seismically induced settlement, fault crossings, settlement, expansive soils, corrosive soils, and landslides and rockfall for the proposed GKR Project alignment.

This GIR discusses potential impacts to construction and operation. Additional field investigation and testing will be required to develop recommendations for final design of foundations, for further evaluation of geohazards, and for other geotechnical considerations.

The scope of work presented in this GIR includes installation of soil borings; field and laboratory testing of soil samples; field observations of soil, rock, and water conditions; and an evaluation and discussion of preliminary geotechnical considerations and geohazards.

2 Regional Geologic Setting

2.1 Topography

The GKR Project alignment extends from the Kern River Substation located near Bakersfield, California at an elevation of approximately 1,000 feet above mean sea level (msl) south to the Gorman Substation at an elevation of approximately 3,600 feet msl and east to the Banducci Substation located near Stallion Springs, California at an elevation of approximately 3,800 feet msl. The surface elevations of the alignment are relatively flat and generally less than approximately 1,000 feet msl where the alignment crosses the southeast end of the San Joaquin Valley. The elevation increases where the alignment climbs into the mountains toward the Gorman and Banducci Substations.

Relief maps that show the mountain and valley areas and the proposed alignment are provided on Figure 1 and Figure 2, and a description of significant topographic features along the alignment are provided in the sections below. A more detailed description of the topography is provided in the Desktop Geologic Hazards Study (Arcadis 2021b).

Segment 1

Segment 1 is approximately 20.4 miles in length and includes portions of the Gorman-Kern River 1 and Banducci-Kern River 1 66kV subtransmission lines. All of Segment 1 is located within unincorporated Kern County, California.

The northern terminus of Segment 1, which also represents the northernmost point of the project, is at the Kern River 1 Substation. The Kern River 1 Substation is located at the base of the Kern River Canyon within the southern Sierra Nevada adjacent to the Kern River and to California Highway 178. The substation is located at an elevation of approximately 950 feet msl.

The GKR Project alignment extends through Kern River Canyon for approximately 1.5 miles to the southwest. This represents the general downhill direction; however, the project ascends the steep slopes on the southeastern side of the canyon reaching a maximum elevation of approximately 1,600 feet msl. Near the mouth of the canyon, the project alignment descends steeply to foothills between the Sierra Nevada and the San Joaquin Valley at an elevation of approximately 800 feet msl.

Segment 1 then turns towards the south away from the Kern River and California Highway 178. It extends generally southward through the foothills for approximately 6.5 miles, crossing Cottonwood Creek. The maximum

project elevation in the foothills is approximately 1,300 feet msl. The alignment then descends from the foothills to the floor of the San Joaquin Valley at an elevation of approximately 850 feet msl.

The GKR Project alignment extends south across the floor of the San Joaquin Valley for approximately 12 miles, gradually descending in elevation, and generally paralleling Tower Line Road. It successively crosses the Union Pacific Railroad right-of-way, California Highway 58, Caliente Creek, the Arvin-Edison Water Storage District Canal, and California Highway 223. This area represents the southeastern end of the San Joaquin Valley.

Segment 1 terminates at structure M20-T3, located at a T intersection with Segments 2 and 4. This T-intersection is located approximately 2 miles southeast of Arvin and approximately one mile northwest of the Tejon Hills. The elevation at the T intersection is approximately 400 feet msl, which represents the lowest point along the project route.

Segment 2

Segment 2 is approximately 26.5 miles in length, and it includes portions of the Gorman-Kern River No. 1 66 kV Subtransmission line. All of Segment 2 is located within unincorporated Kern County, California.

The northern terminus of Segment 2 is located at the T-intersection with Segments 1 and 4. It continues south along Tower Line Road for approximately 0.5 mile, then turns to the southwest as it approaches the Tejon Hills. Segment 2 continues southwest for approximately 3.5 miles; it crosses the Arvin-Edison Water Storage District Canal, extends along the base of the Tejon Hills at Comanche Point, and then crosses Tejon Creek at an elevation of approximately 575 feet msl.

After passing the Tejon Hills, Segment 2 continues in a generally southward direction across the floor of the San Joaquin Valley, gradually gaining in elevation. From Tejon Creek, it extends roughly southward for approximately 7.5 miles, crossing El Paso Creek. It then turns towards the southwest for approximately 5.5 miles, crossing the Wheeler Ridge-Maricopa Water Storage District 850 Canal and the California Aqueduct. Segment 2 then extends to the south-southwest for approximately 1.5 miles, where it reaches the mouth of Grapevine Canyon, located at the southern end of the San Joaquin Valley at an elevation of approximately 1,600 feet msl.

Grapevine Canyon is a roughly north-south trending canyon that separates the San Emigdio Mountains (to the west) and the Tehachapi Mountains (to the east). In general, the floor of the canyon is occupied by Interstate 5, while the GKR Project structures are located on the ridges and slopes above the canyon to the east and west.

Segment 2 initially extends along the ridges and slopes on the eastern side of the canyon, reaching a maximum elevation of approximately 2,850 feet msl. After approximately 3 miles, it makes an initial crossing of Interstate 5 to the western side of the canyon. Grapevine Canyon then turns to the southeast. The GKR Project alignment extends along the ridges and slopes on the southwestern side of the canyon for approximately 2 miles, reaching a maximum elevation of approximately 3,550 feet msl.

The southeastern end of Grapevine Canyon opens into the broader Castac Valley. The GKR Project alignment drops to the floor of Castac Valley near Fort Tejon State Historic Park, at an elevation of approximately 3,200 feet msl. Castac Valley is a small valley in Kern County, located to the east of Lebec, and drained by Grapevine Creek. It should not be confused with Castaic Valley in Los Angeles County, which is located to the north of Santa Clarita and is drained by Castaic Creek; the Castaic Valley is located approximately 25 miles to the south, outside of the GKR Project area.

The remainder of Segment 2 continues to the southeast in Castac Valley, gradually gaining in elevation, while extending generally parallel to Interstate 5 and Grapevine Creek. Segment 2 makes a second crossing of

Interstate 5 at Fort Tejon State Historic Park. It extends along the northeastern side of Interstate 5 for approximately 0.4 mile, passing El Tejon Middle School. It then makes a third crossing of Interstate 5 and continues near the southwestern side of Interstate 5 for approximately 1.3 miles, reaching a maximum elevation of approximately 3,400 feet msl.

Segment 2 then makes a fourth and final crossing of Interstate 5, closely approaching the base of the Tehachapi Mountains. It then continues southeast across Castac Valley for approximately 1.3 miles, generally parallel to the northeastern side of Interstate 5. The southern terminus of Segment 2 is at the intersection of the GKR Project alignment with Beartrap Road. This point is approximately 900 feet northeast of Interstate 5, near the community of Lebec, at an elevation of approximately 3,500 feet msl.

Segment 3

Segment 3 is approximately 4.1 miles in length. It includes portions of the Gorman-Kern River No.1 and Gorman-Frazier Park 66 kV Subtransmission lines. The northern part of Segment 3 is located in unincorporated Kern County, while the southern part is located in unincorporated Los Angeles County.

The northern terminus of Segment 3 corresponds with the southern terminus of Segment 2 at Beartrap Road near Lebec. Segment 3 then extends for approximately 1.5 miles southeast across the floor of Castac Valley, skirting the southwest edge of Castac Lake, a small saline lake. This lake formed as a sag pond associated with the Garlock fault zone (California Department of Water Resources [CDWR] 2004; Section 4.1). Castac Lake, located in Kern County, should not be confused with Castaic Lake in Los Angeles County; the latter is a much larger reservoir located approximately 25 miles to the south, outside of the GKR Project area. Segment 3 then enters the Tehachapi Mountains at Crane Canyon at an elevation of approximately 3,500 feet msl.

Segment 3 ascends the southwestern slopes of Crane Canyon and crosses the Kern-Los Angeles County line. It gains elevation for approximately 2 miles reaching a maximum elevation of approximately 4,550 feet msl at the top of the ridge above Crane Canyon. This represents the highest point along the project route.

Segment 3 then drops steeply down a south-facing slope for approximately 0.5 mile. Its southern terminus is at the Gorman Substation, which is located at the base of the Tehachapi Mountains, at the edge of Peace Valley, at an elevation of approximately 3,600 feet msl. The substation is located on Gorman Post Road approximately 1.5 miles east of the community of Gorman and approximately 900 feet northeast of Interstate 5.

Segment 4

Segment 4 is approximately 11.3 miles in length. It includes portions of the Correction-Cummings-Kern River No.1 66 kV Subtransmission Line. All of Segment 4 is located within unincorporated Kern County.

The western terminus of Segment 4 is located within the San Joaquin Valley at the T-intersection with Segments 1 and 2. It extends eastward from the T-intersection for approximately 2.0 miles, crossing the Arvin-Edison Canal and entering the Tejon Hills, which border the southeastern edge of the valley.

Segment 4 then turns to the southeast and continues through the Tejon Hills for approximately 9.4 miles. The GKR Project alignment crosses a series of ridges and valleys in this area including Little Sycamore Canyon, Horsethief Flat, and Comanche Creek, while generally gaining in elevation.

Segment 4 terminates in the community of Stallion Springs, located on the eastern side of the Tejon Hills. It reaches a maximum elevation of approximately 4,100 feet msl in Stallion Springs. The eastern termination point is located near the intersection of Comanche Point Road, Longhorn Lane, and Banducci Road at an elevation of approximately 3,850 feet msl.

Segment 5

Segment 5 is approximately 3 miles in length. It includes portions of the Correction-Cummings-Kern River No.1 66 kV Subtransmission Line. All of Segment 5 is located within unincorporated Kern County, California.

The western terminus of Segment 5 is located at the junction with Segment 4 in Stallion Springs. The GKR Project alignment extends eastward from this location generally following Banducci Road. Segment 5 descends for approximately 0.6 mile to the foot of the Tejon Hills. It then crosses Chanac Creek and enters Cummings Valley at an elevation of approximately 3,750 feet msl.

The GKR Project alignment follows Banducci Road eastward across Cummings Valley for approximately 1.9 miles. It turns northward at the intersection with Pellisier Road and continues for approximately 0.5 mile to the Banducci Substation, located near the intersection of Pellisier and Dale Roads at an elevation of approximately 3,850 feet msl.

2.2 Regional Geology and Soils

The following general descriptions of the regional geology along the GKR Project alignment was taken from the Desktop Geologic Hazard Study (Arcadis 2021b) and is based on United States Geological Survey (USGS 2019) generalized maps for California.

Two general geologic units are particularly widespread in the project area. The mountainous areas crossed by the GKR Project alignment have been mapped predominantly as granitic rocks including granodiorite and quartz monzonite, typically of Mesozoic age ("Mesozoic granitic rocks"). The valley areas crossed by the GKR Project alignment have been mapped predominantly as alluvial and terrace deposits of Pliocene to Holocene age ("alluvial deposits").

• Segment 1. The northern end of Segment 1 is mostly underlain by consolidated bedrock. The Kern River Canyon is associated with Mesozoic granitic rocks of the Sierra Nevada. The adjacent foothills to the south are underlain by sandstones, conglomerates, and mudstones of Oligocene to Pleistocene age.

There are two areas where the northern end of Segment 1 extends close to the Kern River: at the Kern River 1 Substation and near the mouth of Kern Canyon. Structures in these two areas may be underlain by alluvial deposits, although Wilkerson (2017) indicated that the substation was constructed on granitic bedrock.

The remainder of Segment 1, located further to the south, extends across the floor of the San Joaquin Valley. This area is underlain entirely by unconsolidated alluvial deposits.

• Segment 2. The northern part of Segment 2 extends across unconsolidated alluvial deposits on the floor of the San Joaquin Valley. In the Comanche Point area, Segment 2 approaches the base of the Tejon Hills, which border the San Joaquin Valley. The Tejon Hills have been mapped as sandstones and conglomerates of Miocene to Pleistocene age.

The southern part of Segment 2 leaves the San Joaquin Valley and climbs into the mountains along the slopes and ridges on the sides of Grapevine Canyon. The bedrock at the mouth of Grapevine Canyon has been mapped as mudstone and sandstone of Paleocene to Oligocene age. However, most of Grapevine

Canyon is associated with the Mesozoic granitic rocks of the San Emigdio Mountains (on the west side of the canyon) and the Tehachapi Mountains (on the east side).

The southern end of Grapevine Canyon opens into the broader Castac Valley. Segment 2 extends across unconsolidated alluvial deposits in this area.

- **Segment 3.** The northern part of Segment 3 is located on alluvial deposits in Castac Valley. The southern part of Segment 3 crosses the Tehachapi Mountains, which consist of Mesozoic granitic rock.
- **Segment 4.** The western end of Segment 4 is located on alluvial deposits of the San Joaquin Valley. The remainder of Segment 4 is in located in the Tejon Hills, which are associated with Mesozoic granitic rocks.
- Segment 5. The westernmost end of Segment 5 is in located in the Tejon Hills, which are underlain by Mesozoic granitic rocks. The remainder of Segment 5 is located in unconsolidated alluvial deposits of Cummings Valley.

Mapped soil information for the project alignment from the National Resource Conservation Service (NRCS) web soil survey (NRCS 2018) is provided in the Desktop Geologic Hazards Study (Arcadis 2021b).

2.3 Hydrology and Hydrogeology

The peak rainfall within a 24-hour period for a recurrence interval of 100 years ranges from approximately 3.5 to 6.5 inches over the Project alignment (United States Department of Commerce [USDOC] 2011). Lower rainfall quantities are generally observed in the southern San Joaquin Valley and higher rainfall quantities are generally observed in the higher elevation mountainous portions of the Project alignment. Average annual rainfall in the San Joaquin Valley near the project alignment is 9 to 13 inches. Natural groundwater recharge occurs from stream and river seepage where mountain streams and rivers flow into the San Joaquin Valley, however, irrigation water recharge is the largest contributor to groundwater recharge in this area (CDWR 1995). Younger alluvium in the southern San Joaquin Valley in the project area consists of up to 150 feet of interstratified and discontinuous beds of clay, silt, sand, and gravel (CDWR 2006).

The Castac Lake Subbasin receives an average annual precipitation of 12 to 14 inches per year. The basin is internally drained, but Castac Lake can overflow into Grapevine Creek during periods of high inflow. The basin recharges from direct precipitation and from spring-fed perennial streams and from Cuddy Creek. Limited hydrogeologic data is available for this basin, but available data indicate shallow water well yields as low as 3 gpm (CDWR 2004) which may be related to the finer-grained unconsolidated materials found within the Castac Valley which generally consist of interbedded silt, clay, and sandy clay.

The Cummings Valley basin receives an average annual precipitation of 10 to 14 inches per year. The basin is drained by Chanac Creek, which exits in the southwest part of the valley. The valley is filled with alluvium that is 50 feet thick in the southern valley and up to 450 feet thick in the northeastern part of the valley. Groundwater recharge occurs primarily at the margins of the valley where the alluvial sediments consist of coarser grained sand and gravel. Water from the State Water Project has been imported to recharge groundwater since 1973. Water levels are near their 1950's level (CDWR 2006a).

2.4 Seismicity

The GKR Project alignment is in a seismically active area with numerous historically active and potentially active faults having the potential for peak ground accelerations of 0.4 to 1.4 of Earth's gravity for the risk targeted maximum considered earthquake. More detailed information about faulting and ground motions is provided in the Desktop Geologic Hazards Study (Arcadis 2021b).

3 Field Investigation

The field investigation included soil borings and associated field and laboratory testing. Arcadis installed five soil borings in 2017 and 17 soil borings in 2021. Gregg Drilling, Inc. of Signal Hill, California, advanced the soil borings in July and August of 2017 and in November and December of 2021. The five borings installed in 2017 and eight of the 17 borings installed in 2021 were advanced using hollow-stem auger (HSA) drilling methods. Nine of 17 borings installed in 2021 were advanced using rotary wash methods because these locations were identified in advance as having higher potential for shallow bedrock where rock coring may be performed. Boring locations are shown on Figure 2. Soil borings were advanced to a depth of 50 feet below ground surface (bgs), to HSA refusal, or a depth where standard penetration testing (SPT) resulted in 50 blows per foot (bpf) for 1 inch of less of penetration, whichever occurred first. Rock coring was performed at two boring locations where drilling ceased at a depth of 25 feet or shallower as detailed in the GKR Geotechnical Investigation Plan Memorandum (Arcadis 2021a). Table 1 summarizes the installed depth of each boring, the drilling method used, and the amount of rock coring performed.

Boring 5-004 was not installed due to road closures caused by snow during the field work. Subsurface conditions encountered at adjacent borings 5-002 and 5-005 were similar and mapped geologic and soil information indicate similar conditions; therefore, boring 5-004 was omitted from the drilling program. The location of the omitted boring is shown on Figure 2. The boring omission was approved by SCE by email on December 22, 2021.

Arcadis acquired boring permits as required by Los Angeles County. Kern County did not require boring permits. The following steps were performed prior to drilling:

- Arcadis provided property owners with 10-day advance notification of the field activities,
- Arcadis performed biological clearances, and
- · Arcadis worked with SCE to gain access to areas behind locked gates.

Arcadis notified One-Call and attempted to hand-clear the upper 5 feet of each boring location. If hand clearance could not be completed to a depth of 5 feet using a hand auger due to gravel, cobbles, or boulders, the boring was advanced using drill tooling or rock coring after documenting three reliable lines of evidence that buried utilities would not be disturbed. Boring names post-ceded with an "A" indicate that the boring location was moved due to access, clearance, biological, or cultural issues.

The soil borings in Kern County were backfilled with drill cuttings, and the soil borings in Los Angeles County were backfilled with bentonite cement grout.

3.1 Field Observations

Arcadis field geologists made visual observations about surface geology, topography, vegetation, and access at the boring locations identified as potentially having shallow bedrock prior to the field drilling event. The field observations are summarized in a trip report provided in Appendix A. A photograph log of areas surrounding each soil boring is provided in Appendix B. A summary of surficial geology and topography is provided in Table 1.

3.2 Field Sampling and Testing

SPT or Modified California (Mod Cal) drive sampling was performed at regular intervals in each boring in general accordance with ASTM D1586 or ASTM D3550, respectively. Arcadis submitted selected samples to the geotechnical laboratory for analysis.

During drilling and sampling, an Arcadis field geologist logged samples in general accordance with ASTM D2488 (visual-manual procedures). The field log descriptions were used along with the geotechnical laboratory results to complete the boring logs provided in Appendix C.

SPT was performed in the 17 borings installed in 2021 using an 18-inch-long, 2-inch outside diameter (OD), 1.375 inside diameter (ID) split-spoon sampler driven into the soil with a 140-pound auto-hammer dropped from a height of 30 inches in general accordance with ASTM D1586. The number of blows for each 6 inches of sampler advancement was recorded, and the number of blows required to advance the sampler from 6 to 18 inches is shown as the SPT "N" value on the boring logs provided in Appendix C.

Soil samples were collected using a Mod Cal drive sampler in the borings installed in 2017 with a 3.0-inch OD and 2.5-inch ID at selected locations. The SPT hammer weight, fall height, and methodology was used for the Mod Cal sampling. The Mod Cal blow counts shown on the boring logs were not corrected or adjusted.

Special care was exercised when SPT was performed in borings installed using HSA methods in sandy soil below the groundwater table to prevent sand from heaving into the augers. Water or polymer was added to the auger stem to keep the water level in the tooling above the level of the surrounding groundwater

Hammer Energy Measurement Reports for the PH-1 Marl hollow stem auger rig and the D43 Fraste Multidrill rotary drill rig used during the field program were provided by Gregg Drilling, Inc. Copies of the reports are included in Appendix D.

4 Laboratory Testing

AP Engineering and Testing, Inc. of Pomona, California, performed the following geotechnical laboratory tests on selected soil samples to confirm the field soil descriptions:

- Grain size distribution by ASTM D6913,
- Fines content by ASTM D1140,
- Moisture content by ASTM D2216,
- Atterberg limits by ASTM D4318,
- Corrosion suite (resistivity, pH, chloride, and sulfate),

- Visual-manual soil classification by ASTM D2488, and
- Laboratory soil classification by ASTM D2487.

The laboratory reports are provided in Appendix E, and the laboratory results are summarized in Table 2 and on the boring logs provided in Appendix C.

5 Subsurface Conditions

Subsurface conditions were determined based on information gathered during the field investigation(s) and are discussed in the subsections that follow. A photograph log of the soil and bedrock samples are provided in Appendix B.

Seven of the 22 borings were not completed to the target depth due to the presence of bedrock or gravel, cobbles, or boulders that may overlie bedrock. One boring installed in 2017 (KERN-006) was not completed to target depth due to difficult hand augering. The total depth of each boring and the reason for boring termination are summarized in Table 1. Of the eight borings that were not completed to the target depth, four were advanced to a depth of 25 feet bgs or less not including rock coring (KERN-009, KERN-NEW03, KERN-005, and KERN-006).

Lithology and rock encountered during the field investigation were generally consistent with the regional geological and soils mapping for the area.

5.1 Artificial Fill

Apparent imported road base, gravel, or debris mixed in with shallow soil observed within the limits of gravel roadways or access roads were interpreted as artificial fill material. Interpreted artificial fill material was encountered in borings 1-005, 1-006A, KERN-008A, KERN-011, KERN-012, and KERN-013 as shown on the boring logs (Appendix C).

5.2 Alluvium

Portions of the GKR Project alignment lies within relatively flat valley areas except where the alignment extends up into the Tejon Hills to the east or into the Grapevine Canyon and Tehachapi Mountains to the south, as discussed in Section 2.1. Material encountered in valley areas in the soil borings was primarily alluvium.

The alluvium generally consists of non-plastic, silty sand, and sand. Some sandy lean clay and clayey sand is present in borings 1-002, 1-004, 1-005, 1-006A, 1-008, 3-002, 3-004, 3-005, KERN-003, KERN-008A, KERN-009, KERN-011, KERN-012, KERN-NEW01, KERN-NEW02, and KERN-NEW03.

SPT N-values of 10 bpf or less indicate loose or very loose soil density. N-values of 10 bpf or less were encountered in alluvial soils at depths of 15 feet or shallower in four of the 17 borings where SPT was performed (1-006A, 1-008, KERN-011, and KERN-NEW02). Blow counts in the remaining borings and at depths of greater than 15 feet generally increased with depth or had N-values of greater than 10 bpf, except for boring KERN-011 at a depth of 25 feet bgs where the N-value was only 7 bpf.

5.3 Bedrock

Borings located in mountainous areas encountered bedrock and weathered bedrock. Rock coring was performed at two borings (KERN-009 and KERN-NEW03) where drilling was stopped at a depth of 25 feet or less due to difficult drilling conditions. Bedrock in these borings was identified as highly to intensely fractured granodiorite. Rock quality designation (RQD) was measured in each rock core in the field. The upper 8 feet of rock in boring KERN-NEW03 was very poor quality. The rock core was extended to a depth of 11 feet bgs where the RQD indicated fair quality rock. Rock coring was initiated at a depth of 24 feet bgs in boring KERN-009. Very poor quality rock was encountered to a depth of 33 feet bgs. Interbedded sand and rock were encountered from a depth of 33 feet bgs to the total depth of coring at 36 feet bgs.

Three borings (3-004, 5-002, and 5-005) encountered granodiorite bedrock or weathered granodiorite bedrock where SPT testing indicated 2 inches or less of advancement for 50 bpf and recoveries were generally poor. SPT advancement of 6 inches or less for 50 bpf were observed in the deeper sampling intervals of several other borings (1-004, 3-002, 3-005, KERN-011, KERN-NEW01, and KERN-NEW02), which may indicate the borings were in or were approaching weathered bedrock, typically at depths of 20 to 30 feet bgs.

Four of the five borings installed in 2017 (KERN-002, KERN-005, KERN-006, and KERN-013) were terminated due to difficult drilling on suspected bedrock, which is generally consistent with the boring locations in mountainous areas of the GKR Project alignment and generally consistent with nearby borings installed in 2021. Generalized geologic maps of the region show sandstone, mudstone, and conglomerate at KERN-002, granodiorite at KERN-005 and KERN-013, and alluvium and terrace deposits at KERN-006. Hand auger refusal at KERN-006 may have been due to gravel or dense alluvial/terrace deposits.

5.4 Groundwater

Groundwater was observed and measured in four of the 22 soil borings at depths of 13 to 33 feet bgs during boring installation. Depths to groundwater measured during boring installation are summarized in Table 1, and the boring locations where groundwater was observed are shown on Figure 3.

The four borings with observed groundwater were located near surface water features in valleys in the southern parts of the project. Three of the borings were located in the Castac Valley at the southern end of Segment 2; two of these borings were near Grapevine Creek (KERN-011 and KERN-02) and the third was near Castac Lake (3-002). The fourth boring (3-005) was located at the Gorman Substation at the southern end of Segment 3; this location is in Peace Valley near Gorman Creek.

Groundwater likely fluctuates seasonally along the GKR Project alignment and seasonal fluctuations may be significant in some areas. Groundwater levels likely rise during the wet season and fall during the dry season but may also be influenced by groundwater pumping or other local conditions.

6 Geologic Hazards

This section discusses geotechnical and geologic hazards that have the potential to affect the GKR Project. When appropriate, the mapped information presented in the Geologic Hazards Desktop Study (Arcadis 2021b) was updated with information acquired during the soil investigation. Recommendations for addressing geologic hazards are discussed in the subsections that follow.

6.1 Flooding and Erosion

Channelized surface water that contacts structure foundations may have the potential for causing scour, which could undermine the foundation. A list of proposed structures that are in the 100-year and 500-year mapped Federal Emergency Management Agency floodplains is included in the Desktop Geologic Hazard Study (Arcadis 2021b). The locations of soil borings relative to the 100- and 500-year floodplains are shown on Figure 4. Borings that exhibited shallow groundwater levels may have a greater potential for channelized surface water. Groundwater levels measured at the time of drilling are summarized on Table 1.

Non-plastic silt and sand are generally the most erodible soil types, while plastic clay is usually the most erosionresistant (United States Bureau of Reclamation 2015). Portions of the proposed alignment located in the southern San Joaquin Valley and adjacent to Castac Lake are in or adjacent to the floodplain. Eight of the 22 soil borings (1-006A, 1-008, 3-002, KERN-003, KERN-006, KERN-011, KERN-NEW01, and KERN-NEW02) are located within the footprint of a mapped floodplain or immediately adjacent to a mapped floodplain as shown on Figure 4. Shallow soil at six of these eight borings consists of non-plastic silt and sand, while the shallow soil at borings KERN-003 and KERN-011 contain clayey sand and sandy lean clay, which may still be susceptible to erosion and undermining.

A detailed scour analysis should be performed during design for each structure to be placed in a location with a potential for contact with surface water – inside or outside of the floodplain. The ground surface should be sloped away from each proposed structure to the extent practical. Structure foundations that will be exposed to channelized surface water may need:

- To be supported on a deep foundation that extends beyond the depth of potential scour; or
- Armoring or other soil reinforcement at the ground surface to lower the potential for foundation undermining.

There are dam inundation zones along the GKR Project alignment, which are discussed in more detail in the Desktop Geologic Hazards Study (Arcadis 2021b).

Poles located within flood plains and/or dam inundation zones that require scour analysis are indicated on Table 4.

6.2 Subsidence

As described in the Desktop Geologic Hazards Study (Arcadis 2021b). CDWR (2014) rated the "overall estimated potential for future subsidence" in southern San Joaquin Valley Groundwater Subbasin and the Cummings Valley as "high" and "low," respectively. CDWR (2014) indicated that the Castac Lake Valley had insufficient data for evaluation.

Subsidence has been recognized as a significant issue in the San Joaquin Valley Groundwater Basin, which is the largest groundwater basin crossed by the project alignment. The principal cause of subsidence is excessive groundwater extraction:

"Subsidence [in the San Joaquin Valley is] caused by withdrawal of groundwater in quantities much larger than replacement can occur, causing a decline of the water level. This type of subsidence is of major concern. This practice has lowered the ground level over a large area south of Bakersfield..." (Kern County 2004, p. 4-1-11).

The southern part of Segment 1, the northern part of Segment 2, and the western end of Segment 4 are located near the southeastern end of the San Joaquin Valley in the Kern County Subbasin, to the south of Bakersfield. While subsidence has historically occurred in this area, it is less significant than in other parts of the San Joaquin Valley. In the most affected part of the GKR Project alignment, near the southern end of Section 1, subsidence was estimated at 1 to 2 feet between 1926 and 1970 (USGS 1975).

Subsidence generally occurs over large areas and changes in subsidence magnitude generally occurs gradually. So, the distance from the ground to the conductors, or the elevation differences between structures, are unlikely to change significantly due to subsidence. There may be impacts to other features along the proposed alignment, such as aqueducts, that may have secondary effects on the project. The potential for subsidence related impacts to the proposed project is considered low.

6.3 Seismic Hazards

Seismic hazards include soil liquefaction (and associated hazards such as lateral spreading), seismically induced settlement, seismically induced landslides, off-set of the alignment due to fault movement, and inundation due to seismically induced failure of water-retention facilities.

Significant portions of the GKR Project alignment are in areas with the potential for strong ground motions, and the alignment crosses numerous active faults. The potential for strong ground motions generally increases from the north near the Kern River Canyon where the 475-year return period peak ground acceleration is less than 0.25 of Earth's gravity (g) to the south at the Gorman Substation where the 475-year return period peak ground acceleration is greater than 0.6 g. A list of structures that are in areas with intermediate period seismic accelerations greater than 0.75 g and a discussion of mapped active faults are included in the Desktop Geologic Hazards Study (Arcadis 2021b).

6.3.1 Liquefaction

Soil liquefaction is a soil behavior phenomenon where loose- to medium-dense non-cohesive soil compacts during strong earthquake shaking, inducing excess pore water pressure in the saturated soil causing a reduction in soil strength. Loose, saturated natural soil and uncompacted or poorly compacted fills are susceptible to liquefaction.

Arcadis performed an SPT-based liquefaction triggering evaluation for each of the four soil borings where groundwater was encountered during the field investigation. Liquefaction triggering was evaluated for seismic event return periods of 475 years and 4,975 years. A summary of the liquefaction evaluation results is presented in Table 3. The location of borings where groundwater was encountered, and those borings that had at least one SPT result with a liquefaction factor of safety of less than one for each of the return periods evaluated are shown on Figure 3. Details of calculations for triggering liquefaction are presented in Appendix F.

Two borings with at least one SPT result with a liquefaction factor of safety of less than one were identified for the 475 year and the 4,975 year return period seismic events. The affected borings (KERN-011 and KERN-012) are located adjacent to each other on the floor of the Grapevine Canyon near the mouth of Castac Valley and in the Castac Valley, respectively. Both borings are located close to Grapevine Creek.

6.3.2 Seismically Induced Settlement

Strong earthquake ground shaking can cause densification of loose soil resulting in settlement. Seismic densification of loose soil above the groundwater table occurs suddenly during ground shaking. Seismic densification of loose soil below the groundwater table may occur following liquefaction as excess pore water pressures in the soil dissipate after ground shaking ceases. If densification does not occur uniformly over an area, the resulting differential settlement can be damaging to structures supported on the loose soil.

Loose to very loose sandy and silty soil was encountered in four of the 17 soil borings where SPT was performed, as described in Section 5.2. These materials have low strength under the small confining pressures present at shallow depths. These loose shallow soils have the potential to settle during seismic ground shaking.

Seismically induced settlement should be evaluated during final design for shallow-founded structures that are supported by shallow, potentially loose soil. Structures on deep foundations or direct-burial poles are less susceptible to seismically induced settlement as they generally get support from deeper, denser soil; however, down drag and associated settlement should be considered during final design.

Methods available to mitigate seismically induced settlement include ground improvement (e.g., excavation and replacement as compacted fill) beneath a proposed shallow foundation or supporting the structure on a deep foundation.

6.3.3 Fault Crossings

Mapped Holocene faults with the potential for surface rupture and the associated Alquist-Priolo Special Studies Zones are presented in the Desktop Geologic Hazards Study (Arcadis 2021b). Alquist-Priolo Special Studies Zones encompass areas within approximately 50 feet of Holocene faults with the potential for surface rupture. New construction for human occupancy within these zones is prohibited unless a comprehensive geologic study shows that the fault does not pose a hazard to the proposed structure. Power transmission support structures are not intended for human occupancy; therefore, they do not fall within the Alquist-Priolo Special Studies Zones requirements. However, these zones represent the best-available information for the potential for fault surface ruptures along the GKR Project alignment. Additional unmapped faults or older faults thought to be inactive may be present along the GKR Project alignment. Structures located directly on or adjacent to a fault may be at a higher risk for damage during a seismic event due to surface rupture of the fault. Structures located within Alquist-Priolo Special Studies Zones are listed in Table 4, and portions of the GKR project alignment that cross mapped Alquist-Priolo Special Studies Zones are shown on Figures 5a through 5d. A detailed description of each fault zone crossed by the project alignment is provided in the Desktop Geologic Hazards Study (Arcadis 2021b).

The following measures should be considered to reduce the potential for damage due to fault rupture for structures located within the Alquist-Priolo zones or structures that will span Alquist-Priolo zones:

- Move the alignment so that structures are not located in Alquist-Priolo zones or away from active fault traces
 if structures must be placed in an Alquist-Priolo zone,
- The alignment could be modified so that fault crossings are perpendicular to the fault to reduce the potential change in loading on the structure(s) and lines,
- Structures capable of spanning across faults and/or fault zones could be used to reduce the potential for foundation damage or failure, or

More robust structures and/or structure foundations (including ground improvement) near faults to reduce the
potential for damage due to changes in structure loading from fault movement.

If specific structures must be located within Alquist-Priolo zones, additional fault studies may be needed to confirm structure foundations do not span an active surface fault.

The project alignment near the north end of Segment 2 runs parallel to the White Wolf Fault Zone for approximately 1.5 miles. Numerous structures may be located on or near the fault trace or may cross the fault trace at a low angle. A fault study and/or changes to the project alignment may be warranted in this area.

6.4 Settlement

Settlement in granular, non-cohesive soils such as those generally encountered along the GKR Project alignment will occur essentially instantaneously during construction. Loose or very loose non-cohesive soil can densify and cause settlement. Some longer-term consolidation settlement may be possible in the sandy cohesive soils described in Section 5.2 but will likely be limited due to the low plasticity and high sand content of these soils. Static settlement is unlikely to be a significant issue for power poles and related structures because vertical loads are relatively light, and these structures will be constructed with foundations that extend at least 10 feet below ground surface.Detailed settlement analysis should be performed for any heavily loaded structures or equipment and/or for any structures or equipment supported on shallow spread or mat footings located in the vicinity of borings that indicated the presence of loose/very loose granular soil or cohesive soil. Soil with N-values of less than 10 bpf is described in Section 5.2. Loose or very loose soil may need to be improved, or a deep foundation may be required where heavily loaded, shallow founded, settlement sensitive structures will be constructed.

6.5 Expansive Soils

Some clayey soils have the potential to expand or shrink with changes in moisture content. Shallow soil has the greatest potential for large seasonal changes in moisture content. The International Building Code (International Code Council 2018) and the U.S. Army Waterways Experiment Station (Snethen et al. 1977) define soil property criteria that may be indicative of soil with the potential to swell during wetting cycles. Shallow soils that meet the International Building Code and US Army Waterways Experiment Station criteria were generally not encountered during the soil investigation.

The Atterberg limit tests performed on clayey soils encountered during the investigation indicate they have low swell potential because the plasticity indices are less than 25 and the liquid limits are less than 50 percent. As such, the potential for foundation problems due to expansive soils is considered low. If highly plastic clay soil is unexpectedly encountered at shallow depths during subsequent soil investigations or during construction, the potential for soil expansion should be evaluated and accounted-for in design and construction.

6.6 Corrosion

Arcadis collected soil samples from 2 to 3 feet bgs at five boring locations (1-005, 3-005, 5-005, KERN-008A, and KERN-NEW01) and had them analyzed for a standard suite of corrosive soil indicators, including pH, resistivity, chloride concentration, and sulfate concentration. The soil samples analyzed are considered to be representative of soil that will be in contact with shallow concrete and/or steel structures.

Mapped soil corrosive potential for concrete and steel was provided in the Desktop Geologic Hazards Study (Arcadis 2021b) based on data from the NRCS. The laboratory corrosivity results, the soil Unified Soil Classification System group symbol, and the predicted corrosivity based on the mapped NRCS data are summarized in Table 5. Table 5 also includes a summary of the NRCS and California Department of Transportation (CalTrans) ranges for characterizing the corrosive potential of soil samples and the resulting CalTrans corrosivity classification. The soil corrosion laboratory reports are provided in Appendix E.

The laboratory results generally indicate a low corrosive potential in the samples analyzed. These results generally compare well with the mapped NRCS soil corrosion information. Figure 6 and Figure 7 present the mapped NRCS corrosivity potential to steel and concrete, respectively, and a comparison with the laboratory data collected as part of the field investigation.

Measures to mitigate or further investigate soil corrosion should be evaluated by the structural designer and/or a corrosion engineer during final design and should follow the latest recommendations from the American Concrete Institute.

6.7 Landslides and Rockfall

Landslide and rockfall risks depend on slope geometry, local soil and groundwater conditions, and on earthquake potential. As discussed in the Desktop Geologic Hazard Study (Arcadis 2021b), much of the GKR Project alignment is in relatively flat valley areas with low potential for landslides. Maps from the California Geological Survey that show potential landslide susceptibility for the project alignment are provided on Figure 8a through 8c. Local areas where the GKR Project alignment runs on or near steeper slopes that may be susceptible to landslide or rockfall are indicated on Figure 8a through 8c. Areas that may be susceptible to landslide or rockfall are based on the California Geological Survey landslide susceptibility maps, on observations collected during the field work, and on historical records of landslides or rockfall events presented in the Desktop Geologic Hazard Study (Arcadis 2021b). Structures that are located within areas with relatively high landslide susceptibility ratings (Class 6 or above on the CGS maps) are shown on Figures 9a through 9j.

We also reviewed available detailed geologic maps for the areas that may present a higher hazard including Kern River Canyon, Tejon Hills, Grapevine Canyon, and the area near the Gorman Substation. Mapped landslides are not included on maps of the Kern River Canyon area, and the project alignment does not cross any mapped landslide deposits in the Tejon Hills or near the Gorman Substation. Twelve structures are located on mapped Quaternary landslide deposits in Grapevine Canyon, as shown on Figure 10.

Three soil borings, KERN-008A, KERN-009, and KERN-NEW03, were installed on the side slopes and hills in Grapevine Canyon during the soil investigation. Boring KERN-008A was installed at an elevation of approximately 200 feet above the floor of Grapevine Canyon in an area mapped as Quaternary landslide deposits. Soils encountered in this boring consisted of medium dense to very dense sand and silty sand to the total depth explored (50 feet bgs). Based on the topographic and geologic settings and the thickness of unconsolidated material, the unconsolidated material encountered in this boring are interpreted as landslide deposits, however we did not identify a landslide failure surface in the boring. The large area of mapped landslide deposits indicates that these deposits were likely formed as the result of an ancient deep-seated landslide. SCE has operated power structures in this area since this line was installed in the early 20th century which indicates the landslide is not actively moving. Given the apparent age and inactivity of these landslide deposits, no further mitigation appears necessary.

Borings KERN-009 and KERN-NEW03 were installed in areas mapped as consolidated rock. Bedrock was encountered in these borings at depths of 25 feet bgs and 2 feet bgs, respectively. Boring KERN-009 was installed at an elevation approximately 200 feet above the floor of Grapevine Canyon. Unconsolidated materials overlying rock in boring KERN-009 consisted of dense silty sand that are interpreted as colluvium, potentially including minor landslide deposits. SCE has operated power structures in this area since this line was installed in the early 20th century which indicates any landslides in this area are not actively moving.

More detailed studies to quantify the potential for landslides and rockfall in areas with high landslide susceptibility shown on Figures 9a through 9j should be considered during a subsequent stage of design. The analysis should consider the effect of earthquake-related ground motions. The studies should recommend measures to mitigate or eliminate the hazard, which may include:

- 1. Moving the GKR Project alignment or structure locations,
- 2. Use of longer spans and/or different structures to avoid placing structures in higher hazard areas,
- 3. Founding structures on deep foundations adequate to withstand the hazard,
- 4. Mitigating the potential for landslide on the slope, or
- 5. Fences, screens, or other barriers to protect structures from rockfall or landslide.

7 Design and Construction Considerations and Recommendations

This section discusses foundation and constructability considerations and provides earthwork recommendations that should be considered during final design. Recommendations for potential future investigation are also provided.

7.1 Foundations

TSPs and LWS poles will likely either be direct-buried or will be installed on deep foundations. Typical foundation types and dimensions are described in Section 1.2. Shallow foundations may be used for small, lightly loaded structures or supports at substations. Deep foundations may be required in certain locations to mitigate the effects of the geologic hazards discussed in Section 6. Micropiles or other types of rock anchors may be more economical than deep foundations where shallow bedrock is present.

Detailed foundation analysis should be performed during final design. Shallow foundation designs should include analysis for allowable bearing pressure, settlement, and lateral support. Deep foundation designs should include a recommendation for the type of deep foundation system and an analysis for axial and lateral load capacity, group efficiency, negative skin friction, settlement, and any load testing requirements. Deep foundations or direct-buried poles located in areas of loose shallow soil may require ground improvement or deeper/more robust designs to compensate for potentially low lateral support of the loose shallow soil. P-Y analysis is commonly used to perform lateral soil support analysis for deep foundation elements. Preliminary soil properties that may be used for P-Y lateral support analysis for the sandy soil that predominates the project alignment are summarized in the table below. We recommend neglecting lateral support from the upper 4 feet of the soil profile to account for the presence of loose soil and/or scour.

Soil Type	Angle of Internal Friction (°)	Unit Weight (pcf)	P-Y Constitutive Model					
Shallow Loose to Medium Dense Sandy Soil	30	95	Reese Sand					
Deeper Very Dense Sandy Soil	36	110	Reese Sand					

The power pole structures will be designed in accordance with ASCE 48, which incorporates ASCE 7 by reference. Seismic design should be in accordance with ASCE 7. Based on the N-values obtained during the soil investigation and the provisions of ASCE 7-16, site class D may be used for preliminary design.

7.2 Constructability

Constructability considerations specific to local soil and rock conditions should be further evaluated during final design. Preliminary constructability considerations based on the field investigation are discussed in the following paragraphs. Other constructability and access considerations not related to local soil and rock conditions such as permitting, right-of-way, cultural/biological resources, and other project impacts and mitigation measures should be evaluated and are discussed in the Proponent's Environmental Assessment (Arcadis 2022).

Much of the GKR Project alignment is on rural, undeveloped land, and large portions of the GKR Project alignment are located in mountainous terrain. Loose sandy soil conditions are present in portions of the GKR Project alignment, which can make access difficult for rubber-tire highway vehicles, particularly during and after rainstorms. Steep slopes and limited work areas can also make access difficult. Specialized vehicles with off-road capability and/or construction of temporary construction access roads and working platforms will likely be required for portions of the GKR Project alignment.

Local soil and rock conditions should be considered when structure and foundation types are determined during final design. Foundation construction practices that require unsupported vertical cuts or open boreholes should be avoided.

Hard gravel, stones, cobbles, boulders, or weathered bedrock will likely make excavation and foundation construction difficult. Soil borings could only be advanced to shallow depths during the soil investigation at borings KERN-NEW03, KERN-005, and KERN-006 due to suspected cobbles, boulders, or bedrock. Mapped NRCS soil survey information describes shallow bedrock at boring location KERN-NEW03 and increasing gravel content at boring location KERN-006. Boring KERN-005 encountered refusal at a depth of 15 feet bgs, which is deeper than then NRCS soil survey information extends. The field data and observations in areas mapped by the NRCS confirm the NRCS soil information at these locations and indicate the NRCS soil survey data are useful for identifying ground conditions that may be difficult for excavation and foundation construction. Special equipment may be required to drill or excavate through large cobbles, boulders, or bedrock for foundation or embedded pole installation.

Arcadis encountered shallow granitic bedrock at boring location KERN-NEW03. Granodiorite is generally strong, high-quality material for foundations and rock anchors, but is generally not very rippable and will likely require coring and/or drilling for foundation construction.

Special care and control of water will be required for construction of foundations below the groundwater table. Shallow non-plastic soils present over large portions of the GKR Project alignment are discussed in Section 5.2. Foundation construction may be difficult because excavations and holes will likely collapse without some type of shoring, casing, drilling fluid, or other support.

7.3 Earthwork

General earthwork requirements are presented in the sections below. Anticipated earthwork includes site preparation, excavation, fill materials, and soil compaction.

7.3.1 Site Preparation

Work areas should be prepared where structures will be placed as well as at staging and access roads. The ground surface should be cleared and grubbed including removal of objectionable material such as trash, debris, green waste, roots, and other deleterious materials. Stripping of the surface soil should extend to the bottom of the root systems of existing grassy vegetation, and grubbing should extend to the bottom of the root systems of existing grassy vegetation, and grubbing should extend to the bottom of the root systems of a depth adequate to remove debris or other deleterious material. The depth of grubbing should be increased in areas where large roots, debris, or other deleterious material are encountered during clearing activities. After this material is stripped, any loose or water-softened soils should be removed. Rough grading should be performed to eliminate holes and sharp breaks in grade and to provide surface drainage. Excavations that extend beneath final grades should be backfilled with compacted select fill.

7.3.2 Excavation Conditions and Lateral Earth Pressures

In accordance with the Occupational Safety and Health Administration (OSHA) excavation soil classification system, shallow soil along the GKR Project alignment is generally classified as Type C. OSHA requires that temporary excavations in Type C soil be constructed at slopes or stepped benches with a maximum slope of 1.5H:1V (horizontal:vertical). The OSHA soil type and surrounding conditions should be observed in the field by a competent person in accordance with OSHA requirements. Shoring and/or shielding systems should be designed by an experienced, licensed engineer where cuts will be steeper or deeper than those allowed by OSHA.

Groundwater was encountered at depths as shallow as 13 feet bgs during the investigation. Shallow soil along the GKR Project alignment generally consists of silty and sandy soil that likely has high permeability. Due to the generally non-plastic nature of the native shallow soil, groundwater should be maintained at least 2 feet beneath the floor of any excavations. Groundwater may be controlled using sumps and collection trenches in excavations that will extend a small distance beneath the groundwater table and will likely need to be managed with well extraction points for any deeper excavations. Excavations extending beneath the groundwater table should be closed as quickly as practicable and should be frequently inspected by a competent person.

Deep excavations, excavations extending near or below the groundwater table, and excavations adjacent to existing infrastructure should be evaluated and designed by an experienced, licensed engineer on a case-by-case basis.

Shallow sumps, trenches, and other excavations that are less than 4 feet deep may be designed using the following lateral earth pressures for unsaturated soil:

- Active pressure: 45 pounds per square foot (psf)/foot of depth,
- At-rest pressure: 100 psf/foot of depth.

These pressures should be adjusted to account for local soil conditions and for additional hydrostatic forces for any submerged or saturated soils.

7.3.3 Fill Materials

The following fill material categories are anticipated for this work:

- 1. Aggregate Base,
- 2. Select Fill, and
- 3. Random Fill.

Fill materials should be tested by a California-licensed geotechnical laboratory to confirm they meet the GKR Project requirements and specifications.

Aggregate Base

Imported aggregate base material may be used for roadways, retaining wall backfill, or beneath foundations and/or slabs. Aggregate base material should meet the latest CalTrans specifications. When placed beneath footings, slabs, or for roadways, the aggregate base material should be compacted to at least 95 percent of the Modified Proctor maximum dry density as determined by ASTM D1557. The material should be compacted near the optimum moisture content in 8-inch loose lifts. The upper 6 inches of subgrade soil that will receive aggregate base fill material should be scarified and compacted to 95 percent of the Modified Proctor maximum dry density.

Select Fill

Select fill material may be placed beneath or around structures or in utility trenches. When placed beneath footings, slabs, or for roadways, select fill should be compacted to at least 95 percent of the Modified Proctor maximum dry density as determined by ASTM D1557, unless otherwise specified. The upper 6 inches of subgrade soil that will receive select fill material beneath footings, slabs, or for roadways should be scarified and compacted to 95 percent of the Modified Proctor maximum dry density. When select fill is placed to backfill excavations that will not receive roadways or other surcharge loads or around footings it should be compacted to 90 percent of the Modified Proctor maximum dry density. Select fill material or imported and should meet the following requirements:

- Coefficient of uniformity greater than 6 and a coefficient of gradation between 1 and 3,
- Maximum particle size of 3 inches,
- At least 80 percent passing the ³/₄-inch sieve,
- Plasticity index less than 15, and
- Free of debris, organic material, contaminated soil, or other deleterious material.

Random Fill

Random fill is soil obtained from onsite excavations and grading work that is free from deleterious materials and is capable of being compacted to a dense and non-yielding state but that does not meet the requirements for select fill. Random fill should not be placed beneath slabs, footings, pavement, or behind retaining walls. Random fill may be used for general site grading and should be compacted to at least 90 percent of the Modified Proctor maximum dry density as determined by ASTM D1557.

7.4 Recommendations for Future Geotechnical Investigation

Additional geotechnical investigation is advised to develop site-specific recommendations for structure foundations during final design. The following items may require additional investigation to support final design:

- Delineation of shallow groundwater and the extent of liquefiable soils, particularly in the small alluvial valleys (Castac Valley and Peace Valley) at the southern end of the project, where the alignment runs near surface water features. Cone penetrometer testing may be useful to gather data in fine-grained soils.
- Boring 5-004 could not be installed due to weather related road access constraints. This boring should be installed to provide adequate soil boring coverage and to confirm subsurface conditions in this area.
- Undisturbed sampling of clayey soil to enable settlement analysis for heavily loaded structures on shallow foundations.
- Delineation of bedrock and/or hard soil layers present at greater depth where deep foundation elements may extend into these layers.
- Detailed information about the presence, strength, and quality of shallow bedrock and/or the presence, consistency, and composition of subsurface cobbles or boulders where foundations or embedded poles may extend into these materials. In particular areas near borings KERN-005, KERN-006, and KERN-NEW03 should be further investigated and delineated.

8 Limitations

This GIR has been prepared with a standard of care generally accepted in the geotechnical engineering community of practice. No other warranty, expressed or implied, is made. The analyses and recommendations contained in this GIR are based on our understanding of the GKR Project scope at the time of writing and the data obtained from desktop research, soil borings, laboratory testing, and field observations. Investigation data depict subsurface conditions only at the specific locations and times indicated. Water levels may differ at other locations or at other times of year from conditions occurring at the indicated locations during the field work. The boring logs indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. They do not necessarily reflect strata or water level variations that may exist between such locations. If variations in subsurface conditions from those described are noted during final design and/or construction, the recommendations in this GIR must be re-evaluated.

In the event that any changes in the nature, design, or location of the facilities are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this GIR modified or verified in writing by Arcadis. Arcadis is not responsible for any claims,

damages, or liability associated with interpretation of subsurface data or reuse of the subsurface data or engineering analyses without the express written authorization of Arcadis.

9 References

- Arcadis. 2021a. Gorman-Kern River 66kV Geotechnical Investigation Locations. Memorandum. June 25.
- Arcadis. 2021b. Desktop Geologic Hazards Study, SCE TLRR Program, Gorman-Kern Project. July 7.
- Arcadis. 2022. Proponent's Environmental Assessment. Southern California Edison TLRR Program. Gorman-Kern River 66kV Project. Q1.
- CDWR. 1995. Internal computer spreadsheet for 1990 normal computation of net water demand used in preparation of DWR Bulletin 160-93. San Joaquin District.
- CDWR. 2004. Castac Lake Valley Groundwater Basin. Basin Number 5-29. Bulletin 118 Basin Descriptions. February 27.
- CDWR. 2006a. Cummings Valley Groundwater Basin. Basin Number 5-27. Bulletin 118 Basin Descriptions. January 20.
- CDWR. 2006b. San Joaquin Valley Groundwater Basin, Kern County Subbasin. Basin Number 5-22.14. Bulletin 118 Basin Descriptions. January 20.
- CDWR. 2014. Summary of Recent, Historical, and Estimated Potential for Future Land Subsidence in California.
- International Code Council. 2018. International Building Code. First printing August 2017.
- Kern County. 2004. Revised Update of the Kern County General Plan and Amendment of the Kern County and Incorporated Cities Integrated Waste Management Plan Siting Element. Volume I. Recirculated Draft Program Environmental Impact Report. January.
- NRCS. 2018. Web Soil Survey. September 25 Annual Data Refresh. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
- Snethen, D.R.; Johnson, L.D.; and Patrick, D.M. 1977. An Evaluation of Expedient Methodology for Identification of Potentially Expansive Soils, Report No. FHWA-RD-77-94, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.
- United States Bureau of Reclamation. 2015. Erosion of Rock and Soil. Best Practices. Chapter IV-1. June 18.
- USDOC. 2011. Precipitation-Frequency Atlas of the United States. National Oceanic and Atmospheric Administration. National Weather Service. Hydrometeorological Design Studies Center. NOAA Atlas 14. Vol 6, Ver 2.3, California. Revised 2014.
- USGS. 1975. Land Subsidence in the San Joaquin Valley, California, As of 1972. Geological Survey Professional Paper 437-H.
- USGS. 2019. California Geologic Map Data.
- Wilkerson, G. 2017. Field Guide, Geology and Mining History of the Kern Canyon, Lake Isabella and Walker Basin, Kern County California.

Tables

Table 1 Boring Summary Southern California Edison TLRR Program, Gorman-Kern River Project

Boring ID	Installation Date	Drilling Method	County	Landowner	Total Depth (feet bgs)	Rock Coring (feet)	DTW (feet)	Reason for Boring Termination	Ground Surface Geology	Topography / Vegetation Cover	Nearby Structure and Foundation Type
1-002	12/8/2021	Rotary Wash	Kern	Private	50	0	NE	Target depth	Sand / gravel / cobbles at ground surface, boulders in the vicinity	Top of hill, sparce grass vegetation	LST; four legs on concrete footings
1-004	12/15/2021	HSA	Kern	Private	50	0	NE	Target depth	Alluvium - Silty sand	Base of gently sloping hill	Twin wooden poles with cross-bar; direct burial
1-005	12/15/2021	HSA	Kern	Private	50	0	NE	Target depth	Alluvium - Silty sand	Flat valley area	LST; four legs on concrete footings
1-006A	12/16/2021	HSA	Kern	Private	50	0	NE	Target depth	Alluvium - Silty sand	Flat agricultrual area	Twin wooden poles with cross-bar; direct burial
1-008	12/16/2021	HSA	Kern	Private	50	0	NE	Target depth	Alluvium - Silty sand	Flat agricultrual area	LST; four legs on concrete footings
3-002	12/20/2021	HSA	Kern	Private	50	0	33	Target depth	Alluvium - Silty sand	Flat valley area adjacent to Castac Lake	LST; four legs on concrete footings
3-004	12/2/2021	Rotary Wash	LA	Private	50	0	NE	Target depth	Sand / gravel / cobbles at ground surface, large boulders in area	Top of hill, grassy vegetation	LST; four legs on concrete footings
3-005	12/13/2021	Rotary Wash	LA	Private	50	0	33	Target depth	Sand / gravel at ground surface	Rolling hillside with grassy vegetation	Substation
5-002	12/10/2021	Rotary Wash	Kern	Private	45	0	NE	Bedrock	Sand / gravel / cobbles at ground surface, numerous large boulders in the vicinity	Crest of hill, sparse brush vegetation	3-pole dead end
5-005	12/7/2021	Rotary Wash	Kern	Private	35	0	NE	Bedrock	Sand / gravel / cobbles at ground surface, numerous large boulders in the vicinity	Crest of hill, sparse grass vegetation	LST; four legs on concrete footings
KERN-008A	12/6/2021	Rotary Wash	Kern	Private/TEP	50	0	NE	Target depth	gravel / boulders / rock outcrops	Steep hillside	LST; four legs on concrete footings
KERN-009	12/1/2021	Rotary Wash	Kern	Private	36	12	NE	Bedrock	Sand / gravel / cobbles at ground surface, large boulders in area	Mountainous terrain, grass vegetation	LST; four legs on concrete footings
KERN-011	12/21/2021	HSA	Kern	Private	50	0	13	Target depth	Sand / gravel at ground surface	Flat, grassland	LST; four legs on concrete footings
KERN-012	12/20/2021	HSA	Kern	Private/TEP	50	0	23	Target depth	Sand / gravel at ground surface	Flat, grassland	LST; four legs on concrete footings
KERN-NEW01	12/9/2021	Rotary Wash	Kern	Private	50	0	NE	Target depth	Sand / gravel / cobbles at ground surface, boulders in the vicinity	Flat grassy plains with nearby hills	LST; four legs on concrete footings
KERN-NEW02	12/17/2021	HSA	Kern	Private	50	0	NE	Target depth	Alluvium - Silty sand	Flat agricultrual area	LST; four legs on concrete footings
KERN-NEW03	11/30/2021	Rotary Wash	Kern	Private	11	9	NE	Bedrock	Rock outcrops nearby, sand/gravel ground cover	Top of hill, sparce brush vegetation	LST; four legs on concrete footings
KERN-002	8/3/2017	HSA	Kern	Private	30	0	NE	Bedrock			
KERN-003	8/2/2017	HSA	Kern	Private	40	0	NE	Target depth			
KERN-005	8/4/2017	HSA	Kern	Private	15	0	NE	Bedrock			
KERN-006	8/1/2017	Hand Auger	Kern	Private	5	0	NE	Hard Augering			
KERN-013	7/31/2017	HSA	LA	SCE	35	0	NE	Bedrock			

Notes:

bgs - below ground surface DTW - depth to water HSA - hollow stem auger LA - Los Angeles LADWP - Los Angeles Department of Water and Power LST - lattice steel tower NE - not encountered

Table 2Laboratory Results SummarySouthern California EdisonTLRR Program, Gorman-Kern River Project

Boring Number and		Att	Atterberg Limits*	Moisture	Percent	Percent	Percent		
Sample Number	Depth (feet)	LL	PL	PI	Content (%)	Gravel (%)	Sand (%)	Fines (%)	
1-002 7.0-7.65	7.0-7.65	68	24	44	-	0	10	90	
1-002 20.0-20.75	20.0-20.75	-		-	-	-	-	83	
1-004 7.0-8.15	7.0-8.15	36	14	22	-	7	62	31	
1-004 10.0-11.15	10.0-11.15	-		-		-	-	42	
1-005 4.5-5.0	4.5-5.0	-	_	-	-	1	77	22	
1-005 10.0-11.25	10.0-11.25	-	-	-	-	2	94	4	
1-006a 7.0-8.0	7.0-8.0	-	_	-	-	2	95	3	
1-006a 25.0-26.5	25.0-26.5	0	0	0	-	-	-	7	
1-008_4.5-5.0	4.5-5.0	-	-	-		0	79	21	
1-008_10.0-11.5	10.0-11.5		_	_		0	60	40	
3-002 7.0-8.3	7.0-8.3	34	17	17		4	45	51	
3-002_7.0-0.3	20.0-21.5	54	-	-	-	19	63	18	
3-002_20.0-21.3	7.0-7.9		_	-		8	78	14	
3-004 10.0-10.75	10.0-10.75	-		-	-	10	76	14	
3-005 4.5-5.0	4.5-5.0	-	-	-	-	3	73	24	
3-005 20.0-20.6			-	-	-	5	13	19	
—	20.0-20.6	-	-			- 5	- 70	25	
5-002_4.5-5.0	4.5-5.0	-	-	-	-		70	17	
5-005_4.5-5.0	4.5-5.0	-	-	-	-	-	-		
5-005_10.0-10.65	10.0-10.65	-	-	-	-	0	69	31	
KERN-NEW01_10.0-10.75	20.0-20.75	-	-	-	-	1	79	20	
KERN-NEW02_7.0-8.5	7.0-8.5	-	-	-	-	2	66	32	
GT KERN-008a_10.0-10.85	10.0-10.85	-	-	-	-	3	79	18	
GT KERN-009_7.5-8.5	7.5-8.5	-	-	-	-	11	53	36	
GT KERN-009_20.0-20.7	20.0-20.7	-	-	-	-	25	37	38	
GT KERN-011_15.0-16.5	15.0-16.5	24	17	7	-	5	67	28	
GT KERN-011_25.0-26.1	25.0-26.1	-	-	-	-	28	66	6	
GT KERN-011_26.1-26.5	26.1-26.5	30	18	12	-	-	-	52	
GT KERN-011_30.0-31.5	30.0-31.5	-	-	-	-	-	-	18	
GT KERN-012_10.0-11.3	10.0-11.3	-	-	-	-	7	73	20	
GT KERN-012_20.0-21.5	20.0-21.5	31	19	12	-	1	74	25	
GT KERN-012_30.0-31.5	30.0-31.5	-	-	-	-	2	76	22	
GT KERN-012_35.0-36.5	35.0-36.5	31	16	15	-	-	-	68	
GT KERN-012_48.5-50.0	48.5-50.0	-	-	-	-	6	72	22	
GT-KERN-002	5-6.5		_	_	_	11	55	34	
GT-KERN-002	5.5-6		_		1.4				
GT-KERN-002	18.5-20	-	_	_	1.7	16	42	42	
GT-KERN-002	19-19.5	0	0	0	2.4	10	42	42	
GT-KERN-002	5-6.5	-	0	-		- 0	- 38	- 62	
GT-KERN-003	5.5-6		- 13	- 38	- 15.5	0			
	8.5-10	51	13			- 0	- 24	-	
GT-KERN-003		-	-	-	- 10.0		34	66	
GT-KERN-003	9-9.5	-	-	-	19.0	-	-	-	
GT-KERN-003	33.5-35	-	-	-	-	0	80	20	
GT-KERN-003	34-34.5	-	-	-	3.3	-	-	-	
GT-KERN-005	5-6.5	-	-	-	-	9	58	33	
GT-KERN-005	5.5-6	-	-	-	6.6	-	-	-	
GT-KERN-013	8.5-10	-	-	-	-	15	61	24	
GT-KERN-013	9-9.5	-	-	-	11.8	-	-	-	
GT-KERN-013	18.5-20	-	-	-	-	1	62	37	

Boring Number and	Depth (feet)	Att	erberg Lim	its*	Moisture	Percent	Percent		
Sample Number	Deptil (leet)	LL	PL	Pl	Content (%)	Gravel (%)	Sand (%)		
GT-KERN-013	19-19.5	-	-	-	9.8	-	-	-	

Notes:

% - percent

- not tested

LL - liquid limit

PI - plasticity index

PL - plastic limit

* - Material determined to be non-plastic in the laboratory is shown with a plastic limit, liquid limit, and plasticity index of 0.

				475 year ro	eturn period	2,475 year	return period
Boring ID	Total Depth (feet bgs)	DTW	Total # of SPTs	# of SPT results with FS<1	Minimum Liquefaction FS	# of SPT results with FS<1	Minimum Liquefaction FS
KERN-011	50	13	10	2	0.2	3	0.1
KERN-012	50	23	10	2	0.6	5	0.3
3-002	50	33	10	0	NA	0	NA
3-005	50	33	10	0	NA	0	NA

Notes:

bgs - below ground surface DTW - depth to water FS - factor of safety NA - not applicable NE - not encountered SCE - Southern California Edison SPT - standard penetration test

			STR CL_HUB LINE_ AHEAD_																
SEG STATUS STR_ID 1 New 2080934E 2080935E	STR_TYPE MATL Monopole LWS	Pin/Post	_HT KV _ELEV ANGLE SPAN CIRCUIT_TYPE 65.5 66 1163.142 0.3306 539.565 Single Circuit	CIRCUIT_1 CORRECTIONS-CUMMINGS-KERN RIVER	CIRCUIT_2 GORMAN-KERN RIVER	1039 35.379945	GITUDE PROJECT_NAME -118.808085 Gorman-Kern River	UNIT_AGE Miocene to Pleistocene	ROCKTYPE1 sandstone	conglomerate	Ground Motion Landslid 0.45	le AP_Zone 8 No	Liquefaction No	Floodzone Inundat No No	on Inundation Dam n/a	rosion MUSYM o 1	MUKEY muname 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	WEI WEG HydroGi n/a n/a n/a	n/a n/a
1 New 2080942E 2080943E 1 New 2080944E 2080945E 1 New 2088880E 2088879E	Monopole LWS Monopole TSP	Pin/Post Dead End Pin/Post	65.5 66 1069.524 0.1732 519.062 Single Circuit 60 66 1152.175 -0.0923 976.141 Single Circuit 56.5 66 1055.061 0.1683 352.81 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1046 35.367821 1048 35.364414 1050 35.36106	-118.808048 Gorman-Kern River -118.808032 Gorman-Kern River -118.808006 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene Miocene to Pleistocene	sandstone	conglomerate	0.45	5 No 5 Yes	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2088880E 2088879E 1 New 2088882E 2088881E 1 New 2088884E 2088883E	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	56.5 66 1181.621 -0.5169 278.308 Single Circuit 65.5 66 889.248 -0.2022 354.525 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1050 35.36106 1044 35.370463 1033 35.390571	-118.808006 Gorman-Kern River -118.808073 Gorman-Kern River -118.808117 Gorman-Kern River	Miocene to Pleistocene Olizocene to Pleistocene	sandstone sandstone sandstone	conglomerate conglomerate conglomerate	0.45 0.45 0.55	8 Yes 9 No 8 No	No	NO NO	n/a n/a	o 1	467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2088884E 2088883E 1 New 2088886E 2088885E 1 New 2088888E 2088887E	Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	65.5 66 832.558 -0.1583 576.549 Single Circuit 65.5 66 832.558 -0.1583 576.549 Single Circuit 65.5 66 836.37 0.0819 446.601 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1033 35.390571 1030 35.395388 1029 35.396615	-118.808117 Gorman-Kern River -118.808139 Gorman-Kern River -118.808141 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene Oligocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.55	8 NO 5 No 7 No	No	NO NO	n/a n/a	0 1	467308 Brecken-Cuyama-Pierto complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pierto complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pierto complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New 2088888 2088876 1 New 2088890E 2088898 1 New 2088892E 2088891E	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	61 66 869.29 -0.019 419.176 Single Circuit 56.5 66 982.608 0.0557 736.219 Single Circuit	CORRECTIONS-COMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1029 35.396615 1027 35.399333 1026 35.401356	-118.808141 Gorman-Kern River -118.808153 Gorman-Kern River -118.80816 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene Oligocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45 0.45 0.45	10 No 7 No	No	NO NO	n/a n/a	0 1	467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Luyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New 208894E 208893E 1 New 2088994E 208893E 1 New 2089090E 2089091E	Monopole TSP Monopole LWS	Dead End Surpension	60 66 1051.434 -0.0758 395.978 Single Circuit 65.5 66 1285.112 -0.0754 980.651 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1025 35.401336 1025 35.402444 1042 35.37433	-118.808166 Gorman-Kern River -118.808094 Gorman-Kern River	Oligocene to Pleistocene Miocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45	7 No 8 Yes	No	No No	n/a	0 1	467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New 2145332E 2145333E 1 New 2145334E 2145335E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 569.363 0.0334 689.011 Single Circuit 56.5 66 574.145 0.0345 701.497 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1042 35.37433 1114 35.263232 1113 35.265159	-118.807219 Gorman-Kern River -118.807246 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.45	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 1 es 212	46/368 Hesperia sandy loam, 0 to 2 percent slopes 2218090 Calicreek loamy coarse sand, 0 to 2 percent slopes, occasionally flooded	86 3 A 134 2 A	Low Moderate Moderate High
1 New 2145336E_2145337E 1 New 2145336E_2145337E 1 New 2145338E_2145339E	Monopole LWS	Pin/Post Pin/Post Pin/Post	65.5 66 578.877 -0.0786 725.497 Single Circuit 56.5 66 584.277 0.0021 699.451 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1113 35.263139 1112 35.267152 1111 35.269074	-118.807274 Gorman-Kern River -118.807299 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 213	2218090 Calicreek loamy coarse sand, 0 to 2 percent slopes, occasionally flooded 2218090 Calicreek loamy coarse sand, 0 to 2 percent slopes, occasionally flooded 29 467326 Whitewolf loamy sand. 0 to 2 percent slopes, occasionally flooded	134 2 A 134 2 A n/a n/a n/a	Moderate High n/a n/a
1 New 2145340E_2145341E 1 New 2145342E_2145343E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 594.575 -0.1563 700.453 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1110 35.270997 1109 35.272921	-118.807324 Gorman-Kern River -118.807355 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.65	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 2	467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded 467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New 2145344E_2145345E 1 New 2145346E 2145347E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 598.568 0.0669 702.301 Single Circuit 56.5 66 603.13 -0.0253 664.319 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1108 35.274851 1107 35.276676	-118.807379 Gorman-Kern River -118.807404 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 2 es 2	209 467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded 209 467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2175091E 2175090E 1 New 2241805E 2241806E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	74.5 66 618.049 -0.1779 718.627 Single Circuit 65.5 66 1028.369 -0.2157 298.934 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1104 35.282562 1052 35.358416	-118.807488 Gorman-Kern River -118.80799 Gorman-Kern River	Pliocene to Holocene Miocene to Pleistocene	alluvium sandstone	terrace conglomerate	0.65 0.45	0 No 9 Yes	No No	100-year No No No	n/a n/a	es 2 o 1	217 467333 Whitewolf-Riverwash complex, 0 to 5 percent slopes, frequently flooded 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2241807E 2241808E 1 New 2241809E 2241810E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 1066.426 0.1758 304.508 Single Circuit 56.5 66 1048.649 -0.2084 434.946 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1053 35.357595 1054 35.356759	-118.807982 Gorman-Kern River -118.807977 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45 0.45	5 Yes 8 Yes	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2241811E 2241812E 1 New 2241813E 2241814E	Monopole LWS	Pin/Post Pin/Post	65.5 66 983.925 -0.201 342.873 Single Circuit 52 66 894.319 -0.443 348.52 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1056 35.354589 1060 35.349665	-118.807959 Gorman-Kern River -118.807923 Gorman-Kern River	Miocene to Pleistocene Pliocene to Holocene	sandstone alluvium	conglomerate terrace	0.45	5 No 0 No	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 193 467315 Chanac-Pleito complex, 2 to 5 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2241815E 2241816E 1 New 2241817E 2241818E	Monopole LWS Monopole LWS	Pin/Post Pin/Post	52 66 865.745 -0.336 346.053 Single Circuit 52 66 844.753 -0.4342 332.406 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1062 35.347735 1064 35.345776	-118.807908 Gorman-Kern River -118.807893 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 Yes	No No	No No No No	n/a n/a	o 1 o 1	193 467315 Chanac-Pleito complex, 2 to 5 percent slopes 193 467315 Chanac-Pleito complex, 2 to 5 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New 2241819E 2241821E 1 New 2241821E 2241822E 1 New 2241821E 2241822E		Pin/Post Pin/Post Pin/Post	52 66 829.202 -0.0843 302.75 Single Circuit 56.5 66 823.651 -0.0541 397.11 Single Circuit 52 66 825.317 -0.0502 355.815 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1066 35.343771 1070 35.340185 1068 35.341995	-118.807874 Gorman-Kern River -118.807852 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 1 o 1	152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 457291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New 2241821E 2241822E 1 New 2241825E 2241826E 1 New 2241827E 2241828E	Monopole LWS	Pin/Post Pin/Post Pin/Post	52 66 825.317 -0.0502 355.815 Single Circuit 56.5 66 810.724 0.0611 334.976 Single Circuit 52 66 803.607 -0.6162 332.91 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1058 35.341995 1072 35.338095 1074 35.336164	-118.807862 Gorman-Kern River -118.807839 Gorman-Kern River -118.807834 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace	0.55 0.55 0.55	0 No 0 No 0 No	No No	NO NO NO NO	n/a n/a		152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 154 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 Existing Kern River Substation 1 Existing M0-T1	Horizontal Configuration Lattice Steel	Dead End Dead End	33.68 66 962.993 -99 -99 Single Circuit 100.63 66 937.565 -5.4945 1791.329 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD GORMAN-KERN RIVER	1000 35.460117 1001 35.459517	-118.779649 Gorman-Kern River -118.77984 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.55	10 No 10 No	No	No Yes	Lake Isabella Lake Isabella	es 139	9ne 2371566 Riverwash 9ne 2371566 Riverwash	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 Existing M0-T2 1 New M10-T1		Dead End Pin/Post	115.61 66 1185.776 15.1052 3281.731 Single Circuit 56.5 66 779.184 0.0082 701.232 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1002 35.454657 1083 35.320988	-118.780791 Gorman-Kern River -118.807727 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene	granodiorite alluvium	quartz monzonite terrace	0.25	10 No 0 No	No No	No Yes No No	Lake Isabella n/a	es 2 o 2	467359 Cieneba-Vista-Rock outcrop complex, 30 to 60 percent slopes 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M10-T2 1 New M10-T3	Monopole LWS	Pin/Post Pin/Post	61 66 775.003 -0.0034 701.962 Single Circuit 61 66 768.631 -0.0071 700.702 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1084 35.319061 1085 35.317133	-118.807714 Gorman-Kern River -118.807702 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 2 o 2	207 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded 207 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M10-T4 1 New M10-T5	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 761.545 -0.0123 700.882 Single Circuit 61 66 757.151 0.0497 701.503 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1086 35.315208 1087 35.313282	-118.807689 Gorman-Kern River -118.807675 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 1 o 1	145 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M10-T6 1 New M10-T7	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 752.308 -0.0874 701.901 Single Circuit 61 66 744.722 0.0018 700.691 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1088 35.311355 1089 35.309427	-118.807664 Gorman-Kern River -118.807648 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 1 o 1	145 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M11-T1 1 New M11-T2	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 742.618 -0.0761 701.21 Single Circuit 61 66 740.209 0.041 700.02 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1090 35.307502 1091 35.305575	-118.807633 Gorman-Kern River -118.807615 Gorman-Kern River -118.807599 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.55	0 No 0 No	No	No No No No	n/a n/a	o 1 o 1	145 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M11-T3 1 New M11-T4 1 New M11-T5	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	61 66 731.499 -0.0548 701.47 Single Circuit 56.5 66 724.399 -0.0131 701.87 Single Circuit 56.5 66 714.857 0.0359 701.12 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1092 35.303652 1093 35.301725 1094 35.299797	-118.80759 Gorman-Kern River -118.80758 Gorman-Kern River -118.807561 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace terrace	0.55 0.55 0.55	0 No 0 No 0 No	No	NO NO	n/a n/a	0 1	145 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano noamy sand, 0 to 2 percent slopes 146 467287 Delano noamy sand, 0 to 2 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M11-15 1 New M11-T6 1 New M11-T7	Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	56.5 66 706.284 -0.0098 701.12 Single Circuit 65.5 66 69.068 -0.0066 702.20 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1094 33.299797 1095 35.297871 1096 35.295944	-118.807543 Gorman-Kern River -118.807525 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No	No No	n/a n/a	o 1 o 1	467287 Delano loamy sand, 0 to 2 percent slopes 467287 Delano loamy sand, 0 to 2 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M11-T8 1 New M12-T1	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 685.835 0.0213 699.67 Single Circuit 56.5 66 675.347 -0.0426 695.37 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1097 35.294016 1098 35.292094	-118.807506 Gorman-Kern River -118.807489 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.55	0 No 0 No	No	No No No No	n/a n/a	o 1 o 1	467287 Delano loamy sand, 0 to 2 percent slopes 467287 Delano loamy sand, 0 to 2 percent slopes 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M12-T2 1 New M12-T3	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 665.776 0.1393 610.402 Single Circuit 65.5 66 657.808 -0.0816 499.51 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1099 35.290183 1100 35.288506	-118.80747 Gorman-Kern River -118.807458 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 1 o 2	145 467287 Delano loamy sand, 0 to 2 percent slopes 207 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M12-T4 1 New M12-T5	Monopole LWS Monopole TSP	Pin/Post Dead End	56.5 66 677.208 0.018 546.46 Single Circuit 50 66 712.598 5.4233 280.837 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1101 35.287134 1102 35.285633	-118.807446 Gorman-Kern River -118.807433 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	7 No 7 No	No No	No No No No	n/a n/a	o 2 o 2	240 467340 Dune land 240 467340 Dune land	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M12-T6 1 New M12-T8	Monopole TSP Monopole LWS	Dead End Pin/Post	60 66 687.039 -5.5895 838.033 Single Circuit 56.5 66 615.835 0.0998 699.913 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1103 35.284864 1105 35.280587	-118.807516 Gorman-Kern River -118.807457 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	10 No 0 No	No No	100-year No 100-year No	n/a n/a	es 2	240 467340 Dune land 209 467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M13-T1 1 New M14-T2	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	61 66 609.466 0.0082 723.919 Single Circuit 56.5 66 564.91 0.0057 701.032 Single Circuit 61 66 560.625 - 0.0205 700.643 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1106 35.278665 1115 35.261339 1116 35.259413	-118.807431 Gorman-Kern River -118.807194 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.65	0 No 0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 2 es 1	209 467326 Whitewolf loamy sand, 0 to 2 percent slopes, occasionally flooded 144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	n/a n/a n/a 86 3 A	n/a n/a Low Moderate
1 New M14-T3 1 New M14-T4 1 New M14-T5	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	51 56 555.736 0.026 700.942 Single Circuit 56.5 66 555.736 0.036 700.942 Single Circuit 61 66 551.562 -0.0296 700.173 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1116 35.259413 1117 35.257488 1118 35.255563	-118.807169 Gorman-Kern River -118.807143 Gorman-Kern River -118.807119 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace terrace	0.65	0 No 0 No	No	100-year No 100-year No 100-year No	n/a n/a	es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 663848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate Low Moderate
1 New M14-15 1 New M14-T6 1 New M14-T7	Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	56.5 66 548.964 -0.0134 702.233 Single Circuit 61 66 542.603 0.0021 700.813 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1118 35.253639 1119 35.253639 1120 35.25171	-118.807094 Gorman-Kern River -118.807068 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No	100-year No 100-year No 100-year No	n/a n/a	es 1 es 1	463848 Hesperia sandy loam, 0 to 2 percent slopes 463848 Hesperia sandy loam, 0 to 2 percent slopes 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate
1 New M14-T8 1 New M15-T1	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 538.785 -0.018 700.764 Single Circuit 56.5 66 534.065 -0.0055 701.684 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1121 35.249784 1122 35.247859	-118.807042 Gorman-Kern River -118.807015 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.65	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M15-T2 1 New M15-T3	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 530.149 -0.0288 701.045 Single Circuit 56.5 66 524.862 -0.0649 700.319 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1123 35.245932 1124 35.244006	-118.806988 Gorman-Kern River -118.80696 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65 0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M15-T4 1 New M15-T5	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 519.983 0.1727 700.891 Single Circuit 56.5 66 514.74 -0.003 702.632 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1125 35.242082 1126 35.240156	-118.806929 Gorman-Kern River -118.806905 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M15-T6 1 New M15-T7	Monopole LWS Monopole LWS	Pin/Post Pin/Post	65.5 66 511.107 0.0624 727.45 Single Circuit 61 66 506.865 -0.0441 699.771 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1127 35.238226 1128 35.236227	-118.806881 Gorman-Kern River -118.806859 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M16-T1 1 New M16-T2	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 502.73 -0.03 701.342 Single Circuit 61 66 497.518 0.0037 699.212 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1129 35.234305 1130 35.232378	-118.806836 Gorman-Kern River -118.806812 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M16-T3 1 New M16-T4	H-Frame TSP H-Frame TSP	Dead End Dead End	70 66 493.38 0.0265 701.031 Single Circuit 55 66 489.783 -99 700.981 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1131 35.230457 1132 35.228531	-118.806788 Gorman-Kern River -118.806765 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.65	0 No 0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate Low Moderate
1 New M16-T5 1 New M16-T6 1 New M16-T7	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	83.5 66 485.299 -0.0363 699.212 Single Circuit 97 66 480.658 0.0021 701.482 Single Circuit 97 66 476.963 0.0169 700.082 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1133 35.226605 1134 35.224684 1135 35.222757	-118.806742 Gorman-Kern River -118.806717 Gorman-Kern River -118.806693 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace	0.65 0.75 0.75	0 No 0 No	No	100-year No 100-year No 100-year No	n/a n/a	es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate Low Moderate
1 New M16-T8 1 New M17-T1	Monopole LWS	Pin/Post Pin/Post Pin/Post	65.5 66 473.362 0.0148 700.611 Single Circuit 61 66 469.158 -0.0278 700.812 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1135 35.220834 1137 35.218909	-118.806669 Gorman-Kern River -118.806666 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No	100-year No 100-year No 100-year No	n/a n/a	es 1 es 1	463646 Hesperia sandy loam, 0 to 2 percent slopes 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 663848 Hesperia sandy loam. 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate
1 New M17-T2 1 New M17-T3	Monopole LWS Monopole TSP	Pin/Post Dead End	74.5 66 465.814 -0.0501 699.724 Single Circuit 60 66 462.153 0.0741 702.221 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1138 35.216985 1139 35.215063	-118.805622 Gorman-Kern River -118.806595 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M17-T4 1 New M17-T5	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 457.812 -0.023 701.262 Single Circuit 56.5 66 453.682 -0.0072 702.142 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1140 35.213133 1141 35.211207	-118.806572 Gorman-Kern River -118.806548 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75 0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M17-T6 1 New M17-T7	Monopole LWS Monopole LWS	Pin/Post Pin/Post	61 66 450.723 -0.0193 699.833 Single Circuit 56.5 66 446.712 0.0271 704.572 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1142 35.209278 1143 35.207355	-118.806523 Gorman-Kern River -118.806498 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M18-T1 1 New M18-T2	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 441.491 -0.0398 701.243 Single Circuit 56.5 66 438.215 0.0053 702.853 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1144 35.205419 1145 35.203493	-118.806474 Gorman-Kern River -118.806448 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M18-T3 1 New M18-T4	Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	65.5 66 435.197 -0.0126 701.393 Single Circuit 52 66 431.493 0.0113 700.753 Single Circuit 61 66 429.684 -0.024 699.754 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1146 35.201562 1147 35.199635 1148 35.19771	-118.806422 Gorman-Kern River -118.806396 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75 0.75 0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M18-T5 1 New M18-T6 1 New M18-T7	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	61 66 429.684 -0.024 699.754 Single Circuit 52 66 426.399 -0.0023 700.194 Single Circuit 65.5 66 423.586 0.009 700.234 Single Circuit	CORRECTIONS-COMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1148 35.19771 1149 35.195788 1150 35.193864	-118.80637 Gorman-Kern River -118.806344 Gorman-Kern River -118.806317 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace terrace	0.75	0 No 0 No 0 No	No No	100-year No 100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 63848 Hesperia sandy loam, 0 to 2 percent slopes 144 63848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate Low Moderate
1 New M18-T8 1 New M19-T1	Monopole LWS Monopole LWS	Pin/Post Pin/Post	56.5 66 421.764 0.0007 699.704 Single Circuit 56.5 66 419.316 0.0024 699.484 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1151 35.19194 1152 35.190018	-118.80629 Gorman-Kern River -118.806264 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75	0 No 0 No	No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M19-T2 1 New M19-T3		Pin/Post Pin/Post	61 66 416.36 0.0028 700.853 Single Circuit 56.5 66 413.552 -0.0295 700.495 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1153 35.188096 1154 35.186171	-118.806238 Gorman-Kern River -118.806212 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75 0.65	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M19-T4 1 New M19-T5	Monopole LWS	Pin/Post Pin/Post	56.5 66 411.415 0.0368 700.333 Single Circuit 56.5 66 409.559 -0.9578 701.546 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1155 35.184246 1156 35.182322	-118.806184 Gorman-Kern River -118.806159 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes	86 3 A 86 3 A	Low Moderate Low Moderate
1 New M19-T6 1 New M19-T7	Monopole LWS	Dead End Pin/Post	60 66 407.969 -4.9206 700.19 Single Circuit 56.5 66 406.756 -0.0611 700.642 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1157 35.180395 1158 35.178484	-118.806094 Gorman-Kern River -118.805828 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75	0 No 0 No	No No	100-year No 100-year No	n/a n/a	es 1 es 1	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes	86 3 A 56 5 C	Low Moderate Low Moderate
1 Existing M1-T1 1 Existing M1-T2 1 Existing M1-T3	Vertical Configuration Lattice Steel Vertical Configuration Lattice Steel Vertical Configuration Lattice Steel	Dead End Suspension	101.9 66 1355.712 11.6991 1418.522 Single Circuit 115.98 66 1601.582 -0.0795 590.189 Single Circuit 124.91 66 1574.503 21.2238 2757.198 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1003 35.446434 1004 35.443277 1005 35.441962	-118.785307 Gorman-Kern River -118.788099 Gorman-Kern River -118.789259 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite granodiorite granodiorite	quartz monzonite quartz monzonite quartz monzonite	0.25 0.25 0.25	8 No 8 No 8 No	No No	No Yes No Yes	Lake Isabella Lake Isabella n/a	es 2 es 2	267 467359 Cieneba-Vista-Rock outcrop complex, 30 to 60 percent slopes 267 467359 Cieneba-Vista-Rock outcrop complex, 30 to 60 percent slopes 267 467359 Cieneba-Vista-Rock outcrop complex, 30 to 60 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 Existing M1-T4 1 New M20-T1	Vertical Configuration Lattice Steel	Dead End DEAD END	103.03 66 800.264 -17.0065 694.662 Single Circuit 60 66 405.003 3.8044 696.364 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1006 35.437841 1159 35.176572	-118.797024 Gorman-Kern River -118.80556 Gorman-Kern River	Oligocene to Pliocene Pliocene to Holocene	sandstone alluvium	mudstone terrace	0.45	5 No 0 No	Yes	No Yes 100-year No	Lake Isabella n/a	es 2 es 1	467323 Pleito-Chanac-Raggulch complex, 5 to 30 percent slopes 463831 DiGiorgio sandy clav loam. 0 to 2 percent slopes	n/a n/a n/a 56 5 C	n/a n/a Low Moderate
1 New M20-T2 1 Remove M2-T2	Monopole LWS H-Frame Wood	Pin/Post Dead End	61 66 404.186 0.0636 557.437 Single Circuit 60.988 66 790.735 -4.3819 -99 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1160 35.174661 1008 35.436325	-118.805447 Gorman-Kern River -118.798576 Gorman-Kern River	Pliocene to Holocene Oligocene to Pliocene	alluvium sandstone	terrace mudstone	0.75 0.45	0 No 5 No	No Yes	100-year No No No	n/a n/a	es 1 o 2	127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes 201 467323 Pleito-Chanac-Raggulch complex, 5 to 30 percent slopes	56 5 C n/a n/a n/a	Low Moderate n/a n/a
1 New M2-T3 1 New M2-T4	Monopole TSP Monopole TSP	Dead End Dead End	65 66 772.786 -3.9062 734.433 Single Circuit 65 66 929.666 -0.0522 483.427 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1009 35.435215 1010 35.433465	-118.799483 Gorman-Kern River -118.80071 Gorman-Kern River	Oligocene to Pliocene Oligocene to Pliocene	sandstone	mudstone mudstone	0.45	7 No 7 No	Yes No	No No No No	n/a n/a	o 2 o 2	201 467323 Pleito-Chanac-Raggulch complex, 5 to 30 percent slopes 205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M2-T5 1 New M2-T6	Monopole TSP Monopole TSP	Dead End Dead End	55 66 921.609 0.037 1020.826 Single Circuit 60 66 845.929 -0.0213 801.603 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1011 35.432312 1012 35.429879	-118.801516 Gorman-Kern River -118.80322 Gorman-Kern River	Oligocene to Pliocene Pliocene to Holocene	sandstone alluvium	mudstone terrace	0.45	7 No 7 No	No No	No No No No	n/a n/a	o 2 o 2	205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes 205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M2-T7 1 New M2-T8	Monopole TSP Monopole TSP	Dead End Dead End	55 66 928.255 -4.8532 588.46 Single Circuit 60 66 888.087 -5.1589 646.771 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1013 35.427968 1014 35.426503	-118.804558 Gorman-Kern River -118.805391 Gorman-Kern River	Pliocene to Holocene Oligocene to Pliocene	alluvium sandstone	terrace mudstone	0.45	5 No 8 No	No	No No No No	n/a n/a	o 2 o 2	205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes 205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M2-T9 1 New M3-T1 1 New M3-T2	Monopole TSP Monopole TSP	Dead End Dead End Dead End	55 66 956.499 -5.0002 426.008 Single Circuit 60 66 998.429 0.0424 877.308 Single Circuit 60 66 807.004 -0.1674 735.667 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1015 35.424831 1016 35.423699 1017 35.42137	-118.806126 Gorman-Kern River -118.806491 Gorman-Kern River -118.807245 Gorman-Kern River	Oligocene to Pliocene Oligocene to Pliocene Oligocene to Pliocene	sandstone	mudstone mudstone mudstone	0.45 0.45 0.45	8 No 8 No 9 No	No No	No No No No	n/a n/a	o 2 o 2	205 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes 467324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes 205 47324 Pleito-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New M3-12 1 New M3-T3 1 New M3-T4	Monopole TSP Monopole TSP Monopole TSP	Dead End Dead End Dead End	65 66 909.352 -7.7013 875.385 Single Circuit 60 66 856.804 -7.1843 954.769 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1017 35.42137 1018 35.419414 1019 35.417027	-118.807245 Gorman-Kern River -118.807871 Gorman-Kern River -118.808227 Gorman-Kern River	Oligocene to Pilocene Oligocene to Pilocene Oligocene to Pilocene	sandstone sandstone sandstone	mudstone mudstone	0.45 0.45 0.45	5 No 5 No	No	NO NO	n/a n/a n/a	0 2	205 467324 Pietro-Trigo-Chanac complex, 15 to 50 percent slopes 205 467324 Pietro-Trigo-Chanac complex, 15 to 50 percent slopes 206 467324 Pietro-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New M3-T5 1 New M3-T6	Monopole TSP Monopole TSP	Dead End Dead End	60 66 935.025 0.0242 1408.605 Single Circuit 55 66 1041.347 0.0282 779.52 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1020 35.41404 1021 35.410534	-118.808215 Gorman-Kern River -118.808199 Gorman-Kern River	Oligocene to Pliocene Oligocene to Pleistocene	sandstone sandstone	mudstone conglomerate	0.45	5 No 5 No 8 No	No	No No	n/a n/a	o 2	467324 Pieto-Trigo-Chanac complex, 15 to 50 percent slopes 467324 Pieto-Trigo-Chanac complex, 15 to 50 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M4-T1 1 New M4-T2	Monopole LWS Monopole TSP	Pin/Post Dead End	56.5 66 1050.097 -0.0287 882.65 Single Circuit 55 66 1058.738 -0.0345 789.396 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1022 35.408393 1023 35.405968	-118.808191 Gorman-Kern River -118.808181 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene	sandstone	conglomerate	0.45	5 No 8 No	No	No No No No	n/a n/a	o 1	467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M4-T3 1 New M4-T7	Monopole TSP Monopole TSP	Dead End Dead End	55 66 973.601 0.0672 493.4 Single Circuit 50 66 833.068 0.01 570.477 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1024 35.403799 1028 35.398182	-118.808171 Gorman-Kern River -118.808148 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45	8 No 7 No	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M5-T1 1 New M5-T2	Monopole LWS Monopole TSP	Pin/Post Dead End	61 66 847.231 0.057 808.218 Single Circuit 55 66 848.962 0.0844 368.332 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1031 35.393804 1032 35.391583	-118.80813 Gorman-Kern River -118.80812 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene	sandstone sandstone	conglomerate	0.55	0 No 5 No	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M5-T3 1 New M5-T4	Monopole TSP Monopole LWS	Dead End Pin/Post	55 66 918.89 0.1037 708.746 Single Circuit 83.5 66 1071.579 0.0376 651.609 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1034 35.389597 1035 35.38765	-118.80811 Gorman-Kern River -118.808101 Gorman-Kern River	Oligocene to Pleistocene Oligocene to Pleistocene	sandstone	conglomerate conglomerate	0.55 0.45	5 No 9 Yes	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M5-T7 1 New M6-T11	Monopole LWS Monopole TSP	Pin/Post Dead End	92.5 66 1170.71 0.1639 582.624 Single Circuit 55 66 1039.282 -0.0599 720.966 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1038 35.381545 1047 35.366395	-118.808082 Gorman-Kern River -118.808043 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene	sandstone	conglomerate	0.45	5 No 0 Yes	No	No No 100-year No	n/a n/a	o 1 es 2	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 217 467333 Whitewolf-Riverwash complex, 0 to 5 percent slopes, frequently flooded	n/a n/an/a n/a n/an/a	n/a n/a n/a n/a
1 New M6-T2 1 New M6-T7 1 New M6-T9	Monopole TSP Monopole TSP Monopole LWS	Dead End Dead End Suspension	55 66 1158.523 -0.1602 624.782 Single Circuit 110 66 1152.982 0.2181 426.931 Single Circuit 83.5 66 1134.083 0.2603 683.425 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1040 35.378462 1043 35.371636 1045 35.369698	-118.808098 Gorman-Kern River -118.808076 Gorman-Kern River -118.808063 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene Miocene to Pleistocene	sandstone sandstone sandstone	conglomerate conglomerate conglomerate	0.45 0.45 0.45	8 No 8 No 5 No	No	NO NO	n/a n/a	o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New M7-T10 1 New M7-T2	Monopole LWS Monopole TSP	Pin/Post Dead End	56.5 66 919.297 0.0616 350.051 Single Circuit 55 66 1084.179 -0.1572 244.591 Single Circuit	CORRECTIONS-COMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1043 35.36568 1058 35.351587 1049 35.361732	-118.807932 Gorman-Kern River -118.808013 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45 0.45	7 No 5 No	No No	No No No No	n/a n/a	0 1	467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M7-T4 1 New M7-T8	Monopole TSP Monopole LWS	Dead End Pin/Post	50 66 992.194 0.0883 609.599 Single Circuit 52 66 1020.282 0.1857 354.948 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1051 35.360091 1055 35.355564	-118.807999 Gorman-Kern River -118.807965 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene	sandstone sandstone	conglomerate	0.45 0.45	9 Yes 5 No	No No	No No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M7-T9 1 New M8-T1	Monopole LWS Monopole LWS	Suspension Pin/Post	88 66 948.777 0.1157 749.741 Single Circuit 52 66 908.236 0.2215 349.667 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1057 35.353647 1059 35.350625	-118.807949 Gorman-Kern River -118.807925 Gorman-Kern River	Miocene to Pleistocene Miocene to Pleistocene	sandstone	conglomerate	0.45 0.55	5 No 0 No	No No	No No No	n/a n/a	o 1 o 1	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 193 467315 Chanac-Pleito complex, 2 to 5 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M8-T2 1 New M8-T3	Monopole LWS Monopole LWS	Pin/Post Pin/Post	52 66 880.114 0.3516 353.971 Single Circuit 52 66 855.198 0.3559 366.92 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1061 35.348707 1063 35.346784	-118.807912 Gorman-Kern River -118.807897 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.55	0 No 0 No	No No	No No No No	n/a n/a	o 1 o 1	193 467315 Chanac-Pieito complex, 2 to 5 percent slopes 193 467315 Chanac-Pieito complex, 2 to 5 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M8-T4 1 New M8-T5	Monopole LWS Monopole LWS	Pin/Post Pin/Post Dia (Dect	52 66 835.252 0.3001 397.521 Single Circuit 52 66 828.089 0.1399 343.698 Single Circuit 53 66 0.123 100 0.1023 0.2028 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1065 35.344863 1067 35.342939 1060 35.341017	-118.807881 Gorman-Kern River -118.807867 Gorman-Kern River 118.907855 Corman Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 Yes 0 No	No No	No No	n/a n/a	o 1 o 1	152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 457291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a
1 New M8-T6 1 New M8-T7 1 New M8-T8	Monopole LWS Monopole LWS Monopole LWS	Pin/Post Pin/Post Pin/Post	52 66 823.199 0.1003 302.805 Single Circuit 52 66 817.163 -0.0727 363.857 Single Circuit 52 66 808.524 0.2884 367.624 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1069 35.341017 1071 35.339094 1073 35.337174	-118.807855 Gorman-Kern River -118.807846 Gorman-Kern River -118.807833 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace terrace	0.55 0.55 0.55	0 No 0 No 0 No	NO NO	NO NO	n/a n/a n/a	u 1 0 1	152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 152 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes 154 467291 Pleito gravelly sandy clay loam, 2 to 5 percent slopes	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New M9-T1 1 New M9-T2	Monopole LWS Monopole TSP	Pin/Post Dead End	52 06 808.24 0.2884 367.624 Single Circuit 56.5 66 802.805 0.3123 698.883 Single Circuit 65 66 799.924 -0.0066 371.612 Single Circuit	CORRECTIONS-COMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER GORMAN-KERN RIVER	1073 35.337174 1075 35.33525 1076 35.33333	-118.807833 Gorman-Kern River -118.807822 Gorman-Kern River -118.80781 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene Pliocene to Holocene	alluvium alluvium alluvium	terrace terrace terrace	0.55	0 No 0 No	No	No No No No	n/a n/a	o 1	467291 Pieto gravelity sandy clay loam, 2 to 5 percent slopes 467291 Pieto gravelity sandy clay loam, 2 to 5 percent slopes 4672926 Calicreek sandy loam, 0 to 2 percent slopes, occasionally flooded	n/a n/an/a n/a n/an/a n/a n/an/a	n/a n/a n/a n/a n/a n/a
1 New M9-T3 1 New M9-T4	Monopole TSP Monopole TSP	Dead End Dead End	65 66 800.656 -0.0358 424.691 Single Circuit 85 66 796.747 -0.0042 1007.083 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1077 35.332309 1078 35.331142	-118.807804 Gorman-Kern River -118.807796 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No No	n/a n/a	o 1 o 1	467291 Pieto gravelly sandy clay loam, 2 to 5 percent slopes 145 467287 Delano loamy sand, 0 to 2 percent slopes	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a

Table 4. Structure Summary Gorman-Kern River 66 kV Project, Transmission Line Rating Remediation Project

		STR CL_HUB LINE_ AHEAD_														
SEG STATUS STR_ID STR_TYPE 1 New M9-T5 Monopole	MATL HARDWARE TSP Dead End	_HT KV _ELEV ANGLE SPAN CIRCUIT_TYPE 85 66 792.85 0.0049 586.222 Single Circuit	CIRCUIT_1 CORRECTIONS-CUMMINGS-KERN RIVER	CIRCUIT_2 GORMAN-KERN RIVER	CONST_NO LATITUDE I 1079 35.328375	ONGITUDE PROJECT_NAME -118.807776 Gorman-Kern River	UNIT_AGE Pliocene to Holocene	ROCKTYPE1 alluvium	ROCKTYPE2 terrace	Ground Motion Lands 0.55	lide AP_Zone 0 No	Liquefaction No	Floodzone Inunda No No	tion Inundation Dam n/a	Erosion MUSYM No	MUKEY muname 145 467287 Delano loamy sand, 0 to 2 percent slopes
1 New M9-T6 Monopole 1 New M9-T7 Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 791.113 0.0012 700.332 Single Circuit 74.5 66 787.255 0.04 700.833 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1080 35.326765 1081 35.324841	-118.807765 Gorman-Kern River -118.807752 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.55	0 No 0 No	No No	No No	n/a n/a	No	145 467287 Delano loamy sand, 0 to 2 percent slopes 207 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded
1 New M9-T8 Monopole	LWS Pin/Post	56.5 66 784.531 -0.0296 701.522 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1082 35.322915	-118.80774 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.55	0 No	No	No No	n/a	No	207 467325 Whitewolf loamy sand, 0 to 2 percent slopes, rarely flooded
1 New W2344579E E2344580E Monopole	TSP Dead End TSP Dead End	65 66 1298.431 -0.5014 879.404 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER	1036 35.38586 1041 35.376746	-118.808094 Gorman-Kern River -118.808107 Gorman-Kern River	Oligocene to Pleistocene Miocene to Pleistocene	sandstone sandstone	conglomerate conglomerate	0.45	5 Yes 0 No	No	No No No No	n/a n/a	No	185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes
1 New W4683791E E4683792E Monopole 1 New W4686212E E4686213E Monopole	TSP Dead End LWS Suspension	60 66 790.431 -1.8906 511.071 Single Circuit 61 66 1274.884 0.08 662.524 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	GORMAN-KERN RIVER GORMAN-KERN RIVER	1007 35.436379 1037 35.383365	-118.798524 Gorman-Kern River -118.808085 Gorman-Kern River	Oligocene to Pliocene Miocene to Pleistocene	sandstone sandstone	mudstone conglomerate	0.45	5 No 5 No	Yes No	No No No No	n/a n/a	No No	201 467323 Pleito-Chanac-Raggulch complex, 5 to 30 percent slopes 185 467308 Brecken-Cuyama-Pleito complex, 15 to 60 percent slopes
2 New 2175040E Monopole 2 New 2175041E Monopole	TSP Dead End TSP Dead End	75 66 1853.274 -10.3083 1443.944 Single Circuit 60 66 2112.572 34.2197 640.586 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2146 34.929966 2147 34.926496	-118.921978 Gorman-Kern River -118.919642 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	1.15	0 No 9 No	No	No No	n/a	No	461 466557 Geghus-Tecuya association, 30 to 75 percent slopes 461 466557 Geghus-Tecuya association, 30 to 75 percent slopes
2 New 2299363E 2299364E H-Frame	LWS Suspension	52 66 840.176 -0.2158 763.601 Single Circuit	GORMAN-KERN RIVER	TBD	2098 35.001336	-118.861288 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	No No	n/a	No	370 466489 Whitewolf loamy sand, 0 to 2 percent slopes
2 New 2344595E 2344594E Monopole 2 New 4012794E 4012795E Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 452.981 -0.1128 716.521 Single Circuit 65.5 66 482.605 -0.2988 341.151 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2010 35.15619 2014 35.150422	-118.80999 Gorman-Kern River -118.814947 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75	0 No 0 No	No No	No No No No	n/a n/a	No No	127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes 173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M20-T3 Monopole 2 New M20-T4 Monopole	LWS Dead End LWS Pin/Post	65 66 404.454 2.9428 841.617 Single Circuit 65.5 66 405.64 0.597 699.15 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2001 35.173131 2002 35.170819	-118.805359 Gorman-Kern River -118.805371 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	No No No No	n/a n/a	No No	127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes 127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes
2 New M20-T5 Monopole 2 New M20-T6 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 407.423 5.0132 699.87 Single Circuit 56.5 66 410.399 -0.0258 699.065 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2003 35.168898 2004 35.166985	-118.805405 Gorman-Kern River -118.805644 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.75	0 No 0 No	No	No No	n/a	No	109 463813 Arvin sandy loam, 2 to 5 percent slopes 109 463813 Arvin sandy loam, 2 to 5 percent slopes
2 New M20-T7 Monopole	LWS Pin/Post	65.5 66 413.367 5.071 697.815 Single Circuit	GORMAN-KERN RIVER	TBD	2005 35.165074	-118.805881 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.75	0 No	No	No No	n/a	No	109 463813 Arvin sandy loam, 2 to 5 percent slopes
2 New M20-T8 Monopole 2 New M21-T1 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 420.223 5.049 699.462 Single Circuit 65.5 66 429.094 4.73 699.228 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2006 35.163192 2007 35.161344	-118.806323 Gorman-Kern River -118.806965 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	No No No No	n/a n/a	No No	109 463813 Arvin sandy loam, 2 to 5 percent slopes 109 463813 Arvin sandy loam, 2 to 5 percent slopes
2 New M21-T2 Monopole 2 New M21-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 441.946 5.1441 699.03 Single Circuit 56.5 66 446.329 4.9571 689.26 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2008 35.159546 2009 35.157817	-118.807791 Gorman-Kern River -118.80881 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 No 0 No	No No	No No	n/a n/a	No	109 463813 Arvin sandy loam, 2 to 5 percent slopes 127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes
2 New M21-T5 Monopole 2 New M21-T6 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 459.234 5.035 700.952 Single Circuit 56.5 66 465.059 -0.0066 698.96 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2011 35.154497 2012 35.152933	-118.811212 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.75	0 No 0 No	No	No No	n/a	No	127 463831 DiGiorgio sandy clay loam, 0 to 2 percent slopes 173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M21-T7 Monopole	TSP Dead End	75 66 472.57 5.1951 457.845 Single Circuit	GORMAN-KERN RIVER	TBD	2013 35.151373	-118.81258 Gorman-Kern River -118.813944 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a n/a	No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M22-T1 Monopole 2 New M22-T2 Monopole	TSP Dead End LWS Pin/Post	70 66 481.675 4.159 797.281 Single Circuit 61 66 488.908 1.9787 801.984 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2015 35.14971 2016 35.148154	-118.815689 Gorman-Kern River -118.817566 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No No No	n/a n/a	No No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes 173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M22-T3 Monopole 2 New M22-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 493.219 0.0113 800.912 Single Circuit 61 66 494.697 -0.0139 801.759 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2017 35.146644 2018 35.145135	-118.819519 Gorman-Kern River -118.82147 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No	No No	n/a n/a	No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes 173 463877 Rosamond variant sandy loam. 5 to 15 percent slopes
2 New M22-T5 Monopole	LWS Pin/Post	65.5 66 493.383 0.0362 801.39 Single Circuit	GORMAN-KERN RIVER	TBD	2019 35.143625	-118.823422 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 Yes	No	No No	n/a	No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M22-T6 Monopole 2 New M22-T7 Monopole	TSP Pin/Post LWS Pin/Post	61 66 487.135 0.0294 801.598 Single Circuit 61 66 482.676 -0.0362 801.243 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2021 35.140608	-118.825375 Gorman-Kern River -118.827328 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 Yes 0 Yes	No	No No No No	n/a n/a	No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes 173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes
2 New M22-T8 Monopole 2 New M23-T1 Monopole	LWS Pin/Post LWS Pin/Post	61 66 493.473 -0.1126 600.1 Single Circuit 56.5 66 515.044 0.099 800.811 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2022 35.139099 2023 35.137967	-118.82928 Gorman-Kern River -118.830739 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 Yes 0 Yes	No No	No No No No	n/a n/a	No No	173 463877 Rosamond variant sandy loam, 5 to 15 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M23-T2 Monopole 2 New M23-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 514.18 -0.0443 803.194 Single Circuit 65.5 66 527.162 -6.039 704.853 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2024 35.136459 2025 35.134944	-118.832689 Gorman-Kern River -118.834643 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.75	0 Yes 5 Yes	No No	No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M23-T4 Monopole	LWS Pin/Post	56.5 66 548.115 -3.941 702.043 Single Circuit	GORMAN-KERN RIVER	TBD	2026 35.133475	-118.836179 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.75	5 Yes	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M23-T5 Monopole 2 New M23-T6 Monopole	TSP Dead End TSP Dead End	75 66 545.539 -5.0299 398.234 Single Circuit 65 66 580.185 -4.0579 708.096 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2027 35.131928 2028 35.130997	-118.837582 Gorman-Kern River -118.838281 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.65	0 Yes 0 Yes	No No	No No No No	n/a n/a	No No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 139 463843 Haploxerolls, hilly
2 New M23-T7 Monopole 2 New M23-T8 Monopole	LWS Pin/Post LWS Pin/Post	61 66 563.967 -4.9828 703.11 Single Circuit 56.5 66 570.562 -4.9337 603.247 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2029 35.129273 2030 35.12749	-118.839379 Gorman-Kern River -118.840283 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.75	7 Yes 0 Yes	No	No No 100-year No	n/a	No	165 463869 Psamments-Xerolls complex, nearly level 165 463869 Psamments-Xerolls complex, nearly level
2 New M24-T1 Monopole	TSP Dead End	65 66 572.872 -12.0278 601.143 Single Circuit	GORMAN-KERN RIVER	TBD	2031 35.125911	-118.840896 Gorman-Kern River -118.841094 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.75	0 Yes	No	100-year Yes		Yes	165 463869 Psamments-Xerolls complex, nearly level
2 New M24-T2 Monopole 2 New M24-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 579.004 -5.5881 703.51 Single Circuit 61 66 586.958 -0.0537 599.816 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2032 35.124267 2033 35.122334	-118.841094 Gorman-Kern River -118.841097 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No	100-year Yes 100-year Yes	Brite Lake Brite Lake	Yes	165 463869 Psamments-Xerolls complex, nearly level 165 463869 Psamments-Xerolls complex, nearly level
2 New M24-T4 Monopole 2 New M24-T5 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 593.913 0.0157 702.108 Single Circuit 56.5 66 601.737 0.0069 701.121 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2034 35.120686 2035 35.118757	-118.841098 Gorman-Kern River -118.8411 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No	100-year Yes	Brite Lake	Yes	165 463869 Psamments-Xerolls complex, nearly level 165 463869 Psamments-Xerolls complex, nearly level
2 New M24-T6 Monopole	LWS Pin/Post	65.5 66 605.312 -0.0132 600.224 Single Circuit	GORMAN-KERN RIVER	TBD	2036 35.116831	-118.841101 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a	No	165 463869 Psamments-Xerolls complex, nearly level
2 New M24-T7 Monopole 2 New M24-T8 Monopole	LWS Pin/Post LWS Pin/Post	61 66 614.27 0.1077 700.595 Single Circuit 56.5 66 602.804 0.0103 700.09 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2037 35.115182 2038 35.113257	-118.841102 Gorman-Kern River -118.841108 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No	NO NO	n/a	No	201 463905 Wasioja sandy loam, 2 to 9 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M25-T1 Monopole 2 New M25-T2 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 594.879 0.0226 700.651 Single Circuit 56.5 66 601.595 -0.0391 700.71 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2039 35.111333 2040 35.109408	-118.841114 Gorman-Kern River -118.841121 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No No No	n/a n/a	No No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M25-T3 Monopole 2 New M25-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 605.762 -0.0043 700.726 Single Circuit 56.5 66 602.106 0.021 700.208 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2041 35.107483 2042 35.105558	-118.841126 Gorman-Kern River -118.841132 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	0.85	0 No 0 No	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M25-T5 Monopole	LWS Pin/Post	56.5 66 601.982 0.0024 701.203 Single Circuit	GORMAN-KERN RIVER	TBD	2043 35.103634	-118.841138 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M25-T6 Monopole 2 New M25-T7 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 604.23 0.0175 701.459 Single Circuit 61 66 608.272 0.0016 701.418 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2044 35.101707 2045 35.09978	-118.841144 Gorman-Kern River -118.841151 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M25-T8 Monopole	LWS Pin/Post	61 66 610.308 0.0108 700.935 Single Circuit	GORMAN-KERN RIVER	TBD	2046 35.097853 2047 35.095927	-118.841158 Gorman-Kern River -118.841165 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a	No	201 463905 Wasioja sandy loam, 2 to 9 percent slopes
2 New M26-T2 Monopole	LWS Pin/Post	56.5 66 614.427 -0.0386 701.388 Single Circuit	GORMAN-KERN RIVER	TBD	2048 35.094003	-118.841175 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No	No No No No	n/a n/a	No	201 463905 Wasioja sandy loam, 2 to 9 percent slopes 201 463905 Wasioja sandy loam, 2 to 9 percent slopes
2 New M26-T3 Monopole 2 New M26-T4 Monopole	LWS Pin/Post TSP Dead End	70 66 618.381 0.0088 699.998 Single Circuit 65 66 618.919 -99 -99 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2049 35.092075 2050 35.090152	-118.841182 Gorman-Kern River -118.841191 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No No No	n/a n/a	No No	201 463905 Wasioja sandy loam, 2 to 9 percent slopes 201 463905 Wasioja sandy loam, 2 to 9 percent slopes
2 New M26-T5 Monopole 2 New M26-T6 Monopole	LWS Pin/Post LWS Pin/Post	52 66 615.635 -0.0087 700.669 Single Circuit 56.5 66 617.468 0.0209 701.658 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2050 35.088232 2051 35.086311	-118.841351 Gorman-Kern River -118.841512 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No	No No	n/a	No	165 463869 Psamments-Xerolls complex, nearly level 165 463869 Psamments-Xerolls complex, nearly level
2 New M26-T7 Monopole	LWS Pin/Post	56.5 66 616.676 -0.0303 700.736 Single Circuit	GORMAN-KERN RIVER	TBD	2052 35.084388	-118.841673 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a	No	201 463905 Wasioja sandy loam, 2 to 9 percent slopes
2 New M27-T1 Monopole 2 New M27-T2 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 610.48 0.0634 700.902 Single Circuit 52 66 606.093 0.0282 701.629 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2053 35.082467 2054 35.080546	-118.841833 Gorman-Kern River -118.841996 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No No	No No No No	n/a n/a	No No	165 463869 Psamments-Xerolls complex, nearly level 165 463869 Psamments-Xerolls complex, nearly level
2 New M27-T3 Monopole 2 New M27-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 609.32 -0.0574 700.749 Single Circuit 52 66 612.319 0.0451 700.318 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2055 35.078623 2056 35.076702	-118.84216 Gorman-Kern River -118.842321 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No	No No	n/a n/a	No	165 463869 Psamments-Xerolls complex, nearly level 127 463831 DiGiorgio sandy clay loam. 0 to 2 percent slopes
2 New M27-T5 Monopole	LWS Pin/Post	56.5 66 614.742 -0.0079 699.725 Single Circuit	GORMAN-KERN RIVER	TBD	2057 35.074783	-118.842484 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a	No	165 463869 Psamments-Xerolls complex, nearly level
2 New M27-T6 Monopole 2 New M27-T7 Monopole	LWS Pin/Post LWS Pin/Post	52 66 618.517 -0.0437 700.956 Single Circuit 56.5 66 623.322 -1.6622 700.583 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2058 35.072865 2059 35.070944	-118.842647 Gorman-Kern River -118.842808 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No	n/a n/a	No No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M27-T8 Monopole 2 New M28-T1 Monopole	LWS Pin/Post LWS Pin/Post	52 66 627.307 0.2572 701.719 Single Circuit 56.5 66 632.699 0.4842 700.288 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2060 35.06902 2061 35.067094	-118.842901 Gorman-Kern River -118.843005 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M28-T2 Monopole	LWS Pin/Post	52 66 637.764 -0.1042 700.218 Single Circuit	GORMAN-KERN RIVER	TBD	2062 35.065173	-118.843128 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M28-T3 Monopole 2 New M28-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 641.37 -0.1431 700.908 Single Circuit 61 66 647.554 -0.0991 700.852 Single Circuit	GORMAN-KERN RIVER	TBD	2063 35.063251 2064 35.061328	-118.843248 Gorman-Kern River -118.843361 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No	No No No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M28-T5 Monopole 2 New M28-T6 Monopole	LWS Pin/Post LWS Pin/Post	70 66 652.909 0.0481 700.519 Single Circuit 56.5 66 657.962 -0.0056 700.312 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2065 35.059404 2066 35.057482	-118.84347 Gorman-Kern River -118.843582 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No No No	n/a n/a	No No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M28-T7 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 662.629 0.0291 701.114 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2067 35.05556 2068 35.053635	-118.843693 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No 0 No	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M29-T2 Monopole	TSP Dead End	56.5 66 667.62 -0.0453 699.449 Single Circuit 60 66 672.122 -0.0199 701.007 Single Circuit	GORMAN-KERN RIVER	TBD	2069 35.051716	-118.843805 Gorman-Kern River -118.843915 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M29-T3 Monopole 2 New M29-T4 Monopole	LWS Pin/Post LWS Pin/Post	52 66 677.558 0.0029 700.489 Single Circuit 56.5 66 683.488 0.0012 700.611 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2070 35.049792 2071 35.047869	-118.844025 Gorman-Kern River -118.844134 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	No No 100-year No	n/a n/a	No Yes	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M29-T5 Monopole 2 New M29-T6 Monopole	LWS Pin/Post LWS Pin/Post	61 66 688.682 -0.0034 700.363 Single Circuit 56.5 66 693.06 0.0252 701.027 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2072 35.045946 2073 35.044024	-118.844244 Gorman-Kern River -118.844354 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.85	0 No 0 No	No	100-year No 100-year No	n/a	Yes	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M29-T7 Monopole	LWS Pin/Post	52 66 696.637 -0.0454 700.418 Single Circuit	GORMAN-KERN RIVER	TBD	2074 35.0421	-118.844464 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.85	0 No	No	100-year No	n/a n/a	Yes	165 463869 Psamments-Xerolls complex, nearly level
2 New M29-T8 Monopole 2 New M30-T1 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 698.736 0.0118 700.373 Single Circuit 65.5 66 703.466 0.0318 700.178 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2075 35.040178 2076 35.038256	-118.844573 Gorman-Kern River -118.844682 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.85	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes Yes	165 463869 Psamments-Xerolls complex, nearly level 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M30-T2 Monopole 2 New M30-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 707.097 -0.044 701.522 Single Circuit 56.5 66 708.262 0.0301 700.536 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2077 35.036334 2078 35.034409	-118.844792 Gorman-Kern River -118.844901 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.85	0 No 0 No	No No	100-year No No No	n/a n/a	Yes	144 463848 Hesperia sandy Joam, 0 to 2 percent slopes 144 463848 Hesperia sandy Joam, 0 to 2 percent slopes
2 New M30-T4 Monopole 2 New M30-T5 Monopole	LWS Pin/Post	52 66 711.746 0.029 700.831 Single Circuit 65.5 66 715.754 -0.016 700.667 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2079 35.032486 2080 35.030563	-118.845011 Gorman-Kern River -118.845122 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.95	0 No 0 No	No	No No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M30-T6 Monopole	LWS Pin/Post	52 66 720.622 -0.0071 701.393 Single Circuit	GORMAN-KERN RIVER	TBD	2081 35.02864	-118.845233 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	No No	n/a n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M30-T7 Monopole 2 New M30-T8 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 725.585 -0.013 701.07 Single Circuit 52 66 731.538 0.0221 700.433 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2082 35.026715 2083 35.02479	-118.845343 Gorman-Kern River -118.845453 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	No No No No	n/a n/a	No No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M31-T1 Monopole 2 New M31-T2 Monopole	LWS Pin/Post LWS Pin/Post	70 66 737.683 0.0066 700.667 Single Circuit 56.5 66 744.467 -0.0217 699.997 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2084 35.022868 2085 35.020945	-118.845563 Gorman-Kern River -118.845674 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No	No No 100-year No	n/a	No	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M31-T3 Monopole	LWS Pin/Post	56.5 66 751.556 5.0732 697.443 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2086 35.019024	-118.845784 Gorman-Kern River -118.846099 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	100-year No	n/a	Yes	144 463848 Hesperia sandy loam, 0 to 2 percent slopes
2 New M31-T4 Monopole 2 New M31-T5 Monopole	TSP Dead End LWS Pin/Post	61 66 765.978 5.0825 598.011 Single Circuit	GORMAN-KERN RIVER	TBD	2087 35.017125 2088 35.01556	-118.846099 Gorman-Kern River -118.846704 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No	100-year No 100-year No	n/a	Yes	144 463848 Hesperia sandy loam, 0 to 2 percent slopes 201 466463 Hesperia sandy loam, 0 to 2 percent slopes
2 New M31-T6 Monopole 2 New M31-T7 Monopole	LWS Pin/Post LWS Pin/Post	52 66 772.683 4.9641 698.717 Single Circuit 56.5 66 781.007 5.0415 698.56 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2089 35.014044 2090 35.012344	-118.847475 Gorman-Kern River -118.84856 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes Yes	201 466463 Hesperia sandy loam, 0 to 2 percent slopes 201 466463 Hesperia sandy loam, 0 to 2 percent slopes
2 New M32-T1 Monopole 2 New M32-T2 Monopole	TSP Dead End LWS Pin/Post	60 66 787.904 9.3548 677.308 Single Circuit 65.5 66 794.856 3.5292 730.966 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2091 35.01073 2092 35.009349	-118.849821 Gorman-Kern River -118.851337 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No 0 No	No No	100-year No	n/a	Yes	370 466489 Whitewolf loamy sand, 0 to 2 percent slopes 201 466463 Hesperia sandy loam. 0 to 2 percent slopes
2 New M32-T3 Monopole	LWS Pin/Post	52 66 801.893 0.0226 700.109 Single Circuit	GORMAN-KERN RIVER	TBD	2093 35.007944	-118.853082 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.95	0 No	No	100-year No 100-year No	n/a	Yes Yes	370 466489 Whitewolf loamy sand, 0 to 2 percent slopes
2 New M32-T4 Monopole 2 New M32-T5 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 808.437 -0.0127 700.13 Single Circuit 56.5 66 813.123 -0.0132 700.622 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2094 35.006599 2095 35.005253	-118.854753 Gorman-Kern River -118.856424 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes	370 466489 Whitewolf loamy sand, 0 to 2 percent slopes 370 466489 Whitewolf loamy sand, 0 to 2 percent slopes
2 New M32-T6 Monopole 2 New M32-T7 Monopole	LWS Pin/Post LWS Pin/Post	52 66 819.748 -0.0231 700.803 Single Circuit 74.5 66 830.063 0.0792 636.87 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2096 35.003907 2097 35.002559	-118.858096 Gorman-Kern River -118.859767 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	100-year No No No	n/a n/a	Yes No	280 466479 Premier sandy loam, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M33-T1 H-Frame 2 New M33-T2 Monopole	LWS Suspension LWS Pin/Post	56.5 66 853.946 0.1664 700.854 Single Circuit 52 66 864.341 -0.0335 701.25 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2099 34.999864 2100 34.998517	-118.863105 Gorman-Kern River -118.864778 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	0.95	0 No 0 No	No	No No	n/a n/a	No No	370 466489 Whitewolf loamy sand, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M33-T3 Monopole	LWS Pin/Post	56.5 66 875.177 0.0067 700.292 Single Circuit	GORMAN-KERN RIVER	TBD	2101 34.997169	-118.86645 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	No No	n/a	No	280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M33-T4 Monopole 2 New M33-T5 Monopole	LWS Pin/Post TSP Dead End	56.5 66 885.828 0.0103 701.097 Single Circuit 65 66 896.029 0.027 700.045 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2102 34.995822 2103 34.994474	-118.86812 Gorman-Kern River -118.869792 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	NO NO	n/a n/a	No No	280 466479 Premier sandy loam, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M33-T6 Monopole 2 New M33-T7 Monopole	LWS Pin/Post LWS Pin/Post	61 66 909.643 -0.0192 700.439 Single Circuit 61 66 923.883 -0.0054 700.784 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2104 34.993128 2105 34.991782	-118.871463 Gorman-Kern River -118.873134 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	0.95	0 No 0 No	No No	No No	n/a n/a	No No	280 466479 Premier sandy loam, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M34-T1 Monopole	LWS Pin/Post	56.5 66 935.231 -0.0168 700.458 Single Circuit	GORMAN-KERN RIVER	TBD	2106 34.990434	-118.875134 Gorman-Kern River -118.876475 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	No No	n/a n/a	No	280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M34-T2 Monopole 2 New M34-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 948.845 0.0232 700.348 Single Circuit 56.5 66 962.501 0.0163 700.583 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2107 34.989087 2108 34.987741	-118.878146 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	NO NO	n/a n/a	No	280 466479 Premier sandy loam, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M34-T4 Monopole 2 New M34-T5 Monopole	LWS Pin/Post LWS Pin/Post	52 66 974.324 -0.0354 700.26 Single Circuit 61 66 985.208 -0.0148 701.457 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2109 34.986394 2110 34.985047	-118.879817 Gorman-Kern River -118.881487 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	No No	n/a n/a	No No	280 466479 Premier sandy loam, 0 to 2 percent slopes 280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M34-T6 Monopole	LWS Pin/Post	56.5 66 998.542 0.1032 700.283 Single Circuit	GORMAN-KERN RIVER	TBD	2111 34.983698	-118.881487 Gorman-Kern River -118.884831 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	0 No	No	No No	n/a n/a	No	280 466479 Premier sandy loam, 0 to 2 percent slopes
2 New M34-T7 Monopole 2 New M34-T8 Monopole	LWS Pin/Post LWS Pin/Post	52 66 1013.017 0.0019 701.564 Single Circuit 61 66 1025.79 -0.0941 700.615 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2112 34.982353 2113 34.981006	-118.886506 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	1.05	0 No 0 No	No No	NO NO	n/a n/a	No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M35-T1 Monopole 2 New M35-T2 Monopole	LWS Pin/Post LWS Pin/Post	52 66 1038.879 0.096 700.444 Single Circuit 56.5 66 1052.936 -0.0162 700.819 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2114 34.979658 2115 34.978313	-118.888176 Gorman-Kern River -118.889848 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	0.95	0 No 0 No	No No	No No No No	n/a n/a	No No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M35-T3 Monopole 2 New M35-T4 Monopole	TSP Dead End LWS Pin/Post	65 66 1067.062 -0.0423 700.577 Single Circuit 52 66 1082.348 0.0626 701.86 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2116 34.976967 2117 34.97562	-118.891521 Gorman-Kern River -118.893192 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	0.95	0 No 0 No	No No	No No	n/a n/a	No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M35-T5 Monopole	LWS Pin/Post	56.5 66 1098.389 -0.0411 699.867 Single Circuit	GORMAN-KERN RIVER	TBD	2118 34.974273	-118.894868 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	0.95	0 No	No	No No	n/a	No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M35-T6 Monopole 2 New M35-T7 Monopole	LWS Pin/Post LWS Pin/Post	52 66 1115.478 -0.0134 700.65 Single Circuit 56.5 66 1131.345 0.0345 700.439 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2119 34.972928 2120 34.971581	-118.896537 Gorman-Kern River -118.898209 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.05 1.05	0 No 0 No	No No	No No No No	n/a n/a	No No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M35-T8 Monopole	LWS Pin/Post LWS Pin/Post	52 66 1146.51 -0.002 699.562 Single Circuit 56.5 66 1162.632 -0.0021 700.459 Single Circuit	GORMAN-KERN RIVER	TBD	2121 34.970235 2122 34.968891	-118.89988 Gorman-Kern River -118.90155 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	1.05	0 No	No	No No	n/a n/a	No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M36-T2 Monopole	LWS Pin/Post	52 66 1178.484 -0.0686 701.433 Single Circuit	GORMAN-KERN RIVER	TBD	2123 34.967546	-118.903221 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	0 No 0 No	No	No No	n/a	No	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M36-T3 Monopole 2 New M36-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1195.337 0.0212 700.087 Single Circuit 56.5 66 1209.128 0.0874 700.434 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2124 34.966196 2125 34.96485	-118.904893 Gorman-Kern River -118.906562 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.05 1.05	0 No 0 No	No No	No No 100-year No	n/a n/a	No Yes	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M36-T5 Monopole 2 New M36-T6 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1227.763 -0.091 700.185 Single Circuit 70 66 1245.52 0.0568 700.489 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2126 34.963505 2127 34.962159	-118.908234 Gorman-Kern River -118.909903 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	1.05	0 No 0 No	No	100-year No 100-year No	n/a n/a	Yes	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M36-T7 Monopole	LWS Pin/Post	52 66 1261.394 -0.0314 700.22 Single Circuit	GORMAN-KERN RIVER	TBD	2128 34.960813	-118.911575 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	0 No	No	100-year No	n/a	Yes	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes
2 New M37-T1 Monopole 2 New M37-T2 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1277.125 -0.0239 700.723 Single Circuit 52 66 1295.188 -4.8905 701.833 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2129 34.959467 2130 34.958119	-118.913245 Gorman-Kern River -118.914915 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.05 1.05	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes Yes	360 466487 Wheelridge gravelly loamy sand, 0 to 2 percent slopes 192 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes
2 New M37-T3 Monopole 2 New M37-T4 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1315.89 -4.9546 702.391 Single Circuit 56.5 66 1334.372 -5.116 702.106 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2131 34.956657 2132 34.95509	-118.916442 Gorman-Kern River -118.917811 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	1.05	0 No 0 No	No	100-year No 100-year No		Yes Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes 191 466461 Guijarral sandy loam, 2 to 9 percent slopes
2 New M37-T5 Monopole	TSP Dead End	60 66 1353.138 -12.9957 556.012 Single Circuit	GORMAN-KERN RIVER	TBD	2133 34.95343	-118.919004 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	0 No	No	100-year No	n/a	Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes
2 New M37-T6 Monopole 2 New M37-T7 Monopole	TSP Dead End TSP Dead End	65 66 1369.001 -4.7884 244.408 Single Circuit 65 66 1377.181 0.1669 661.894 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2134 34.951974 2135 34.951319	-118.919566 Gorman-Kern River -118.919747 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.05	0 No 0 No	No No	100-year No 100-year No	n/a	Yes Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes 191 466461 Guijarral sandy loam, 2 to 9 percent slopes
2 New M37-T8 Monopole 2 New M37-T9 Monopole	LWS Pin/Post LWS Pin/Post	52 66 1397.675 -0.035 660.491 Single Circuit 56.5 66 1419.383 0.0007 661.059 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2136 34.949547 2137 34.947779	-118.920243 Gorman-Kern River -118.920738 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace	1.05	0 No 0 No	No No	100-year No 100-year No		Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes 191 466461 Guijarral sandy loam, 2 to 9 percent slopes
2 New M38-T1 Monopole	LWS Pin/Post	56.5 66 1441.249 0.0329 660.636 Single Circuit	GORMAN-KERN RIVER	TBD	2138 34.946009	-118.921233 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	0 No	No	100-year No	n/a n/a	Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes
2 New M38-T2 Monopole 2 New M38-T3 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1465.198 -0.0076 661.643 Single Circuit 52 66 1487.543 -0.042 658.432 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2139 34.94424 2140 34.942468	-118.921728 Gorman-Kern River -118.922224 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.15 1.15	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes Yes	191 466461 Guijarral sandy loam, 2 to 9 percent slopes 192 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes
2 New M38-T4 Monopole 2 New M38-T5 Monopole	LWS Pin/Post LWS Pin/Post	56.5 66 1512.188 0.0515 662.173 Single Circuit 52 66 1537.017 0.0171 660.585 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2141 34.940705 2142 34.938933	-118.922717 Gorman-Kern River -118.923213 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace	1.15 1.15	0 No 0 No	No No	100-year No 100-year No	n/a n/a	Yes Yes	192 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes 192 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes
						and the second of the s		/								= = = = performany

Table 4. Structure Summary kV Project, Transmission Line Rat

WEI n/a	WEG	HydroGRP n/a	CorrConcre
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a	n/a	n/a	n/a
n/a n/a	n/a n/a n/a	n/a n/a	n/a n/a
n/a n/a		n/a	n/a n/a
n/a n/a	n/a	かがゆ かって こここ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	n/a
n/a	n/a n/a 5 5 5 5 5 5 5 5	n/a n/a	n/a n/a
56 86	5	c c	Low Low
56 56	5	c	Low
56	5	A	Low
56 56	5	A	Low
56 56	5	A	Low Low
56 56	5	A	Low
56	5 5 3 3 3	c	Low
86 86	3	c	Low
86 86	3	c	Low Low
86 86	3	c c	Low
86	3	c	Low
86 86	3	c c	Low
86 86	3 3 3 3	C A	Low
86 86	3	A	Low
86	3	A	Low
86 n/a	3 n/a	A n/a	Low n/a
134 134	2	A	Low
134	2	Â	Low
134 134	2	A	Low
134 134	2	A	Low Low
134 86	3 3 n/a 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	A	Low
86	3	A	Low
86 86	3	A A	Low Low
86 86	3 3	A	Low Low
86 86	3	A	Low
86	3	A	Low
86 86	3 3 3 3	c	Low Low
86 86	3	c	Low
86 134	3 2 2 3 2 2 2 5 2 3	c	Low
134	2	A	Low
86 134	3	C A	Low
134 134	2	A A	Low
56	5	ç	Low
134 86	2	A	Low
86 86	3 3 3 3 3 3	A A	Low
86 86	3	A	Low
86	3	A	Low
86 86	3	A	Low
86 86	3 3 3	A	Low
86	3	Â	Low
86 86	3 3 3 3 3	A	Low
86 86	3	A A	Low Low
86 134	3 2 2 3	A A	Low
134 86	2	A	Low
86	3	A	Low
86 86	3 3 3 3	A A	Low Low
86 86	3	A	Low Low
86 86	3	A	Low
86 86	3	A	Low
86 86	3 3 3 n/a n/a	A A	Low Low
86 n/a	3 n/a	A n/a	Low n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a	n/a	n/a	n/a
n/a n/a	n/a	n/a n/a	n/a n/a
n/a n/a	n/a	n/a n/a	n/a n/a
n/a n/a	n/a n/a	n/a	n/a n/a
n/a n/a	n/a	n/a	n/a n/a
n/a	n/a n/a	n/a	n/a n/a
n/a n/a	n/a n/a n/a	n/a	n/a
n/a n/a	n/a n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a	n/a n/a	n/a n/a
n/a	n/a n/a	n/a	n/a n/a
n/a n/a	n/a n/a n/a	n/a n/a	n/a
n/a n/a	n/a n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a	n/a n/a	n/a n/a
n/a	n/a n/a	n/a	n/a
n/a n/a	n/a n/a	n/a	n/a n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a	n/a n/a n/a	n/a	n/a
n/a n/a	n/a	n/a	n/a n/a
n/a n/a	n/a	n/a	n/a n/a
n/a n/a	n/a n/a	n/a	n/a n/a
n/a	n/a n/a	n/a	n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a n/a	n/a	n/a n/a
n/a	n/a	n/a	n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a n/a	n/a n/a	n/a n/a
n/a n/a	n/a	n/a	n/a n/a
n/a	n/a n/a n/a	n/a	n/a
n/a	n/a	n/a	n/a

•	CorrSteel n/a
	n/a n/a
	n/a n/a
	n/a n/a
	n/a n/a
	n/a n/a Moderate
	Moderate
	Moderate
	Moderate Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate
	n/a High
	High High High
	High High High
	High High High
	High Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate
	Moderate Moderate
	Moderate Moderate
	Moderate Moderate
	High High
	Moderate High
	High High
	Moderate High
	Moderate Moderate
	Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate Moderate
	Moderate Moderate
	Moderate Moderate
	Moderate High
	High Moderate
	Moderate Moderate
	Moderate n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a
	n/a
	n/a n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a n/a
	n/a n/a
	n/a

								Gorman-Kern River 66 kV Project, Transmit	ssion Line Rating Remediation	n Project							
SEG STATUS STR_ID	STR_TYPE	MATL HARDWARE	STR CL_HUB LINE_ AHEAD_ _HT KV _ELEV ANGLE SPAN CIRCUIT_TYPE	CIRCUIT_1	CIRCUIT_2		NGITUDE PROJECT_NAME	UNIT_AGE	ROCKTYPE1	ROCKTYPE2	Ground Motion Landslide	AP_Zone Lique	efaction Floodzo	ne Inundation	Inundation Dam Erosion	MUSYM MUKEY muname	WEI WEG HydroGRP CorrConcre CorrSteel
2 New M38-T6 2 New M38-T7	Monopole Monopole	LWS Pin/Post TSP Dead End	56.5 66 1563.933 -0.0412 639.728 Single Circuit 75 66 1591.006 -31.1666 1392.861 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2143 34.937164 2144 34.935451	-118.92371 Gorman-Kern River -118.924189 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene		terrace terrace	1.15	0 No No 7 Yes No	100-year No	No	n/a Yes n/a No	 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes 466543 Guijarral-Klipstein complex, 2 to 5 percent slopes 	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M40-T4	Monopole Monopole	TSP Dead End TSP Dead End	70 66 2611.284 0.0691 235.048 Single Circuit 60 66 2658.268 1.5636 524.401 Single Circuit	GORMAN-KERN RIVER	TBD	2153 34.909439 2154 34.908801	-118.921747 Gorman-Kern River -118.921628 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.25	7 No No 6 No No	No	No	n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a
2 New M43-T6	Monopole	TSP Dead End	85 66 3152.877 20.1839 749.253 Single Circuit	GORMAN-KERN RIVER	TBD	2168 34.875773	-118.893831 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	1.45	7 No No	No	No	n/a No	980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a
2 New M43-T7 2 New M43-T8	Monopole Monopole	TSP Dead End TSP Dead End	85 66 3176.03 -24.293 708.207 Single Circuit 85 66 3187.332 19.6354 479.997 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2169 34.874151 2170 34.873247	-118.892292 Gorman-Kern River -118.890201 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.55	0 No No 0 No No	No	No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M44-T1 2 New M44-T2	Monopole Monopole	LWS Pin/Post LWS Pin/Post	74.5 66 3196.309 -2.012 495.075 Single Circuit 74.5 66 3203.816 5.1236 515.983 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2171 34.872278 2172 34.871311	-118.889117 Gorman-Kern River -118.887956 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.55	0 No No 0 No No	No No	No No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M44-T3 2 New M44-T3A	Monopole Monopole	TSP Dead End TSP Dead End	85 66 3212.069 27.0836 647.839 Single Circuit 80 66 3233.828 -27.4284 439.412 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2173 34.870218 2174 34.86848	-118.88686 Gorman-Kern River -118.886393 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.55	0 No No 0 No No	100-year No	No	n/a Yes n/a No	980 2394575 Area not surveyed, access denied 860 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M44-T4 2 New M44-T5	Monopole Monopole	LWS Suspension TSP Dead End	83.5 66 3238.035 -0.3584 563.96 Single Circuit 65 66 3252.206 12.6444 380.655 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2175 34.867553 2176 34.866371	-118.885454 Gorman-Kern River -118.884238 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.55	0 No No 0 No No	100-year 100-year	No	n/a Yes n/a Yes	466585 Hawk gravelly sandy loam, 9 to 15 percent slopes 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
2 New M44-T6	Monopole	TSP Dead End	85 66 3268.807 -2.0383 700.426 Single Circuit	GORMAN-KERN RIVER	TBD	2177 34.865444	-118.88365 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	1.55	0 No No	100-year	No	n/a Yes	860 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes	n/a n/a n/a n/a
2 New M44-T7 2 New M44-T8	Monopole Monopole	LWS Pin/Post TSP Dead End	70 66 3310.199 -3.748 593.76 Single Circuit 80 66 3345.271 -5.4082 593.326 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2178 34.863772 2179 34.86241	-118.882495 Gorman-Kern River -118.881405 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.55	0 No No 7 No No	100-year 100-year	No	n/a Yes n/a Yes	860 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes 860 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
2 New M44-T9 2 New M45-T1	Monopole Monopole	LWS Suspension LWS Pin/Post	74.5 66 3357.751 0.0395 572.049 Single Circuit 65.5 66 3356.829 0.0057 574.947 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2180 34.86114 2181 34.859914	-118.880165 Gorman-Kern River -118.878971 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.55	0 No No 0 No No	No	No	n/a No n/a No	 466585 Hawk gravelly sandy loam, 9 to 15 percent slopes 466583 Chuchupate gravelly sandy loam, 50 to 75 percent slopes 	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M45-T2 2 New M45-T3	Monopole Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 3342.201 0.0014 590.805 Single Circuit 65.5 66 3346.066 7.0685 688.633 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2182 34.858683 2183 34.857417	-118.877771 Gorman-Kern River -118.876538 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.65	0 No Yes 0 No Yes	No 100-year	No	n/a No n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M45-T4 2 New M45-T4A	Monopole Monopole	LWS Suspension TSP Dead End	79 66 3359.954 1.332 615.613 Single Circuit 70 66 3373.295 -25.9537 592.084 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2184 34.855807 2185 34.854347	-118.875332 Gorman-Kern River -118.874294 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.65 1.65	0 No Yes 0 No Yes	No	No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M45-T5	Monopole	TSP Dead End	70 66 3382.224 17.9485 503.913 Single Circuit	GORMAN-KERN RIVER	TBD	2186 34.853445	-118.872652 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.65	7 No Yes 0 No Yes	No	No	n/a No n/a Yes	980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a
2 New M45-T6 2 New M45-T7	Monopole	LWS Suspension LWS Suspension	79 66 3403.287 -0.0215 699.325 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2187 34.85236 2188 34.85086	-118.87161 Gorman-Kern River -118.870149 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace	1.65	0 No Yes	100-year 100-year	No	n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a n/a
2 New M45-T8 2 New M46-T1	Monopole Monopole	LWS Suspension LWS Suspension	79 66 3419.779 -0.0026 699.236 Single Circuit 79 66 3434.779 0.0077 699.645 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2189 34.849362 2190 34.847864	-118.868689 Gorman-Kern River -118.867229 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.65	0 No Yes 0 No Yes	100-year 100-year	No	n/a Yes n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M46-T2 2 New M46-T3	Monopole Monopole	LWS Pin/Post LWS Suspension	65.5 66 3448.454 0.0163 698.686 Single Circuit 74.5 66 3464.965 -0.0238 698.979 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2191 34.846366 2192 34.844869	-118.865768 Gorman-Kern River -118.86431 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene		terrace terrace	1.65	0 No Yes 0 No Yes	No	No No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M46-T4 2 New M46-T5	Monopole Monopole	LWS Pin/Post LWS Suspension	65.5 66 3481.262 -0.0001 698.993 Single Circuit 79 66 3497.158 0.0346 698.851 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2193 34.843372 2194 34.841874	-118.862851 Gorman-Kern River -118.861392 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene		terrace terrace	1.75	0 No Yes 0 No Yes	No	No No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New M46-T6 2 New NO 11	Monopole Monopole	TSP Dead End LWS Pin/Post	80 66 3505.713 -0.1576 348.928 Double Circuit 56.5 66 2680.757 0.0562 473.474 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN	2195 34.840377 2155 34.907371	-118.859934 Gorman-Kern River -118.921409 Gorman-Kern River	Pliocene to Holocene Permian to Tertiary; most Mesozoic		terrace quartz monzonite	1.75	0 No Yes 7 No No	No	No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/an/a n/a n/a
2 New NO 12 2 New NO 13	Monopole Monopole	TSP Dead End LWS Pin/Post	65 66 2687.56 0.0007 920.188 Single Circuit 56.5 66 2699.706 0.0001 854.22 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2156 34.90608 2157 34.903571	-118.921213 Gorman-Kern River -118.920832 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.25	8 No No 7 No No	No	No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 14	Monopole	TSP Dead End	70 66 2680.536 -0.0035 961.6 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2158 34.901242	-118.920478 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	1.25	3 No No	No	No	n/a No	980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a
2 New NO 15 2 New NO 16	Monopole Monopole	TSP Dead End TSP Dead End	75 66 2670.844 -29.4528 1521.845 Single Circuit	GORMAN-KERN RIVER	TBD	2159 34.898621 2160 34.89405	-118.92008 Gorman-Kern River -118.919386 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.85	8 No No 8 No No	No	No	n/a No n/a No	980 2394575 Area not surveyed, access denied 870 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 17 2 New NO 18	Monopole Monopole	TSP Dead End TSP Dead End	85 66 2883.162 -20.2339 1483.193 Single Circuit 80 66 2983.702 18.7202 1789.658 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2161 34.890692 2162 34.888462	-118.916361 Gorman-Kern River -118.912221 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.85	0 No No 3 No No	No	No	n/a No n/a No	 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes 	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 19 2 New NO 2	Monopole Monopole	TSP Dead End TSP Dead End	75 66 3230.599 0.0262 867.491 Single Circuit 105 66 1719.659 -0.4957 710.555 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2163 34.884592 2145 34.931815	-118.90854 Gorman-Kern River -118.922738 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene		quartz monzonite terrace	0.85	8 No No 10 Yes No	No No	No	n/a No n/a No	 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes 4661 466557 Geghus-Tecuya association, 30 to 75 percent slopes 	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 20 2 New NO 21	Monopole Monopole	TSP Dead End TSP Dead End	70 66 3400.045 -2.8252 765.255 Single Circuit 85 66 3532.888 0.0003 2100.067 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2164 34.882715 2165 34.881126	-118.906756 Gorman-Kern River -118.905086 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.95	7 No No 6 No No	No No	No No	n/a No n/a No	18 465283 Lodo-Modjeska-Botella families association, 10 to 70 percent slopes 870 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 23 2 New NO 24	Monopole Monopole	TSP Dead End TSP Dead End	70 66 3329.77 -40.4593 1903.133 Single Circuit 100 66 3145.67 23.1369 140.494 Single Circuit	GORMAN-KERN RIVER	TBD	2166 34.876763 2167 34.875977	-118.900502 Gorman-Kern River -118.894229 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.95	0 No No 0 No No	No	No	n/a No n/a No	870 466584 Frazier very gravelly sandy loam, 50 to 75 percent slopes 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
2 New NO 5	Monopole	TSP Dead End	85 66 2180.415 12.3182 573.004 Single Circuit	GORMAN-KERN RIVER	TBD	2148 34.924743	-118.919837 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.05	8 No No	No	No	n/a No	461 466557 Geghus-Tecuya association, 30 to 75 percent slopes	n/a n/a n/a n/a
2 New NO 6 2 New NO 7	Monopole Monopole	LWS Suspension TSP Dead End	56.5 66 2198.035 -0.0512 1095.768 Single Circuit 75 66 2179.621 0.0147 1532.502 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD	2149 34.923242 2150 34.92037	-118.920413 Gorman-Kern River -118.921512 Gorman-Kern River	Paleocene to Oligocene Paleocene to Oligocene	mudstone	sandstone sandstone	1.05	5 No No 8 No No	No	No	n/a No n/a No	461 466557 Gephus-Tecuya association, 30 to 75 percent slopes 461 466557 Gephus-Tecuya association, 30 to 75 percent slopes	n/a n/a n/a n/a n/a n/a n/a n/a n/a sia n/a n/a
2 Remove NO 8 2 New NO 9	Horizontal Configuration Monopole	Lattice Steel Suspension TSP Dead End	56.397 66 2203.941 0.015 -99 Single Circuit 75 66 2265.754 -26.3378 2547.036 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD TBD	2151 34.918503 2152 34.916355	-118.922226 Gorman-Kern River -118.92305 Gorman-Kern River	Paleocene to Oligocene Paleocene to Oligocene	mudstone	sandstone sandstone	1.15 1.25	9 No No 9 No No	No	No No	n/a No n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a n/a
3 Remove 1433688e 1433687e 3 Remove 1433690E 1433689E	H-Frame H-Frame	Wood Suspension Wood Suspension	8 66 3865.475 0.303 -99 Single Circuit 8 66 3837.314 0.1339 -99 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2228 34.810321 2226 34.81221	-118.833109 Gorman-Kern River -118.833725 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.95 1.25	3 No No 7 No No	No No	No No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 Remove 1433693E 1433694E 3 New 1483082e 1483083e	H-Frame Monopole	Wood Suspension LWS Pin/Post	8 66 3647.767 0.3927 -99 Double Circuit 65.5 66 3515.77 0.1484 351.753 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2217 34.821288 2207 34.832144	-118.838654 Gorman-Kern River -118.851908 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene	granodiorite	quartz monzonite terrace	1.85 1.75	0 No No 0 Yes Yes	No 100-year	No	n/a No n/a Yes	176 463880 Steuber sandy loam, 5 to 9 percent slopes 2394575 Area not surveyed, access denied	56 5 A Low Moderate n/a n/a n/a n/a
3 New 1501396e 1501397e 3 New 1501398e 1501399e	Monopole Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 3511.33 0.0181 349.44 Double Circuit 65.5 66 3512.122 -0.1182 351.515 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2203 34.835135 2205 34.833641	-118.854824 Gorman-Kern River -118.85337 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.75	0 Yes Yes 0 Yes Yes	100-year 100-year	No	n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
3 New 4410454E 4410455E 3 New 4410456E 4410457E	Monopole	TSP Dead End TSP Dead End	90 66 3547.043 -5.2685 1261.13 Double Circuit 80 66 3515.592 -1.3402 650.197 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2210 34.82935 2211 34.827164	-118.848988 Gorman-Kern River -118.845727 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.15	10 Yes Yes 0 Yes Yes	No	No	n/a No	980 2394575 Area not surveyed, access denied 194 463898 Walong sandy loam, 30 to 50 percent slopes	n/a n/a n/a n/a n/a 86 3.8 Low Moderate
3 Existing Gorman Sub	Monopole Horizontal Configuration	Lattice Steel Dead End	38.47 66 3618.28 -99 -99 Single Circuit	GORMAN-KERN RIVER	TBD	2250 34.790594	-118.827074 Gorman-Kern River	Pliocene to Holocene Permian to Tertiary; most Mesozoic	granodiorite	terrace quartz monzonite	1.95	0 Yes No	No	No	n/a No n/a No	ObC 457871 Oak Glen sandy loam, 2 to 9 percent slopes	86 3 A Moderate Low
3 New M46-T6 3 New M46-T7	Monopole Monopole	TSP Dead End LWS Pin/Post	80 66 3505.713 -0.1576 348.928 Double Circuit 65.5 66 3510.039 -0.0898 350.211 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2196 34.840377 2198 34.83888	-118.859934 Gorman-Kern River -118.858474 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.75	0 No Yes 0 No Yes	No 100-year	No	n/a No n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M47-T1 3 New M47-T2	Monopole Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 3513.435 0.0375 343.547 Double Circuit 65.5 66 3513.389 -0.0089 349.594 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2200 34.837383 2202 34.835884	-118.857015 Gorman-Kern River -118.855554 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene		terrace terrace	1.75	0 Yes Yes 0 Yes Yes	100-year 100-year	No	n/a Yes n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M47-T3 3 New M47-T4	Monopole Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 3511.505 0.0439 347.646 Double Circuit 65.5 66 3515.647 -0.0197 348.172 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2204 34.834386 2206 34.832889	-118.854095 Gorman-Kern River -118.852636 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene		terrace terrace	1.75 1.75	0 Yes Yes 0 Yes Yes	100-year 100-year	No	n/a Yes n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M47-T5 3 New M47-T6	Monopole Monopole	TSP Dead End TSP Dead End	75 66 3517.84 -0.0771 600.714 Double Circuit 75 66 3552.876 -6.8367 391.86 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2208 34.83139 2209 34.830103	-118.851175 Gorman-Kern River -118.849921 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.75	0 Yes Yes 9 Yes Yes	100-year	No	n/a Yes n/a No	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a n/a
3 New M48-T10	Monopole Monopole	TSP Dead End	75 66 3759.282 6.0036 478.51 Double Circuit 88 66 3502.533 0.6121 499.477 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2222 34.816607 2212 34.82607	-118.835556 Gorman-Kern River -118.844014 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene	granodiorite	quartz monzonite terrace	1.15	6 No No 0 Yes Yes	No	No	n/a No	ShF2 457913 Sheridan sandy loam, 30 to 50 percent slopes, eroded 176 463880 Steuber sandy loam, 5 to 9 percent slopes	86 3 B Moderate Low
3 New M48-T3	Monopole	LWS Pin/Post	83.5 66 3514.751 -0.0201 469.098 Double Circuit	GORMAN-KERN RIVER	FRAZIER PARK-GORMAN	2213 34.825218	-118.84271 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace	1.85	0 No Yes	No	No	n/a No n/a No	176 463880 Steuber sandy loam, 5 to 9 percent slopes	56 5 A Low Moderate
3 New M48-T4 3 New M48-T5	Monopole Monopole	TSP Dead End TSP Dead End	75 66 3535.749 6.0731 582.353 Double Circuit 80 66 3578.062 14.9409 515.909 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2214 34.824418 2215 34.823298	-118.841484 Gorman-Kern River -118.840099 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.85 1.15	0 No Yes 0 No No	No	No	n/a No n/a No	 463880 Steuber sandy loam, 5 to 9 percent slopes 463880 Steuber sandy loam, 5 to 9 percent slopes 	56 5 A Low Moderate 56 5 A Low Moderate
3 New M48-T6 3 New M48-T7	Monopole Monopole	LWS Pin/Post TSP Dead End	74.5 66 3620.939 -0.098 424.573 Double Circuit 85 66 3644.953 -0.2486 649.639 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2216 34.822078 2218 34.821074	-118.839223 Gorman-Kern River -118.838502 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.15 1.85	3 No No O No No	No	No	n/a No n/a No	176 463880 Steuber sandy loam, 5 to 9 percent slopes 176 463880 Steuber sandy loam, 5 to 9 percent slopes	56 5 A Low Moderate 56 5 A Low Moderate
3 New M48-T8 3 New M48-T9	Monopole Monopole	TSP Dead End TSP Dead End	70 66 3653.76 -0.0562 497.157 Double Circuit 75 66 3761.755 5.4409 424.028 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2219 34.819537 2220 34.818362	-118.837401 Gorman-Kern River -118.836557 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.85 1.15	0 No No 3 No No	No No	No No	n/a No n/a No	176 463880 Steuber sandy loam, 5 to 9 percent slopes 194 463898 Walong sandy loam, 30 to 50 percent slopes	56 5 A Low Moderate 86 3 B Low Moderate
3 New M48-T9A 3 New M49-T1	Monopole Monopole	LWS Suspension LWS Pin/Post	79 66 3757.261 -0.0297 281.731 Double Circuit 74.5 66 3752.809 0.0334 560.944 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2221 34.817307 2223 34.815365	-118.835956 Gorman-Kern River -118.835031 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.15	7 No No 0 No No	No	No No	n/a No n/a No	ShF2 457913 Sheridan sandy loam, 30 to 50 percent slopes, eroded Occ 457872 Oak Glen gravelly sandy loam, 2 to 9 percent slopes	86 3 B Moderate Low 56 5 A Moderate Low
3 New M49-T2 3 New M49-T3	Monopole Monopole	LWS Pin/Post TSP Dead End	92.5 66 3754.027 -0.0489 549.827 Double Circuit 75 66 3837.106 4.1155 646.068 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2224 34.81391 2225 34.812483	-118.834417 Gorman-Kern River -118.833814 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.85	0 No No 3 No No	No	No	n/a No n/a No	Occ 457872 Oak Glen gravelly sandy loam, 2 to 9 percent slopes GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	56 5 A Moderate Low n/a n/a n/a n/a n/a
3 New M49-T4 3 New M49-T5	Monopole Monopole	LWS Pin/Post LWS Pin/Post	83.5 66 3842.046 -0.2699 550.941 Double Circuit 70 66 3897.582 -0.1175 598.948 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2227 34.810768 2229 34.809306	-118.833257 Gorman-Kern River -118.832781 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.95	3 No No 6 No No	No	No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a n/a
3 New M49-T6	Monopole	LWS Pin/Post	74.5 66 3969.927 -0.064 680.757 Double Circuit	GORMAN-KERN RIVER	FRAZIER PARK-GORMAN	2230 34.807717	-118.832262 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	1.95	6 No No	No	No	n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a
3 New M49-T7 3 New M49-T8	Monopole Monopole	LWS Suspension LWS Pin/Post	106 66 4047.702 0.1376 518.486 Double Circuit 65.5 66 4193.307 -0.0554 484.437 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2231 34.805911 2232 34.804535	-118.831671 Gorman-Kern River -118.831224 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.95	0 No No 6 No No	No	No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded ShF2 457913 Sheridan sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a 86 3 B Moderate Low
3 New M49-T9 3 New M50-T1	Monopole Monopole	LWS Pin/Post LWS Suspension	97 66 4255.008 0.0014 461.662 Double Circuit 106 66 4346.848 0.0007 297.638 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2233 34.80325 2234 34.802025	-118.830805 Gorman-Kern River -118.830406 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.25	8 No No 7 No No	No	No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M50-T10 3 New M50-T2	Monopole Monopole	TSP Dead End LWS Pin/Post	85 66 3804.428 -0.5223 384.754 Double Circuit 74.5 66 4432.723 0.0967 374.936 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2247 34.791828 2235 34.801235	-118.827229 Gorman-Kern River -118.830149 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.25	6 No No 6 No No	No No	No No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 Remove M50-T3 3 New M50-T4	Horizontal Configuration Monopole	Lattice Steel Suspension TSP Dead End	8 66 4516.963 0.1153 -99 Double Circuit 80 66 4531.388 0.4995 414.532 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2236 34.800442 2237 34.800239	-118.829892 Gorman-Kern River -118.829827 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.25	3 No No 0 No No	No No	No No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M50-T5 3 New M50-T6	Monopole Monopole	LWS Pin/Post TSP Dead End	74.5 66 4394.695 -0.8248 368.987 Double Circuit 85 66 4194.066 -1.0549 392.665 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2238 34.799136 2240 34.7965	-118.829485 Gorman-Kern River -118.828671 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.25	8 No No 7 No No	No	No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 New M50-T7	Monopole	LWS Pin/Post TSP Dead End	70 66 4071.991 -0.3431 354.306 Double Circuit 70 66 3992.15 -0.0394 435.216 Double Circuit	GORMAN-KERN RIVER	FRAZIER PARK-GORMAN	2242 34.795454 2243 34.794511	-118.82835 Gorman-Kern River -118.828056 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	1.25	6 No No	No	No	n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a
3 Remove M50-T9	Monopole Horizontal Configuration	Lattice Steel Suspension	8 66 3910.281 -1.0915 -99 Double Circuit	GORMAN-KERN RIVER	FRAZIER PARK-GORMAN	2245 34.792939	-118.827572 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	1.25	6 No No 6 No No	No	No	n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 New N1445349E S1445350E 3 New n1501394e s1501395e	Monopole Monopole	LWS Pin/Post LWS Pin/Post	65.5 66 3508.45 0.2262 350.224 Double Circuit 65.5 66 3512.181 0.0106 356.163 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2197 34.839631 2201 34.836647	-118.859204 Gorman-Kern River -118.856297 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	1.75 1.75	0 No Yes 0 Yes Yes	100-year 100-year		n/a Yes n/a Yes	980 2394575 Area not surveyed, access denied 980 2394575 Area not surveyed, access denied	n/a n/a n/a n/a n/a n/a n/a n/a
3 New n1505049e s1505050e 3 Existing NO #	Monopole Monopole	LWS Pin/Post Wood Dead End	65.5 66 3511.005 -0.0579 348.818 Double Circuit 33.66 66 3620.387 -99 -99 Single Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN TBD	2199 34.838129 2249 34.790778	-118.857743 Gorman-Kern River -118.827187 Gorman-Kern River	Pliocene to Holocene Permian to Tertiary; most Mesozoic	granodiorite	terrace quartz monzonite	1.75 1.95	0 Yes Yes 0 Yes No	100-year No	No	n/a Yes n/a No	980 2394575 Area not surveyed, access denied ObC 457871 Oak Glen sandy loam, 2 to 9 percent slopes	n/a n/a n/a n/a 86 3 A Moderate Low
3 Existing NO # 3 New W1421648E E1421647E	Vertical Configuration Monopole	Lattice Steel Dead End LWS Suspension	45.73 66 3636.62 47.6646 -99 Single Circuit 79 66 3936.007 0.764 316.217 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	TBD FRAZIER PARK-GORMAN	2248 34.790804 2244 34.793353	-118.826908 Gorman-Kern River -118.827694 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.95 1.25	0 Yes No 3 No No	No No	No No	n/a No n/a No	ObC 457871 Oak Glen sandy loam, 2 to 9 percent slopes GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	86 3 A Moderate Low n/a n/a n/a n/a n/a
3 New W1960783E E1960784E 3 New W4479523E E4479522E	Monopole Monopole	TSP Dead End LWS Suspension	85 66 4241.195 1.3627 621.05 Double Circuit 79 66 3875.192 0.7775 256.244 Double Circuit	GORMAN-KERN RIVER GORMAN-KERN RIVER	FRAZIER PARK-GORMAN FRAZIER PARK-GORMAN	2239 34.798157 2246 34.792511	-118.829164 Gorman-Kern River -118.827435 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	1.25	7 No No 6 No No	No No	No No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded	n/a n/a n/a n/a n/a n/a n/a n/a
3 Remove W4479525E E4479524E 4 New 2115338E 2115339E	H-Frame Monopole	Wood PinPost LWS Pin/Post	8 66 4174.263 0.7814 -99 Double Circuit 70 66 642.617 -0.0947 626.832 Single Circuit	GORMAN-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	FRAZIER PARK-GORMAN TBD	2241 34.796286 1171 35.173268	-118.828602 Gorman-Kern River -118.77704 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene		quartz monzonite terrace	1.25 0.45	7 No No 7 No No	No No	No No	n/a No n/a No	GoF2 457833 Gorman sandy loam, 30 to 50 percent slopes, eroded 463891 Tunis sandy loam, 5 to 30 percent slopes	n/a n/a n/a n/a 86 3 D Low Moderate
4 New 2145301E 2145302E 4 New 2145303E 2145304E	Monopole Monopole	TSP Dead End TSP Dead End	65 66 2085.723 -0.0717 1262.301 Single Circuit 60 66 1838.377 0.018 1324.896 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1179 35.158355 1178 35.161532	-118.759045 Gorman-Kern River -118.761209 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.45	0 No No 7 No No	No	No	n/a No n/a No	188 463892 Tunis-Walong complex, 50 to 75 percent slopes 188 463892 Tunis-Walong complex, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 D Low Moderate
4 New 2145305E 2145306E 2145 4 New 2145308E 2145309E 2145	5307E Monopole	TSP Dead End TSP Dead End	60 66 1872.664 1.3732 1712.157 Single Circuit 60 66 1871.581 -1.4644 121.174 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1177 35.165637 1176 35.165923	-118.764007 Gorman-Kern River -118.764214 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	3 No No 6 No No	No	No	n/a No n/a No	188 463892 Tunis-Walong complex, 50 to 75 percent slopes 188 463892 Tunis-Walong complex, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 D Low Moderate
4 New 2145311E 2145312E	H-Frame	LWS Suspension	52 66 1488.227 -0.0368 1729.76 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1175 35.170074	-118.767033 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	0.45	0 No No	No	No	n/a No	211 463915 Xerorthents-Rock outcrop complex, very steep	48 6 D Low Moderate
4 New 2145313E 2145314E 2145 4 New 2145316E 2145317E	Monopole	TSP Dead End LWS Pin/Post	65 66 1274.798 44.4415 1155.499 Single Circuit 74.5 66 596.326 0.128 561.182 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1174 35.172847 1170 35.173259	-118.768914 Gorman-Kern River -118.778918 Gorman-Kern River	Pliocene to Holocene	alluvium	quartz monzonite terrace	0.45	6 No No 7 No No	No	No	n/a No n/a No	463915 Xerorthents-Rock outcrop complex, very steep 463891 Tunis sandy loam, 5 to 30 percent slopes	48 6 D Low Moderate 86 3 D Low Moderate
4 New 2145318E_2145319E 4 New 2145320E 2145321E	Monopole	LWS Pin/Post LWS Pin/Post	70 66 575.184 0.0071 887.426 Single Circuit 70 66 518.962 -0.0958 828.231 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1169 35.173239 1168 35.173219	-118.781887 Gorman-Kern River -118.784659 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	0.75	7 No No 7 Yes No	No	No	n/a No n/a No	110 463814 Arvin sandy loam, 5 to 9 percent slopes 110 463814 Arvin sandy loam, 5 to 9 percent slopes	56 5 A Low Moderate 56 5 A Low Moderate
4 New 2145322E_2145323E 4 New 2145324E 2145325E	Monopole Monopole	LWS Pin/Post LWS Pin/Post	61 66 448.307 0.0801 1063.845 Single Circuit 65.5 66 444.665 -0.0783 993.19 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1167 35.173199 1166 35.173176	-118.788218 Gorman-Kern River -118.791541 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace	0.75	0 Yes No 0 No No	No No	No No	n/a No n/a No	109 463813 Arvin sandy loam, 2 to 5 percent slopes 109 463813 Arvin sandy loam, 2 to 5 percent slopes	56 5 A Low Moderate 56 5 A Low Moderate
4 New 2145326E_2145327E 4 New M10-T1	Monopole Monopole	LWS Pin/Post LWS Suspension	65.5 66 435.482 0.054 992.807 Single Circuit 70 66 4072.606 -0.0572 325.865 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1165 35.173157 1223 35.09866	-118.794863 Gorman-Kern River -118.667693 Gorman-Kern River	Pliocene to Holocene Permian to Tertiary; most Mesozoic	alluvium	terrace quartz monzonite	0.75	0 No No 6 No No	No	No No	n/a No n/a No	463813 Arvin sandy loam, 2 to 5 percent slopes 463897 Walong sandy loam, 15 to 30 percent slopes	56 5 A Low Moderate 86 3 B Low Moderate
4 New M10-T2 4 New M10-T3	Monopole	LWS Suspension LWS Suspension	83.5 66 4104.15 0.0427 999.786 Single Circuit 74.5 66 4095.418 -0.0031 470.415 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1224 35.098157 1225 35.096614	-118.666791 Gorman-Kern River -118.666026 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite guartz monzonite	0.45	0 No No 0 No No	No	No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M10-T4	Monopole	LWS Pin/Post	70 66 4080.981 -0.0126 601.471 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1226 35.095887	-118.662725 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	0.45 0.45 0.45	0 No No 0 No No	No	No	n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate
4 New M10-T6	Monopole Monopole	LWS Pin/Post	70 66 4042.44 -32.9839 728.102 Single Circuit 70 66 4032.389 0.0334 630.136 Single Circuit 74 5 55 4051.300 0.0734 751.25 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1227 35.094959 1228 35.094918 1230 35.094918	-118.661062 Gorman-Kern River -118.658628 Gorman-Kern River 118.656523 Gorman Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Decemian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	0 No No	No	No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes 463897 2000 1000 463897 2000 1000	86 3 B Low Moderate 86 3 B Low Moderate 86 3 D Low Moderate
4 New M10-T7 4 New M10-T8	Monopole	LWS Pin/Post LWS Suspension	74.5 66 4051.299 -0.0796 716.672 Single Circuit 83.5 66 4088.895 0.104 362.736 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1229 35.094881 1230 35.094841	-118.656522 Gorman-Kern River -118.654127 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	0 No No 3 No No	No	No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 194 463898 Walong sandy loam, 30 to 50 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M10-T9 4 New M11-T1	Monopole Monopole	LWS Pin/Post LWS Suspension	74.5 66 4093.089 -0.0807 364.252 Single Circuit 74.5 66 4062.613 0.0308 675.645 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1231 35.094819 1232 35.094799	-118.652914 Gorman-Kern River -118.651697 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45 0.45	7 No No 7 No No	No	No No	n/a No n/a No	194 463898 Walong sandy loam, 30 to 50 percent slopes 194 463898 Walong sandy loam, 30 to 50 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M11-T2 4 New M11-T3	Monopole Monopole	LWS Pin/Post TSP Dead End	70 66 3940.556 0.0085 634.002 Single Circuit 65 66 3845.246 5.7616 344.7 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1233 35.09476 1234 35.094723	-118.649439 Gorman-Kern River -118.64732 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	0 No No 3 No No	No No	No No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M1-T4 4 New M1-T5	Monopole Monopole	TSP Dead End TSP Dead End	65 66 719.656 -0.0006 1233.24 Single Circuit 70 66 1066.909 16.8806 592.599 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1172 35.173282 1173 35.173308	-118.774943 Gorman-Kern River -118.770816 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.45 0.45	9 No No 6 No No	No	No No	n/a No n/a No	188 463892 Tunis-Walong complex, 50 to 75 percent slopes 188 463892 Tunis-Walong complex, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 D Low Moderate
4 New M3-T2 4 New M3-T3	Monopole H-Frame	LWS Suspension TSP Dead End	74.5 66 2198.873 0.0703 520.042 Single Circuit 50 66 2196.836 -0.051 1980.642 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1180 35.155331 1181 35.154084	-118.756978 Gorman-Kern River -118.756129 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	0 No No 0 No No	No	No	n/a No n/a No	463892 Tunis-Walong complex, 50 to 75 percent slopes 463892 Tunis-Walong complex, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 D Low Moderate
4 New M3-T3 4 New M3-T4 4 New M4-T1	Monopole Monopole	LWS Suspension LWS Suspension	106 66 2547.261 0.0753 500.042 single Circuit 88 66 2656.115 -0.0298 1185.005 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1181 35.154034 1182 35.149337 1183 35.148138	-118.752889 Gorman-Kern River -118.752073 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	6 No No 7 No No	No	No	n/a No n/a No	46382 Tunis-Walong complex, 50 to 75 percent slopes 463892 Tunis-Walong complex, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 D Low Moderate
4 New M4-T2	H-Frame	LWS Suspension	70 66 2858.548 -1.7617 975.529 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1184 35.145296	-118.750138 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite	0.45	0 No No	No	No	n/a No	197 463901 Walong-Arujo sandy loams, 50 to 75 percent slopes	86 3 B Low Moderate
4 New M4-T3 4 New M4-T4	H-Frame H-Frame	LWS Suspension LWS Suspension	70 66 2880.914 -0.2499 1820.366 Single Circuit 65.5 66 3107.894 -0.0023 1189.71 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1185 35.142999 1186 35.138722	-118.748458 Gorman-Kern River -118.7453 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45 0.45	7 No No 0 No No	No	No No	n/a No n/a No	188 463892 Tunis-Walong complex, 50 to 75 percent slopes 131 463835 Edmundston gravelly sandy loam, 50 to 75 percent slopes	56 5 D Low Moderate 56 5 A Moderate Moderate
4 New M4-T5 4 New M5-T1	H-Frame H-Frame	LWS Suspension LWS Suspension	74.5 66 3146.611 0.0304 539.92 Single Circuit 83.5 66 3113.401 -0.0309 1180.204 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1187 35.135927 1188 35.134658	-118.743237 Gorman-Kern River -118.742301 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45 0.45	3 No No 3 No No	No	No No	n/a No n/a No	205 463909 Xererts-Xerolls complex, steep 205 463909 Xererts-Xerolls complex, steep	86 4 D Low High 86 4 D Low High
4 New M5-T2 4 New M5-T3	H-Frame H-Frame	TSP Dead End LWS Suspension	65 66 3092.467 -38.8073 568.092 Single Circuit 65.5 66 3118.744 -0.6184 596.778 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1189 35.131886 1190 35.131353	-118.740255 Gorman-Kern River -118.738469 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	6 No No 0 No No	No No	No No	n/a No n/a No	188 463892 Tunis-Walong complex, 50 to 75 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes	56 5 D Low Moderate 86 3 B Low Moderate
4 New M5-T4 4 New M5-T5	Monopole Monopole	LWS Suspension LWS Suspension	83.5 66 3158.133 -0.0118 712.62 Single Circuit 74.5 66 3192.414 0.009 677.405 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1191 35.13081 1192 35.130162	-118.736586 Gorman-Kern River -118.734337 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	0 No No 6 No No	No	No No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M5-T6 4 New M5-T7	Monopole	LWS Suspension LWS Suspension	88 66 3160.003 -0.017 949.851 Single Circuit 61 66 3134.294 0.0064 362.894 Single Circuit	CORRECTIONS COMMINGS KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1193 35.129545 1194 35.128682	-118.732199 Gorman-Kern River -118.729201 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite guartz monzonite	0.45	3 No No 0 No No	No	No	n/a No n/a No	193 463897 Walong sandy loam, 15 to 30 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate 86 3 B Low Moderate
4 New M6-T1 4 New M6-T2	Monopole H-Frame	TSP Dead End LWS Suspension	120 66 3047.556 0.0318 1503.736 Single Circuit 79 66 3139.199 -0.0403 945.981 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD TBD	1194 33.128882 1195 35.128352 1196 35.126981	-118.72301 Gorman-Kern River -118.723056 Gorman-Kern River -118.723312 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite	0.45	7 No No 0 No No	No	No	n/a No n/a No	 463898 Walong sandy loam, 30 to 50 percent slopes 463898 Walong sandy loam, 30 to 50 percent slopes 	86 3 B Low Moderate 86 3 B Low Moderate
4 New M6-T3	Monopole	LWS Suspension TSP Dead End LWS Pin/Post	79 bb 3139.199 -0.0403 945.981 Single Circuit 65 66 3033.482 -0.0078 739.78 Single Circuit 88 66 3065.662 0.0121 650.068 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1196 35.126981 1197 35.126121 1198 35.125449	-118.723312 Gorman-Kern River -118.720327 Gorman-Kern River -118.717992 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite quartz monzonite	0.45 0.75 0.75	0 No No	No	No	n/a No	194 463895 Walong sandy loam, 30 to 50 percent slopes 193 463897 Walong sandy loam, 15 to 30 percent slopes 194 463897 Walong sandy loam, 15 to 30 percent slopes	86 3 B Low Moderate
4 New M6-T4 4 New M6-T5	Monopole Monopole	LWS Pin/Post LWS Pin/Post	88 66 3065.662 0.0121 650.068 Single Circuit 79 66 3166.833 0.0098 824.884 Single Circuit	CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1198 35.125449 1199 35.124857	-118.717992 Gorman-Kern River -118.715941 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic		quartz monzonite quartz monzonite	0.75 0.45	0 No No 0 No No	No	No	n/a No n/a No	 463897 Walong sandy loam, 15 to 30 percent slopes 463897 Walong sandy loam, 15 to 30 percent slopes 	86 3 B Low Moderate 86 3 B Low Moderate

Table 4. Structure Summary V Project. Transmission Line F

S STR_ID M6-T6	STR_TYPE Monopole	MATL TSP	HARDWARE Dead End	_HT KV 70 6		ANGLE 2.317 14.408		RCUIT_TYPE ngle Circuit	CIRCUIT_1 CORRECTIONS-CUMMINGS-KERN RIVER	CIRCUIT_2 TBD	CONST_NO LA 1200	35.124106	-118.713338 Gorman-Kern River	UNIT_AGE Permian to Tertiary; most Mesozoic	ROCKTYPE1 granodiorite	ROCKTYPE2 quartz monzonite	Ground Motion	Landslide 0.45	AP_Zone 3 No	Liquefaction No	Floodzone No	Inundation No	Inundation Dam Eros n/a No		MUKEY muname 194 463898 Walong sandy loam, 30 to 50 pe
M7-T1	Monopole	LWS	Pin/Post	97 6			14 847.482 Sir	ngle Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1201	35.123195	-118.711678 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	3 No	No	No	No	n/a No	1	194 463898 Walong sandy loam, 30 to 50 pe
M7-T2 M7-T3	Monopole	LWS TSP	Pin/Post	106 6	56 3227 56 3304	7.121 0.005 4.635 0.024			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1202 1203	35.121888 35.12087	-118.709333 Gorman-Kern River -118.707506 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite		0.45	0 No 6 No	No	No	No	n/a No		 463897 Walong sandy loam, 15 to 30 pe 463897 Walong sandy loam, 15 to 30 pe
M7-13 M7-T4	Monopole	LWS	Dead End Suspension	97 6		168.7 -0.02			CORRECTIONS-COMMINGS-KERN RIVER	TBD	1203	35.12087	-118.705031 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite granodiorite	quartz monzonite		0.45	0 No	NO	NO	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pe 193 463897 Walong sandy loam, 15 to 30 pe
M7-T5	Monopole	LWS	Pin/Post	70 6		5.903 -0.004			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1205	35.118201	-118.702722 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pc
M7-T6	H-Frame	LWS	Suspension	70 6	56 3073	3.133 -0.014	754.883 Sir	ngle Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1206	35.116913	-118.700411 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	3 No	No	No	No	n/a No	1	193 463897 Walong sandy loam, 15 to 30 pe
M7-T7	Monopole	LWS	Pin/Post	74.5 6		0.518 0.022	1 824.932 Sir	ngle Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1207	35.115749	-118.698322 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No	1	193 463897 Walong sandy loam, 15 to 30 pe
M8-T1	Monopole	LWS	Suspension	83.5 6		5.421 -0.000			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1208	35.114476	-118.69604 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pe
M8-T2	Monopole	LWS	Pin/Post	97 6		2.255 -0.005			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1209	35.113743	-118.694726 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	3 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pe
M8-T3 M8-T4	Monopole Monopole	LWS	Suspension Suspension	106 6 79 6		3.995 0.029 5.516 -0.026			CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	1210 1211	35.112546 35.111583	-118.69258 Gorman-Kern River -118.690853 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite granodiorite	quartz monzonite quartz monzonite		0.45	7 No 6 No	No	No	No	n/a No n/a No		 463897 Walong sandy loam, 15 to 30 pt 463897 Walong sandy loam, 15 to 30 pt
M8-T5	Monopole	IWS	Suspension	79 6		3.384 0.024	16 505.096 Sir	ngle Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1211	35.111585	-118.689124 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	3 No	No	No	No	n/a No	-	 463897 Walong sandy loam, 15 to 30 pe 463897 Walong sandy loam, 15 to 30 pe
M8-T6	Monopole	LWS	Suspension	88 6		1.377 -0.042			CORRECTIONS-CUMMINGS-KERN RIVER	TBP	1213	35.109839	-118.687727 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	guartz monzonite		0.45	3 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pe
M8-T7	Monopole	LWS	Pin/Post	70 6	56 3397	7.303 0.065			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1214	35.108223	-118.684827 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No	1	193 463897 Walong sandy loam, 15 to 30 pe
M9-T1	Monopole	LWS	Suspension	65.5 6		22.49 -0.042			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1215	35.106808	-118.682294 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	7 No	No	No	No	n/a No		198 463902 Walong-Rock outcrop complex,
M9-T2	Monopole	LWS	Suspension	88 6		4.448 0.00			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1216	35.105761	-118.680419 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	6 No	No	No	No	n/a No	1	198 463902 Walong-Rock outcrop complex,
M9-T3 M9-T4	Monopole Monopole	TSP LWS	Dead End	70 6		3.121 -0.012 6.862 0.035			CORRECTIONS-CUMMINGS-KERN RIVER CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1217 1218	35.104229 35.102827	-118.677673 Gorman-Kern River -118.67516 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite		0.45	0 No 7 No	No	No	No	n/a No	1	 463902 Walong-Rock outcrop complex, 463902 Walong-Rock outcrop complex,
M9-14 M9-T5	Monopole	LWS	Suspension Suspension	79 6		53.28 0.012			CORRECTIONS-COMMINGS-KERN RIVER	TBD	1218	35.102827	-118.67516 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite granodiorite	quartz monzonite		0.45	7 NO	No	NO	No	n/a No		198 463902 Walong-Rock outcrop complex, 198 463902 Walong-Rock outcrop complex.
M9-T6	Monopole	LWS	Suspension	65.5 6		5 2 3 5 -0 100			CORRECTIONS-CUMMINGS-KERN RIVER	TRD	1219	35 101779	-118 673284 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	6 No	No	No	No	n/a No		193 463897 Walong sandy loam 15 to 30 p
M9-T7	Monopole	LWS	Suspension	106 6		0.656 0.070			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1221	35.10099	-118.671867 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	3 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 pr
M9-T8	Monopole	LWS	Pin/Post	70 6		2.208 0.010			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1222	35.099701	-118.669558 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	6 No	No	No	No	n/a No	1	198 463902 Walong-Rock outcrop complex,
N2145329E S2145328E	Monopole	LWS	Pin/Post	65.5 6		425.8 -0.088	81 1004.859 Sir	ngle Circuit	CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1164	35.173135	-118.798226 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	No	No	No	n/a No	1	109 463813 Arvin sandy loam, 2 to 5 percer
N2145331E S4410541E	Monopole	TSP	Dead End	65 6		0.462 -9			CORRECTIONS-CUMMINGS-KERN RIVER	TBD	1163	35.173117	-118.801575 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	No	No	No	n/a No		109 463813 Arvin sandy loam, 2 to 5 percen
2174714E	TBD	LWS	TBD	60 6		833.1 0.216			TBD	TBD	TBD	35.09448	-118.608907 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 percent
2174716E 2174717E	TBD	LWS	TBD	60 6		05.82 -0.573 74.89 0.171			TBD	TBD	TBD	35.094433 35.094415	-118.621215 Gorman-Kern River -118.631237 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No 0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perce
2174717E 2175511E	TRD	LWS	TBD	d ac		74.89 0.171 3822 -0.131			TBD	TRD	TED	35.094415 35.09446	-118.631237 Gorman-Kern River -118.615096 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No	Yes	No	No	n/a No n/a No	1	 463844 Havala sandy loam, 0 to 2 perce 463844 Havala sandy loam, 0 to 2 perce
2241803E	TBD	TSP	TBD	56 6		52.17 89.24		ngle Circuit	TBD	TBD	TBD	35.094484	-118.602197 Gorman-Kern River	Plocene to Holocene Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perce 140 463844 Havala sandy loam, 0 to 2 perce
2241835E	TBD	LWS	TBD	56 6		41.08 -0.364			TBD	TBD	TBD	35.097554	-118.602133 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		 463878 Steuber sandy loam, 0 to 2 percent
2287523E	TBD	LWS	TBD	56 6		79.39 -0.328			TBD	TBD	TBD	35.094426	-118.629232 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perce
2287525E	TBD	LWS	TBD	56 6		84.71 -0.074			TBD	TBD	TBD	35.09443	-118.627892 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perce
2287590E	TBD	LWS	TBD	56 6		773.4 -0.103			TBD	TBD	TBD	35.094413	-118.63185 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perce
2287648E 2299510E	TBD	TSP	TBD TBD	56 6		797.6 2.408			TBD TBD	(BD TBD	TBD	35.094417 35.09457	-118.623891 Gorman-Kern River -118.644777 Gorman-Kern River	Pliocene to Holocene Permian to Tertiary: most Mesozoic	alluvium granodiorite	terrace quartz monzonite		0.75	0 No 0 No	Yes	No	No	n/a No n/a No		 463844 Havala sandy loam, 0 to 2 perc 463897 Walong sandy loam, 15 to 30 p
2299510E 314174E	TBD	LWS	TBD	60 6 56 6		13.67 -0.064 92.05 -0.211			TBD	TBD	TBD	35.09457 35.094439	-118.644777 Gorman-Kern River -118.625845 Gorman-Kern River	Permian to Tertiary; most Mesozoic Pliocene to Holocene	alluvium	quartz monzonite terrace		0.45	0 No 0 No	Yes	No	No	n/a No n/a No		 463897 Walong sandy loam, 15 to 30 p 463844 Havala sandy loam, 0 to 2 perc
314180E	TBD	LWS	TBD	56 6		78.02 0.028			TBD	TBP	TBD	35.094423	-118.629847 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 percenters
314184E	TBD	LWS	TBD	56 6	56 377	70.98 0.730			TBD	TBD	TBD	35.09441	-118.632517 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perc
314185E	TBD	LWS	TBD	56 6		68.75 -0.317			TBD	TBD	TBD	35.094414	-118.633175 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perc
314186E	TBD	LWS	TBD	56 6		66.24 -0.06			TBD	TBD	TBD	35.094415	-118.633881 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
314187E	TBD	LWS	TBD	56 6		63.33 0.035			TBD	TBD	TBD	35.094415	-118.634523 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	100-year	No	n/a Yes		140 463844 Havala sandy loam, 0 to 2 percent
314188E 4012826E	TBD	LWS LWS	TBD	56 6		59.55 -2.66 40.84 0.162			TBD	TBD	TBD	35.094416 35.098163	-118.635185 Gorman-Kern River -118.602119 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No 0 No	Yes	100-year	No	n/a Yes n/a No	1	 463844 Havala sandy loam, 0 to 2 perc 463878 Steuber sandy loam, 0 to 2 per
4012827E	TED	LWS	TRD	56 6		40.17 -1.001			TBD	TRD	TBD	35.09876	-118.602107 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		 463878 Steuber sandy loam, 0 to 2 per 463878 Steuber sandy loam, 0 to 2 per
4012828E	TBD	LWS	TBD	56 6		38.89 1.61			TBD	TBD	TBD	35.099368	-118.602082 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		174 463878 Steuber sandy loam, 0 to 2 per 174 463878 Steuber sandy loam. 0 to 2 per
4012829E	TBD	LWS	TBD	56 6		95.34 -1.768			TBD	TBD	TBD	35.094438	-118.624551 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
4012898E	TBD	LWS	TBD	60 6		49.25 -0.246			TBD	TBD	TBD	35.094486	-118.603677 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
4141083E	TBD	LWS	TBD	56 6		41.04 0.462			TBD	TBD	TBD	35.096923	-118.602143 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		174 463878 Steuber sandy loam, 0 to 2 per
4141089E 4141254E	TBD	TSP	TBD TBD	56 6		40.62 -76.940			TBD	TBD	TBD	35.100406 35.094393	-118.601939 Gorman-Kern River -118.635789 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		174 463878 Steuber sandy loam, 0 to 2 per 140 463844 Havala sandy loam 0 to 2 per
4141254E 4141255E	TED	LWS	TBD	56 6		56.59 3.894 76.49 -0.024			TBD TBD	TED	TBD	35.094393	-118.635789 Gorman-Kern River -118.630542 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace		0.75	0 No 0 No	Yes	100-year	Yes	Brite Lake Yes		140 463844 Havala sandy loam, 0 to 2 perc 140 463844 Havala sandy loam 0 to 2 perc
4141255E 4236655E	TED	LWS	TBD	50 6		76.49 -0.024 51.21 0.112			TBD	TRD	TED	35.094419	-118.630542 Gorman-Kern River -118.602954 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	NO	No	n/a No		140 463844 Havala sandy loam, 0 to 2 percent 140 463844 Havala sandy loam. 0 to 2 percent 140 46384 Havala sandy loam. 0 t
4236656E	TBD	LWS	TBD	60 6		47.95 0.020			TBD	TBP	TBD	35.094485	-118.604414 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
4236657E	TBD	LWS	TBD	60 6		44.83 -0.090			TBD	TBD	TBD	35.094485	-118.605152 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	175 463879 Steuber sandy loam, 2 to 5 per
4236658E	TBD	LWS	TBD	60 6		42.01 0.164			TBD	TBD	TBD	35.094483	-118.605898 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
4236659E	TBD	LWS	TBD	60 6		39.24 -0.40			TBD	TBD	TBD	35.094484	-118.606638 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
4236660E	TBD	LWS	TBD TBD	60 6		39.56 0.636 35.15 -0.464			TBD	TBD	TBD	35.09448	-118.607382 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
4236661E 4236662E	TRD	LWS	TRD	60 6		35.15 -0.464 30.72 -0.085			TRD	TRD	TBD	35.094482 35.09448	-118.608134 Gorman-Kern River -118.609651 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No 0 No	Tes	NO	NO	n/a No n/a No		 463879 Steuber sandy loam, 2 to 5 per 463879 Steuber sandy loam, 2 to 5 per
4236663E	TRD	LWS	TBD	60 6		28.53 -0.122			TBD	TBD	TBD	35.094479	-118.610445 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		 463879 Steuber sandy loan, 2 to 5 per 463879 Steuber sandy loan, 2 to 5 per
4236664E	TBD	LWS	TBD	60 6		23.81 -0.004			TBD	TBP	TBD	35.094477	-118.611224 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
4236665E	TBD	LWS	TBD	60 6	56 382	22.29 -0.187	9 230.53 Sir	ngle Circuit	TBD	TBD	TBD	35.094474	-118.612014 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	179 463883 Tehachapi sandy loam, 2 to 15
4236666E	TBD	LWS	TBD	60 6		28.22 0.104			TBD	TBD	TBD	35.09447	-118.612785 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	179 463883 Tehachapi sandy loam, 2 to 15
4236667E	TBD	LWS	TBD	60 6		20.29 0.285			TBD	TBD	TBD	35.094462	-118.614316 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perce
4236668E 4236669E	TBD	LWS	TBD TBD	60 6 60 6		11.63 0.317		ngle Circuit	TBD TBD	TBD	TBD TBD	35.094441	-118.618952 Gorman-Kern River -118.619689 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace terrace		0.75	0 No 0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc 140 463844 Havala sandy loam 0 to 2 perc
4236669E 4236670E	1BD	LWS	TBD TBD	60 6 60 6		09.05 -0.609			TBD TBD	TBD	TBD	35.094441 35.094434	-118.619689 Gorman-Kern River -118.620446 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No 0 No	Yes	No	No	n/a No n/a No		 463844 Havala sandy loam, 0 to 2 perc 463844 Havala sandy loam, 0 to 2 perc
4236672E	TRD	LWS	TBD	60 6		07.32 0.585			TBD	TRD	1BD TAD	35.094434 35.094426	-118.620446 Gorman-Kern River -118.621883 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace		0.75	0 No 0 No	Yes	NO	No	n/a No n/a No		 463844 Havala sandy loam, 0 to 2 perc 463844 Havala sandy loam, 0 to 2 perc
4236673E	TBD	LWS	TBD	60 6		04.07 0.324			TBD	TBD	TBD	35.094423	-118.622546 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc 140 463844 Havala sandy loam, 0 to 2 perc
4236674E	TBD	LWS	TBD	60 6	56 380	00.14 0.267	2 203.301 Sir	ngle Circuit	TBD	TBD	TBD	35.094419	-118.623211 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perc
4277847E	TBD	LWS	TBD	60 6		814.3 0.057			TBD	TBD	TBD	35.094446	-118.618169 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perce
4277848E	TBD	LWS	TBD	60 6		16.76 -0.213			TBD	TBD	TBD	35.094451	-118.617402 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perce
4277849E	TBD	LWS	TBD	60 6		19.76 0.146			TBD	TBD	TBD	35.094453	-118.616659 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
4277850E 4332484E	TBD	LWS	TBD Pin/Post	60 6 54.56 6		21.58 -0.077 81.67 0.309			TED	(BD TBD	TBD	35.094457 35.094427	-118.615888 Gorman-Kern River -118.628524 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	 463844 Havala sandy loam, 0 to 2 perc 463844 Havala sandy loam, 0 to 2 perc
4332484E 4410594F	TRD	LWS	Pin/Post TBD	34.50 b		81.67 0.309 89.25 0.378			TBD	TRD	TED	35.094427 35.094434	-118.628524 Gorman-Kern River -118.626493 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No 0 No	Yes	No	No	n/a No	1	 463844 Havala sandy loam, 0 to 2 perc 463844 Havala sandy loam, 0 to 2 perc
4410594E 4410595E	TBD	LWS	Pin/Post	60.43 6		86.76 -0.173			TBD	TBD	TBD	35.094434	-118.626493 Gorman-Kern River -118.627158 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc 140 463844 Havala sandy loam. 0 to 2 perc
4410597E	TBD	LWS	TBD	56 6	56 384	42.11 -0.084	48 225.352 Sir	ngle Circuit	TBD	TBD	TBD	35.096346	-118.602157 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		174 463878 Steuber sandy loam, 0 to 2 per 174 463878 Steuber sandy loam, 0 to 2 per
4568120E	TBD	LWS	TBD	60 6	56 382	21.07 -0.150	05 226.33 Sir		TBD	TBD	TBD	35.094467	-118.613559 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No	1	140 463844 Havala sandy loam, 0 to 2 perc
4568121E	TBD	LWS	TBD	56 6	56 379	94.39 -0.733	197.34 Sir	ngle Circuit	TBD	TBD	TBD	35.094442	-118.625185 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		140 463844 Havala sandy loam, 0 to 2 perc
4568289E	TBD	LWS	TBD	56 6		43.86 -0.062			TBD	TBD	TBD	35.095727	-118.602172 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
4568390E	TBD	LWS	TBD	56 6		46.82 -0.217			TBD	TBD	TBD	35.09514	-118.602185 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
816950E	TBD	LWS	TBD	56 6		38.96 -13.090			TBD	TBD	TBD	35.099927	-118.602078 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.75	0 No	Yes	No	No	n/a No		174 463878 Steuber sandy loam, 0 to 2 per
SUB X7653E	TRD	TSP LWS	TBD	56 6		41.86 -9 57.13 -0.230			TBD	TBD	TBD	35.100403 35.094402	-118.601324 Gorman-Kern River -118.636265 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace terrace		0.75	0 No 0 No	Yes	No 100-year	No	n/a No Brite Lake Yes	1	 463878 Steuber sandy loam, 0 to 2 per 463844 Havala sandy loam, 0 to 2 per
X7653E X7654E	TED	LWS	TBD	60 6		57.13 -0.230 60.63 1.442	158.939 Sir 24 154.173 Sir		TRD	TED	1BD	35.094402	-118.636265 Gorman-Kern River -118.636796 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium alluvium	terrace		0.45	0 No	res Ver	100-year 100-year	No	orite Lake Yes	1	 463844 Havala sandy loam, 0 to 2 perc 463897 Walong sandy loam, 15 to 30 p
X7655E	TBD	LWS	TBD	60 6		62.85 -8.254			TBD	TBD	TBD	35.09441	-118.636796 Gorman-Kern River -118.637311 Gorman-Kern River	Pliocene to Holocene Pliocene to Holocene	alluvium	terrace		0.45	0 No	Yes	100-year 100-year	No	n/a Yes	-	193 463897 Walong sandy loam, 15 to 30 p 193 463897 Walong sandy loam, 15 to 30 p
X7656E	TBD	LWS	TBD	60 6		65.87 8.165			TBD	TBD	TBD	35.094366	-118.638064 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.45	0 No	Yes	No	No	n/a No		463857 Walong sandy loam, 15 to 50 per 463879 Steuber sandy loam, 2 to 5 per
X7657E	TBD	LWS	TBD	60 6		71.23 0.227			TBD	TBD	TBD	35.094396	-118.638929 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.45	0 No	Yes	No	No	n/a No		 463879 Steuber sandy loam, 2 to 5 pc 463879 Steuber sandy loam, 2 to 5 pc
X7658E	TBD	LWS	TBD	60 6	56 37	776.2 0.14	12 231.179 Sir	ngle Circuit	TBD	TBD	TBD	35.094429	-118.639786 Gorman-Kern River	Pliocene to Holocene	alluvium	terrace		0.45	0 No	No	No	No	n/a No	1	175 463879 Steuber sandy loam, 2 to 5 pe
X7659E	TBD	LWS	TBD	60 6	56 379	99.44 -0.172	179.642 Sir	ngle Circuit	TBD	TBD	TBD	35.09446	-118.640558 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No	1	175 463879 Steuber sandy loam, 2 to 5 pe
X7660E	TBD	LWS	TBD	60 6		98.79 -1.171			TBD	TBD	TBD	35.094482	-118.641158 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	7 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30
X7661E	TBD	LWS	TBD	60 6		96.72 0.389			TBD	TBD	TBD	35.094502	-118.642105 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 p
X7662E	TBD	LWS	TBD	60 6		05.48 -0.123			TBD	TBD	TBD	35.094529	-118.643158 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 p
X7663E	TBD	LWS	TBD	60 6		08.35 0.113			TBD	TBD	TBD	35.09455	-118.644 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		193 463897 Walong sandy loam, 15 to 30 p
X7665E	TBD	LWS	TBD	60 6		15.97 0.036			IBD	TBD	TBD	35.094587	-118.645459 Gorman-Kern River	Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite		0.45	0 No	No	No	No	n/a No		175 463879 Steuber sandy loam, 2 to 5 per
X7666E X7666E	TBD Monopole	LWS	TBD Pin/Post	60 6 79 6		17.11 5.378 7.095 -5.220		ngle Circuit	TBD CORRECTIONS-CUMMINGS-KERN RIVER	TBD TBD	TBD 1235	35.094605	-118.646175 Gorman-Kern River -118.646176 Gorman-Kern River	Permian to Tertiary; most Mesozoic Permian to Tertiary; most Mesozoic	granodiorite	quartz monzonite quartz monzonite		0.45	0 No 0 No	No	No	No	n/a No		 463879 Steuber sandy loam, 2 to 5 per 463879 Steuber sandy loam, 2 to 5 per
	wongoole	LWS	PIN/ POSt	79 6	oo 3817	1.095 -5.220	70 418.356 Sin	ive circuit	CONKECTIONS-COMMINGS-KERN RIVER	180	1235	35.094608	-118.040170 Gorman-Kern River	reimian to i ertiary; most Mesozoic	granodiorite	quartz monzonite		u.45	U NO	NO	IND		n/a No	1	403879 Steuper sandy loam, 2 to 5 per

Table 4. Structure Summary Gorman-Kern River 66 kV Project, Transmission Line Rating Remediation Project

WEI 86	WEG	3	HydroGRP B
86		3	в
86 86		3	B
86		3	B
86		3	в
86		3	в
86		3 3	B
86 86		3	в
86		3	В
86 86 86 86 86		3 3 3 3	8 8 8
86		3	в
86		3 3	в
86		3	B B
86		3	в
86 86		3	B
86		3	B
86		3	в
86		3	B
56		5	A
56		5	Α
56		5	c
56		5	c
56		5	с
56		5	A
56		5	c
56		5	с
56		5	C
56		5	c
56		5	C
56		5	C C
56		5	c
56		5	c
56		5	۵ ۵
56		5	A
56		5	A
56		5	c
56		5	A
56		5	A
56		5	c
56		5	c
56		5	c
56		5	A
56		5	Α
56		5	A
86		3	c
56		5	c
56		5	C C
56		5	c
56		5	c
56		э 5	c
56		5	C
56		5	c
**************************************		5	c
56		5	C
56		5	c
56		5	A
56		5	c
56 56		5	A
56		5	A
56		5 r	A A
56		5	ĉ
86		3	в
86		3	в 4
56		5	Ā
56		5	A
56 86		5	B
86		3	в
86		3	в
56 56 86 86 86 56		3 5	в A
56		***************************************	自自自自的的人人人でにこころにててることでにしてころろんでころろことでんろんな人人人人にしてこことでこことでことでにことろことろんんろんで自動みんろん 自自的 物み入入
56		5	A

Anoderste Moderste Moderste

Table 5Soil Corrosivity SummarySouthern California EdisonTLRR Program, Gorman-Kern River Project

Boring Number	Depth (feet)	Soil Type	Minimum Resistivity (ohm-cm)	рН	Sulfate (ppm)	Chloride (ppm)	Mapped USDA Concrete Corrosivity at the Boring Location	Mapped USDA Steel Corrosivity at the Boring Location	CalTrans Corrosivity for Structural Elements	CalTrans Corrosivity for MSE Wall Backfill
1-005	2.0-3.0	SC	3,219	7.9	79	26	moderate	moderate	not corrosive	compliant
3-005	2.0-3.0	SM	11,459	7.3	28	21	moderate	low	not corrosive	compliant
KERN-NEW01	2.0-3.0	SM	2,698	8.2	68	40	low	moderate	not corrosive	compliant
5-005	2.0-2.5	SW	9,214	8.2	32	22	low	moderate	not corrosive	compliant
KERN-008A	2.0-3.0	SM	7,379	7.7	28	20	low	low	not corrosive	compliant

USDA Soil Corrosion Ranges										
High		<2,000	<5.5	>7,000	>1,500					
Moderate		2,000-5,000	5.5-6.5	1,000-7,000	300-1,500					
Low		>5,000	>6.5	<1,000	<300					

CalTrans Soil Corrosion Ranges for Structural Elements											
Corrosive			<1,500*	<5.5	>1,500	>500					
Not Corrosive			>1,500*	>5.5	<1,500	<500					

CalTrans Soil Corrosion Ranges for MSE Wall Backfill										
Not Compliant (Corrosive)	<2,000	<5.5 or >10	>500	>250						
Compliant (Not Corrosive)	>2,000	5.5-10	<500	<250						

Notes:

* Resistivity serves as an indicator for the possible presence of soluble salts. It is not used to define a corrosive soil for structures.

MSE - mechanically-stabilized earth

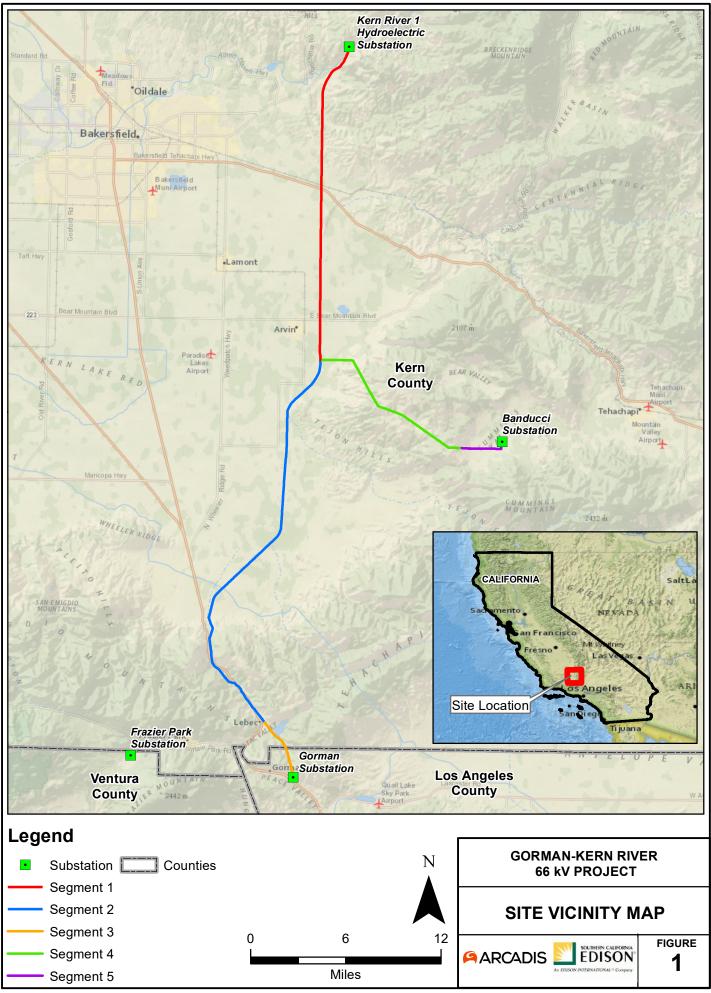
ohm-cm - ohms centimeter

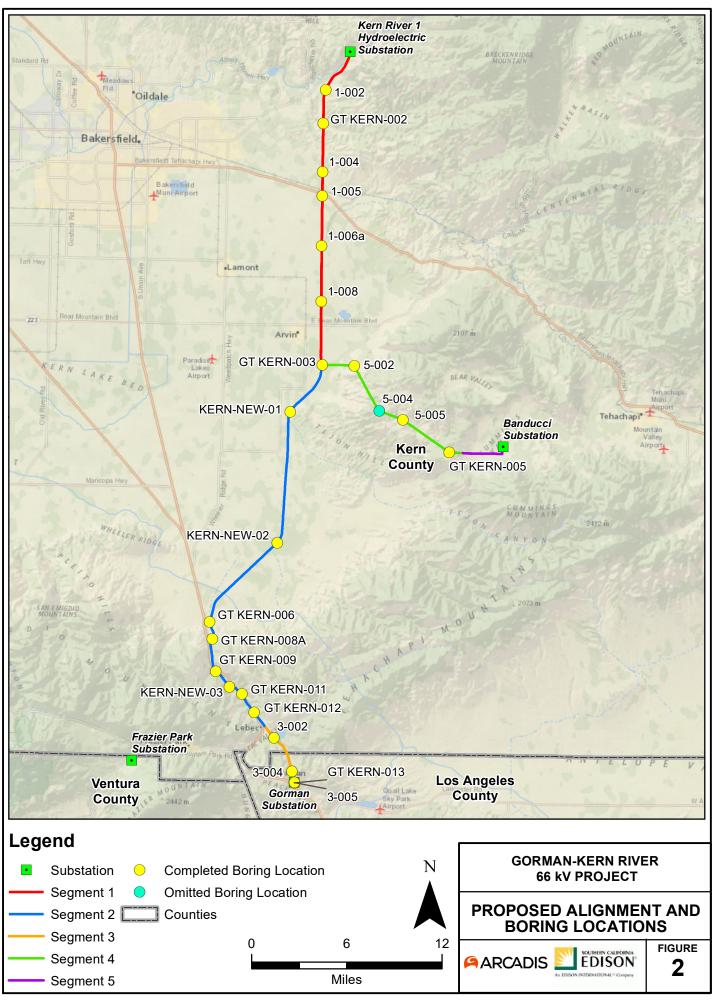
ppm - parts per million

SC - clayey sand

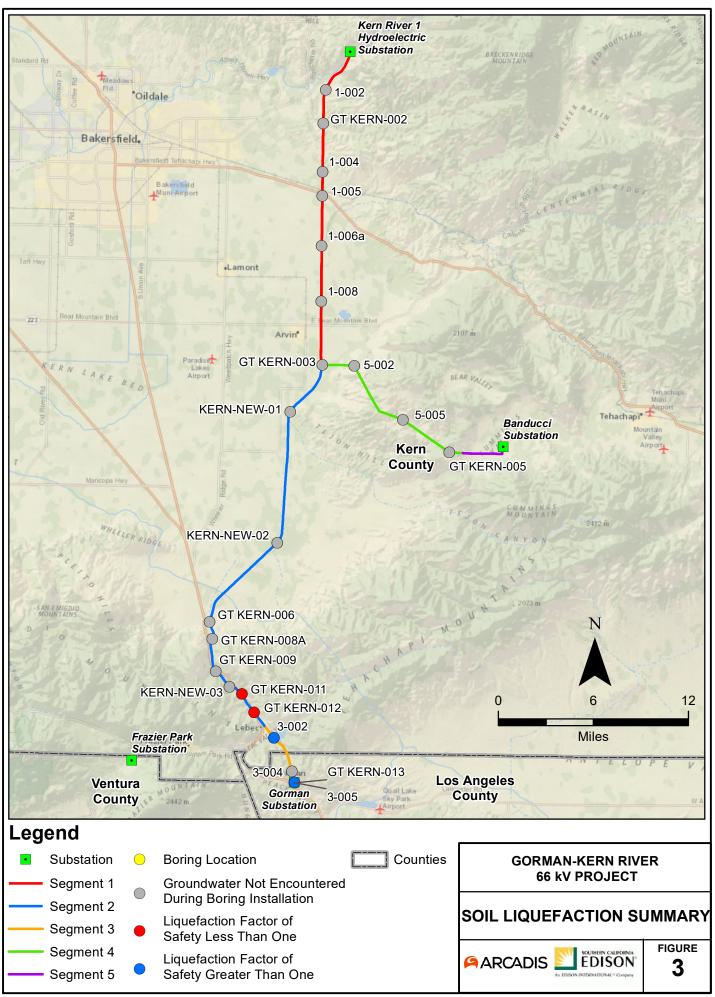
SM - silty sand

SW - well graded sand

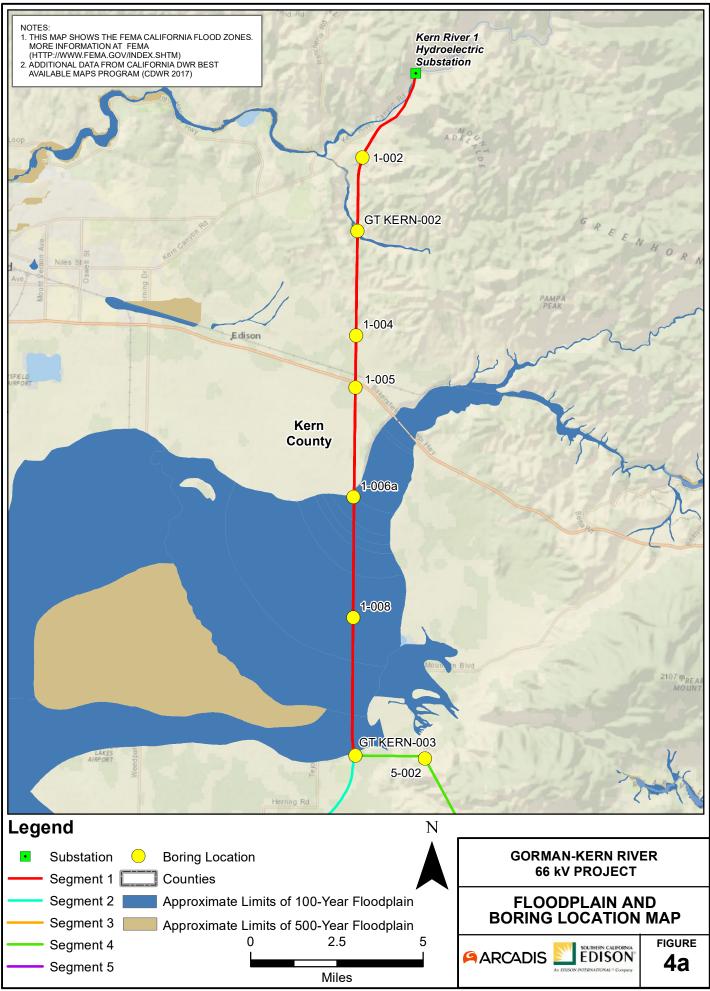

USDA - United States Department of Agriculture

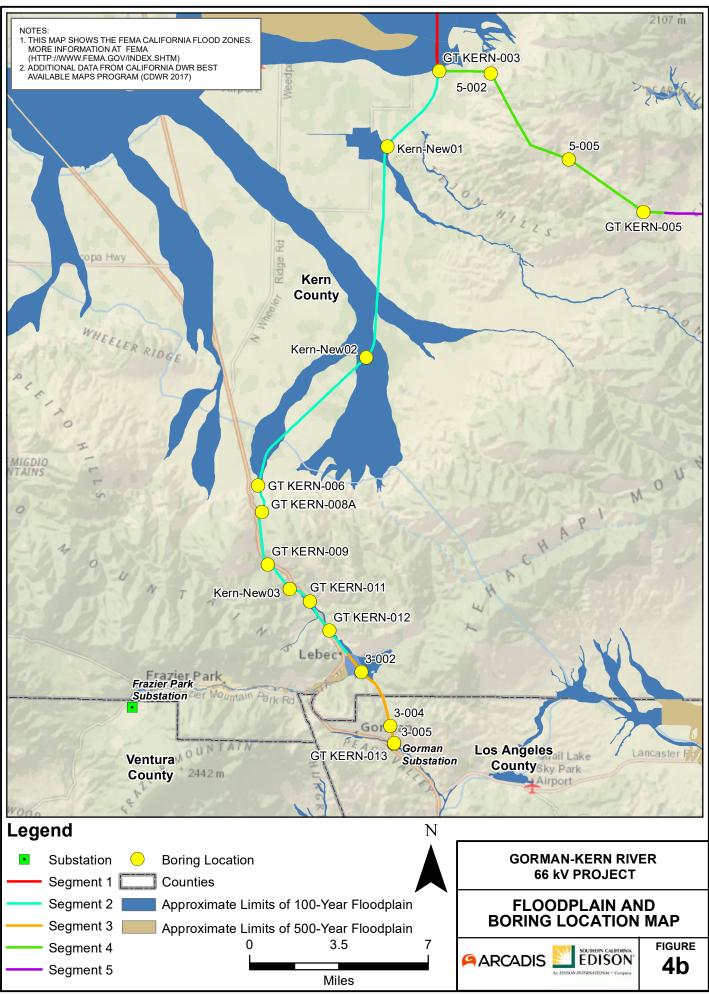

References:

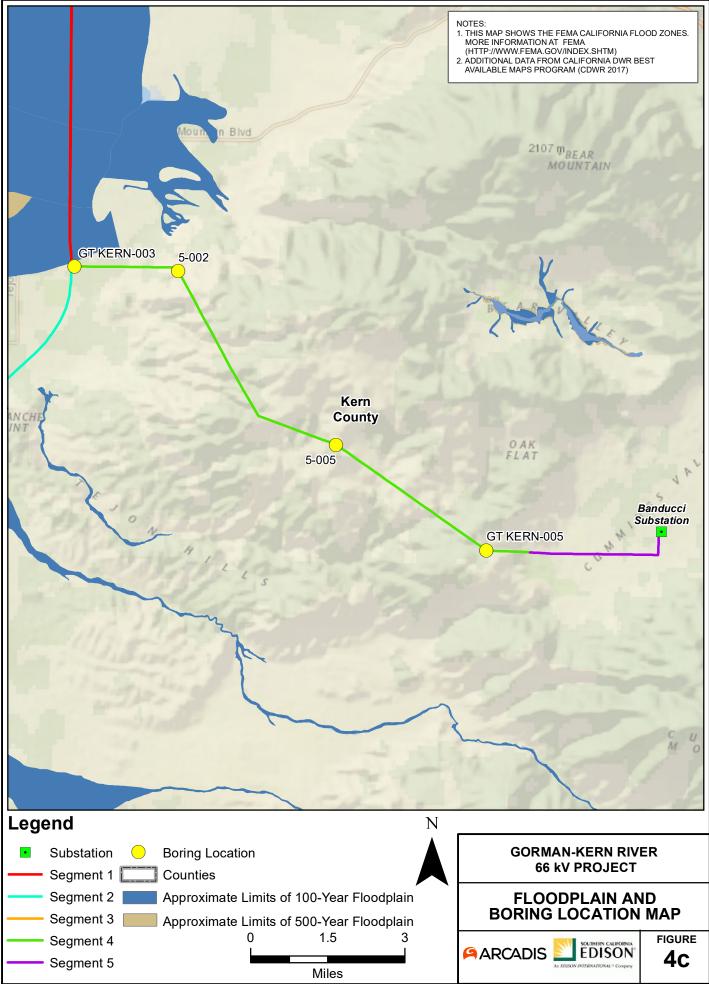
USDA corrosive potential typical ranges taken from the SSURGO database. Title 430 - National Soil Survey Handbook. Part 618 - Soil Properties and Qualities. Subpart B. 618.80 and 618.81.

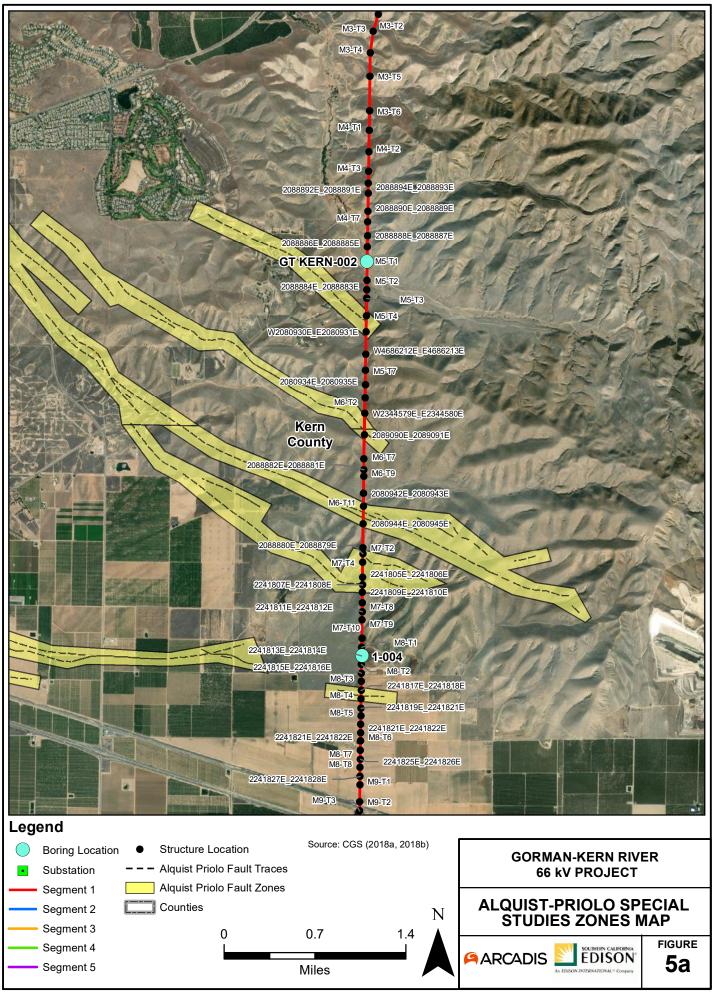

CalTrans corrosive potential ranges taken from the CalTrans Corrosion Guildelines, May 2021, Version 3.2. Section 6.1 and Section 8.1.

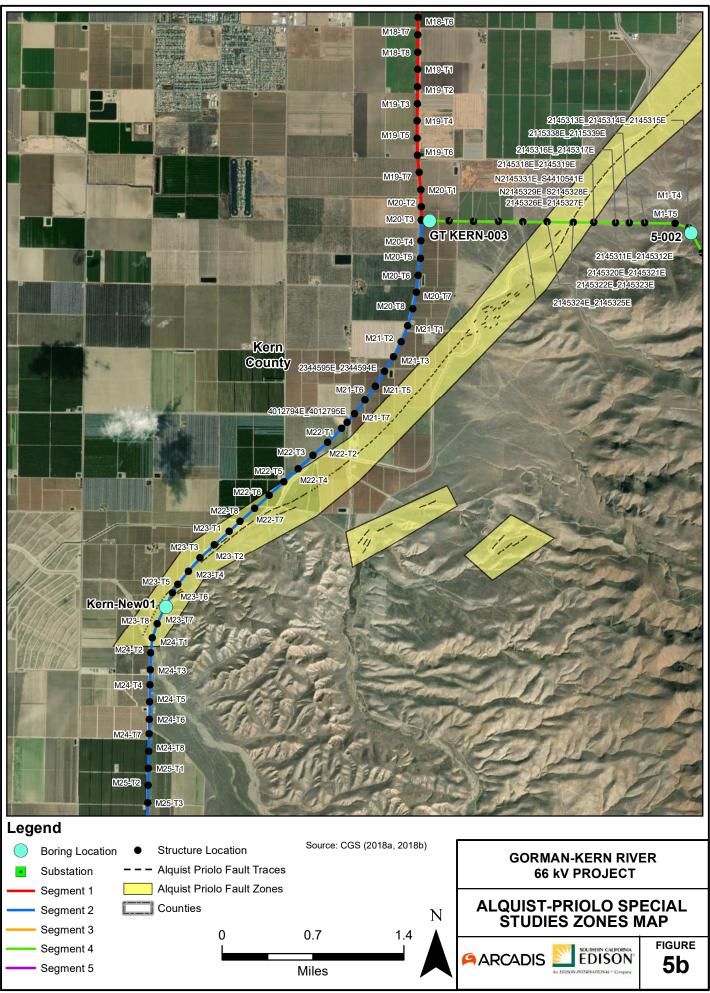
Figures

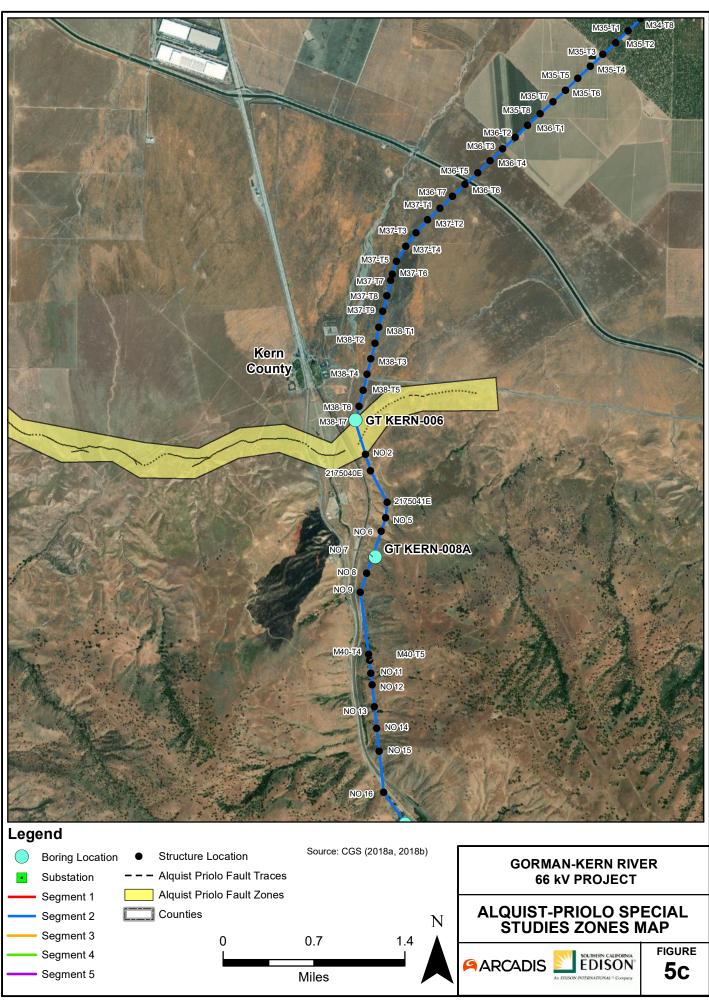


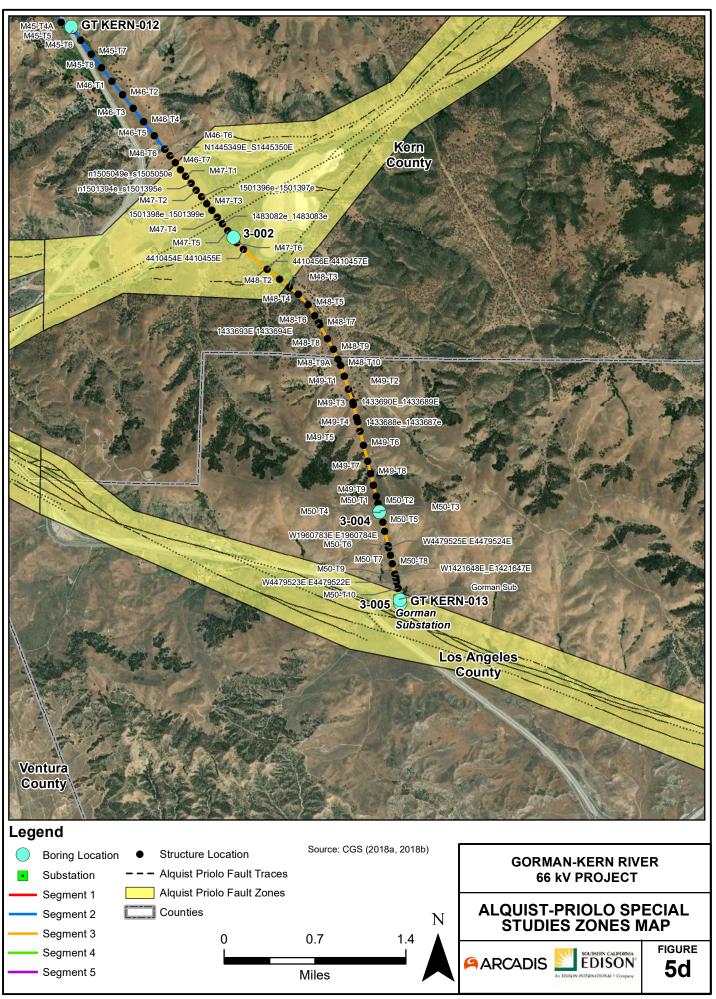

T. ENVSCEISCE TLLRVrcGIS_Desktop/KERN/Geotech Report Figures-2022/Fig2_Proposed Alignment and Boring Locations.mxd 1/28/2022 4:34:27 PM

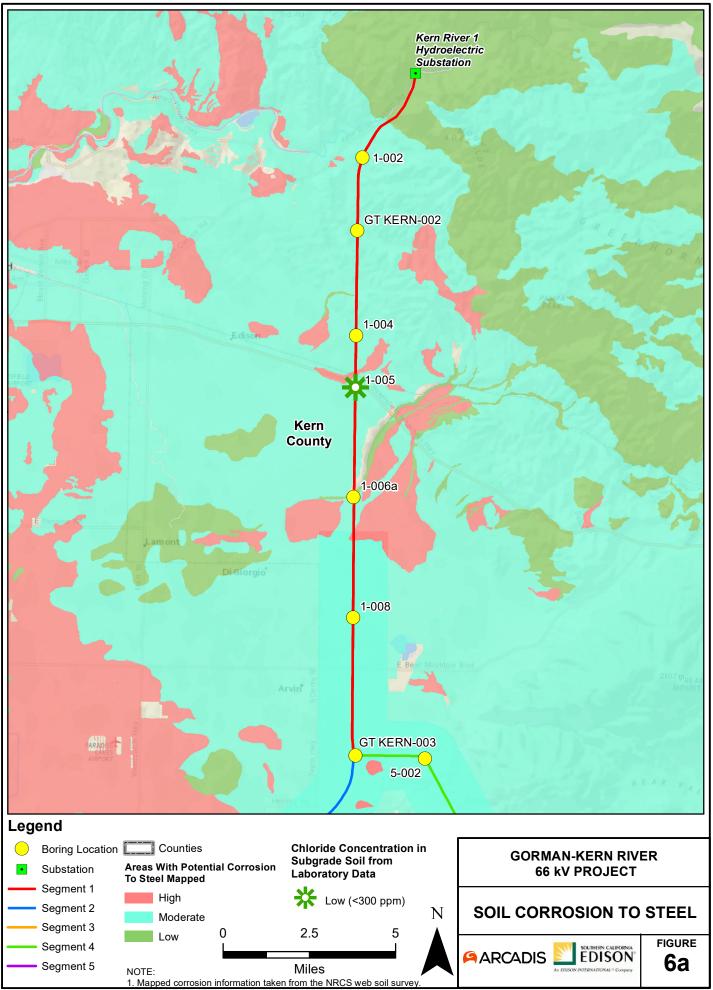


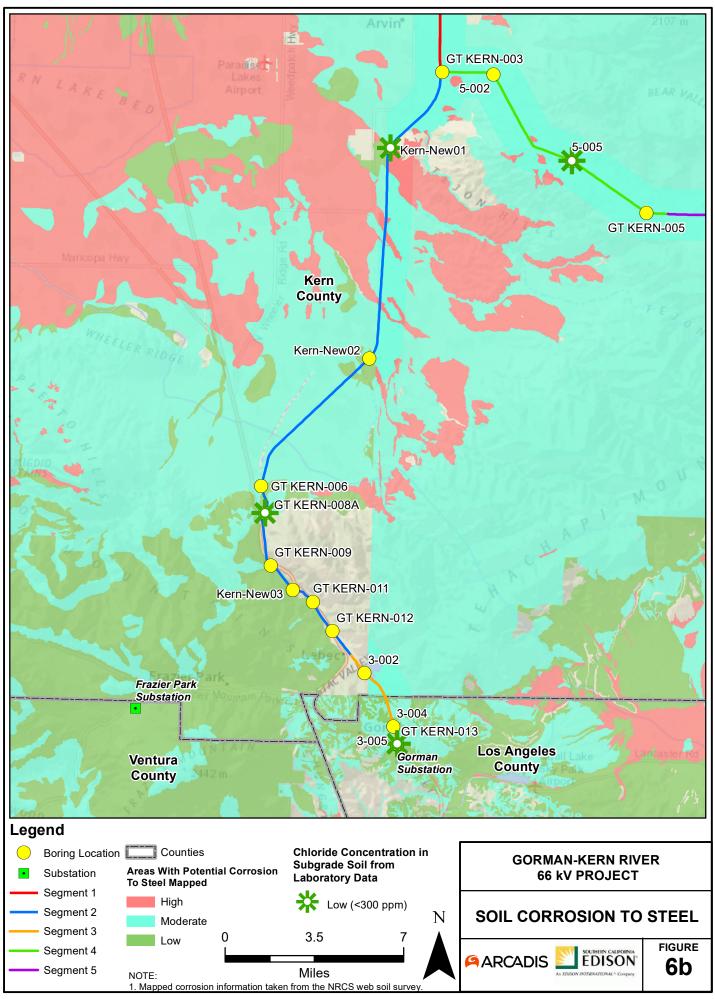

T.LENVSCEISCE_TLRNrcGIS_DesktopiXERN/Geotech Report Figures-2022/Fig3_Soil Liquefaction Summary.mxd 1/28/2022 4:38:42 PM

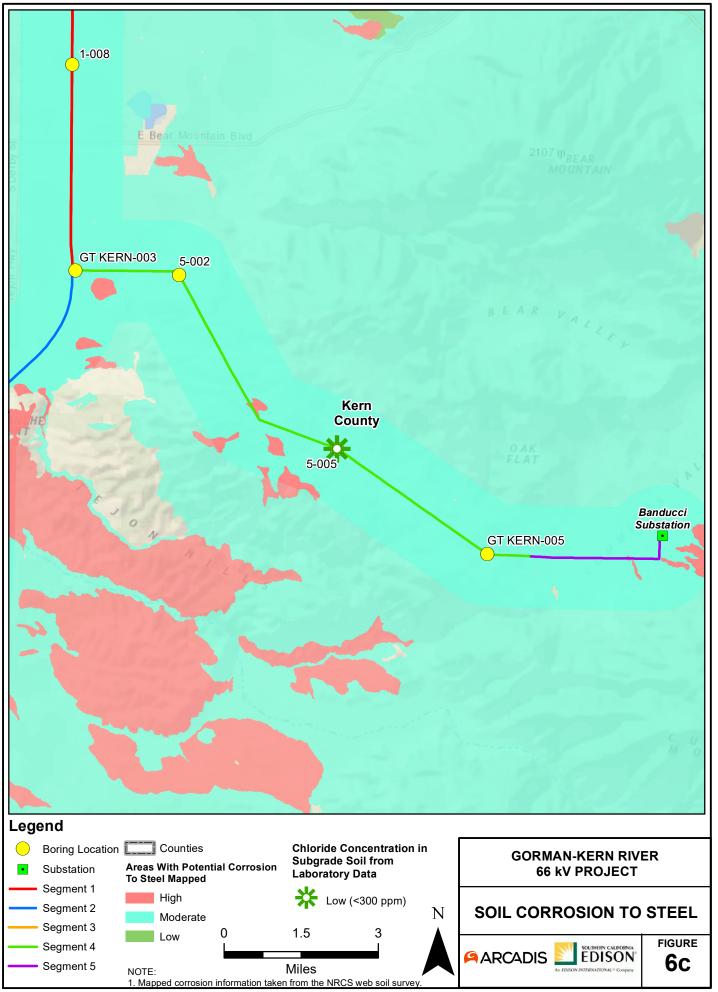


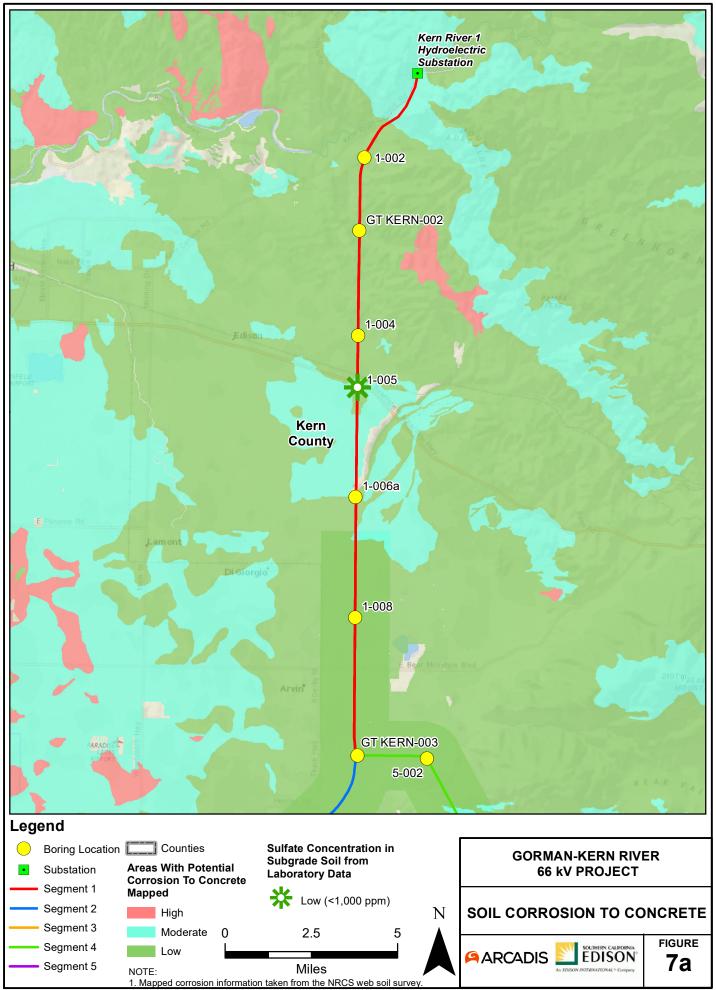

T:_ENVISCE\SCE_TLLR\ArcGIS_Desktop\KERN\Geotech Report Figures-2022\Fig4_Flood Plain.mxd 2/21/2022 6:38:23 PM

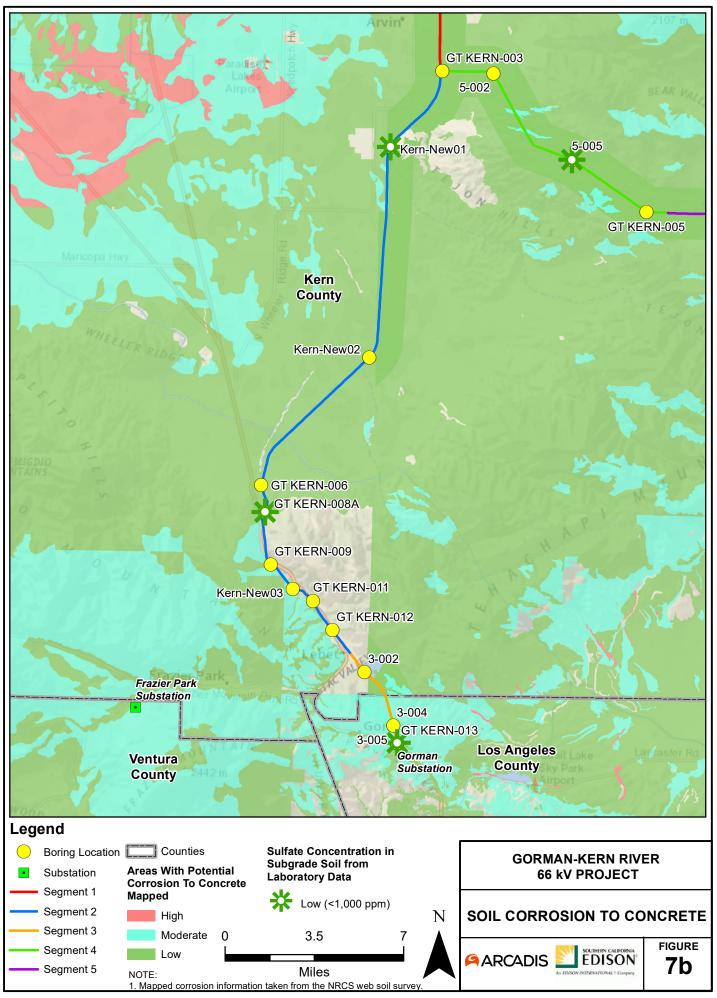


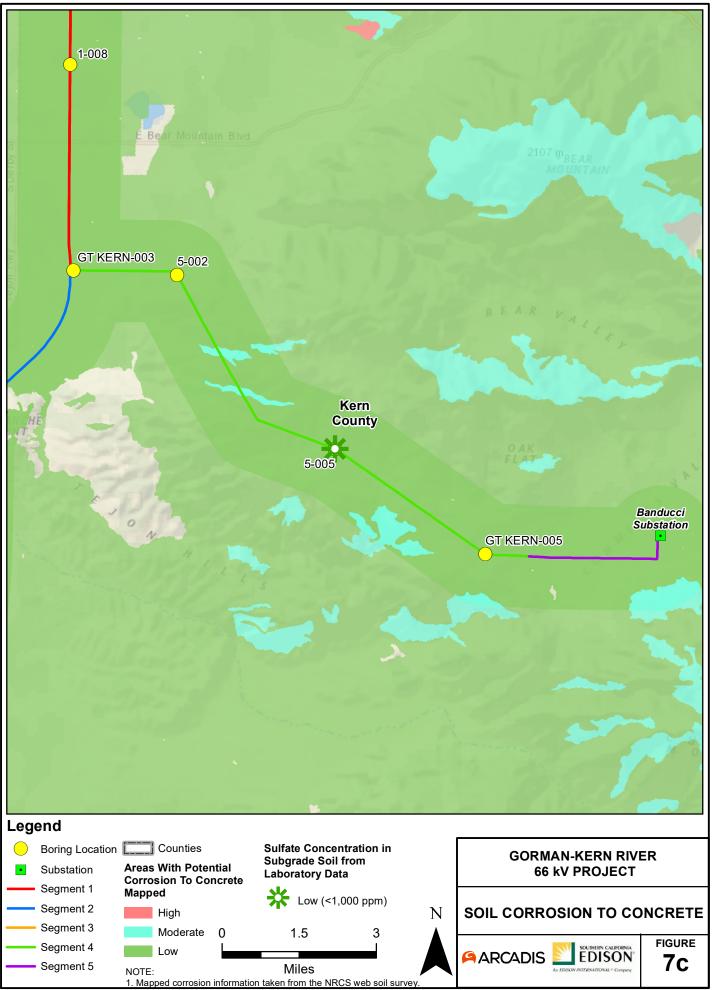


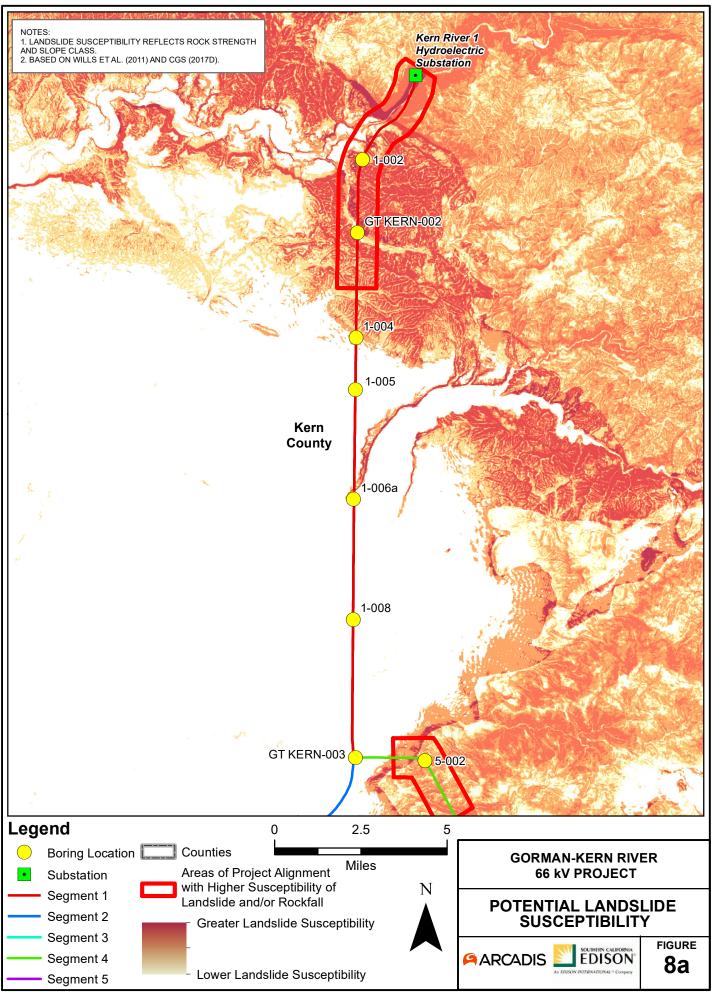


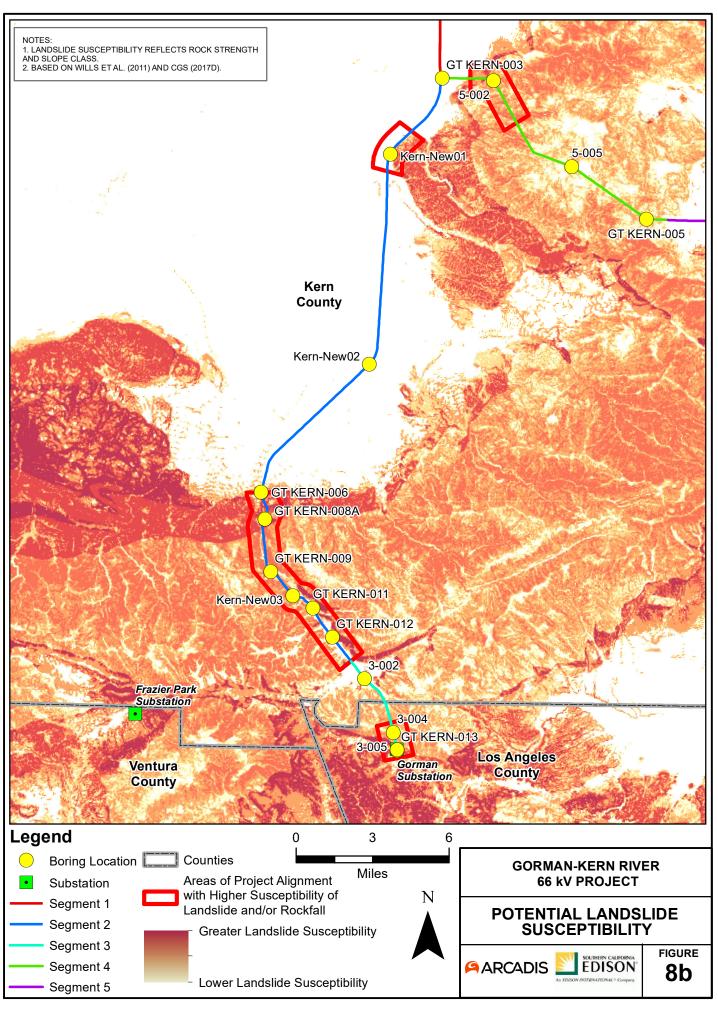


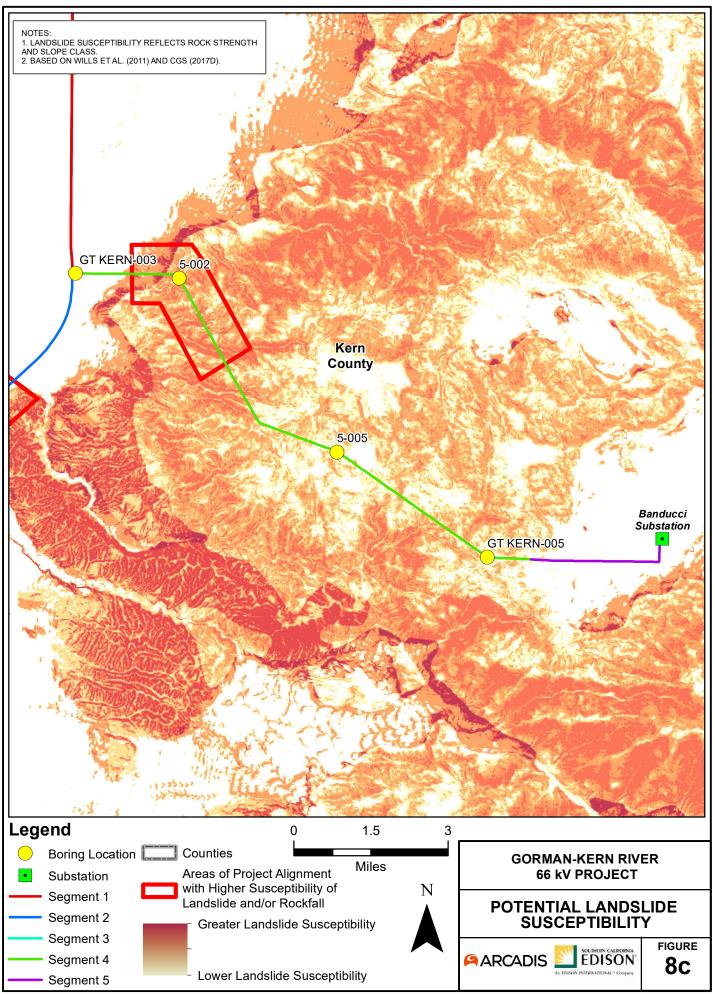


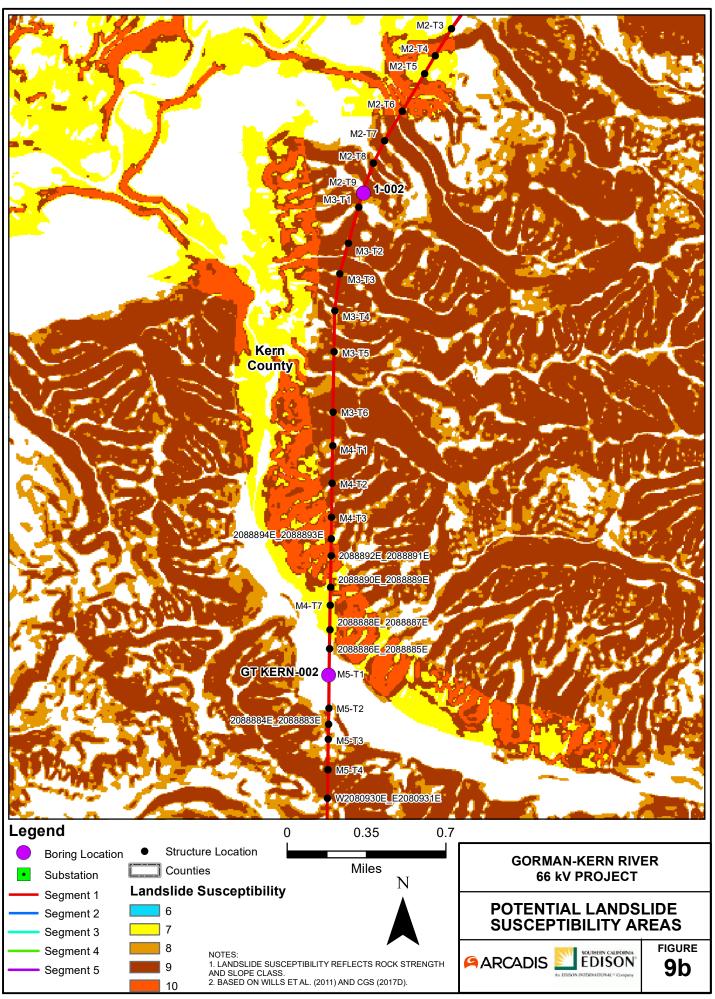


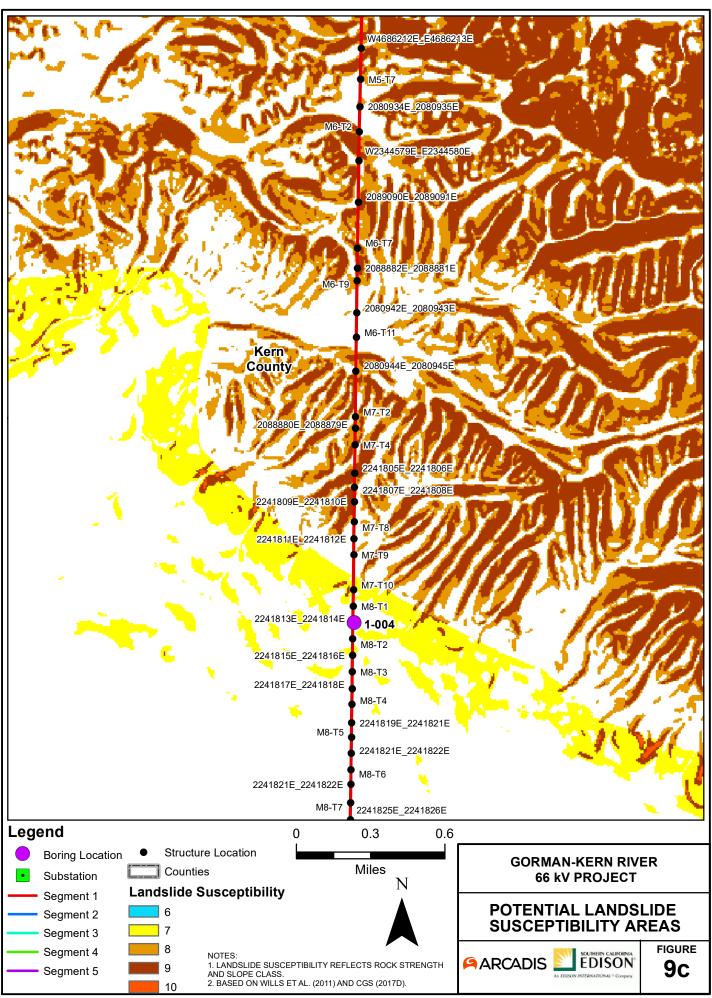


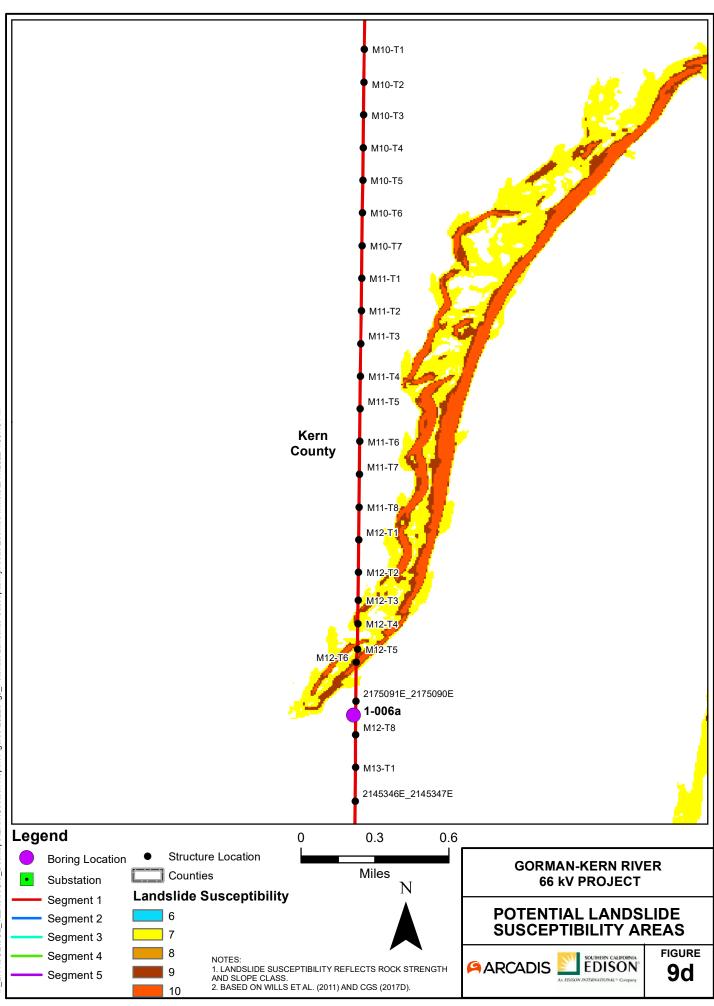


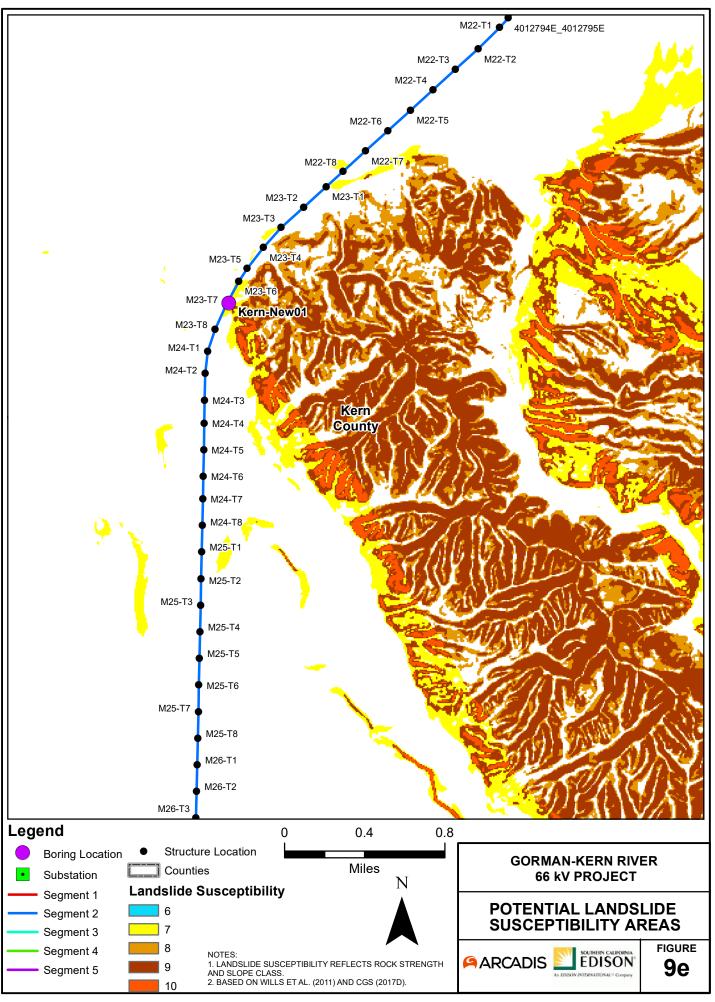


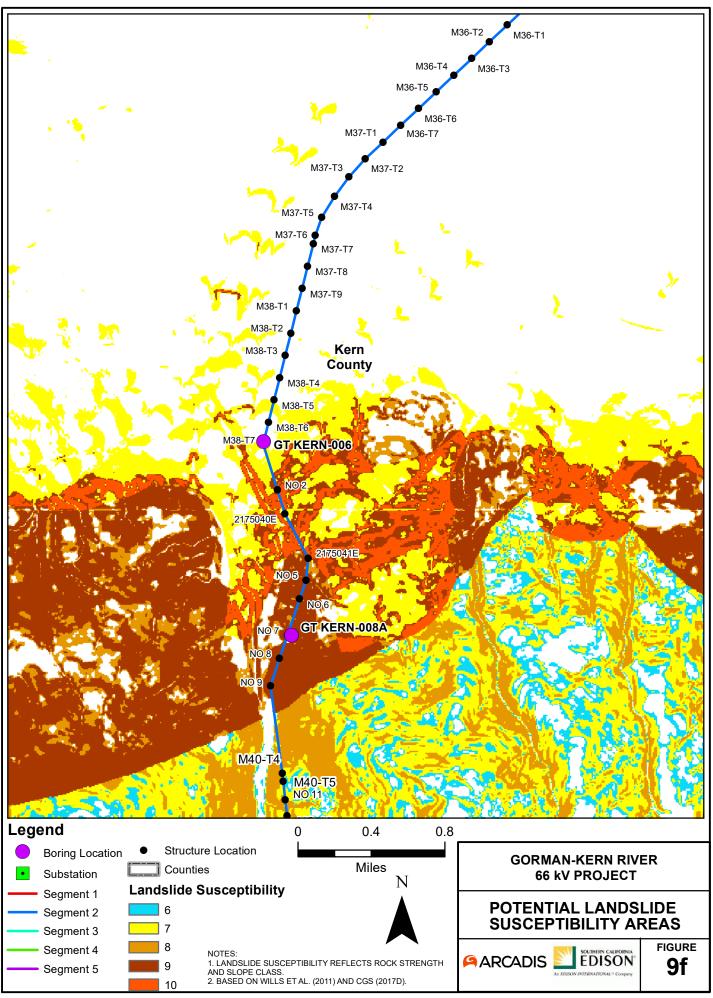


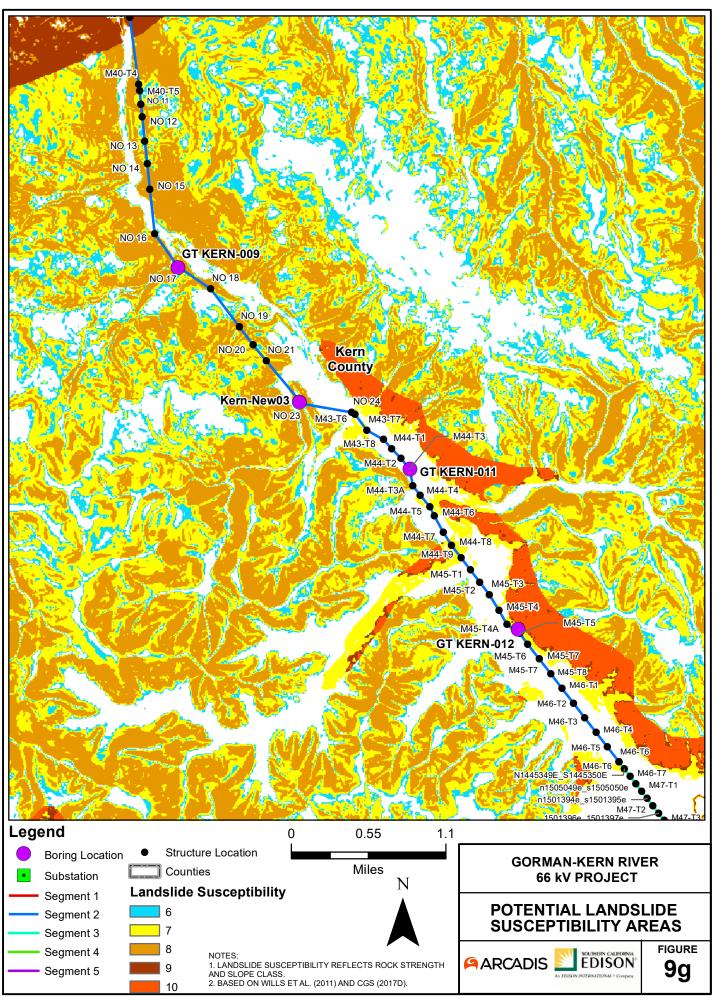


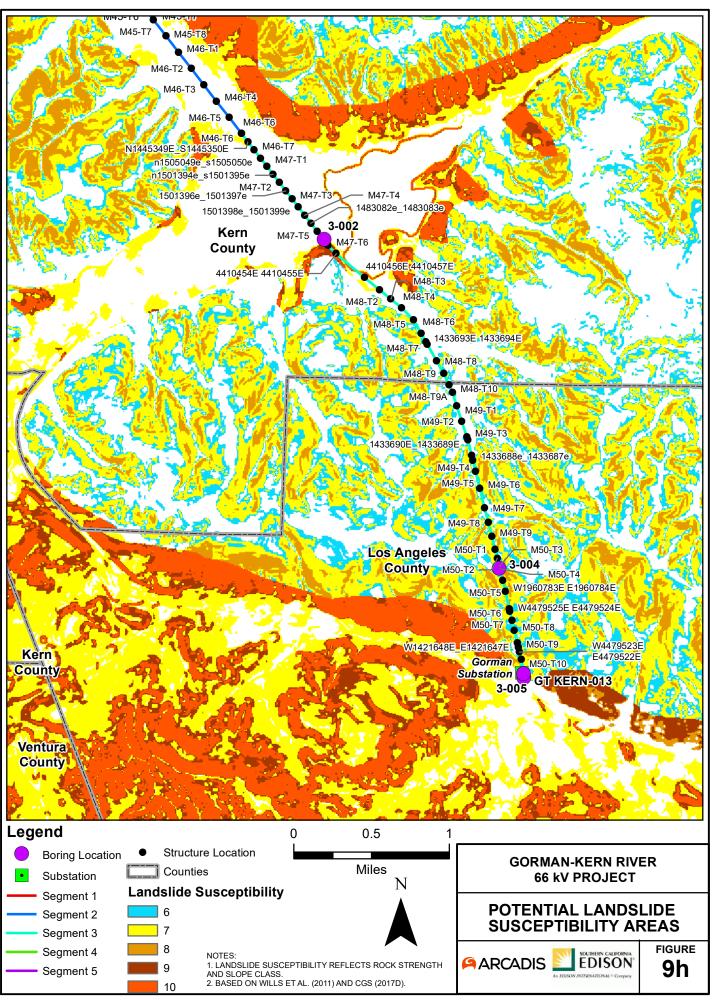


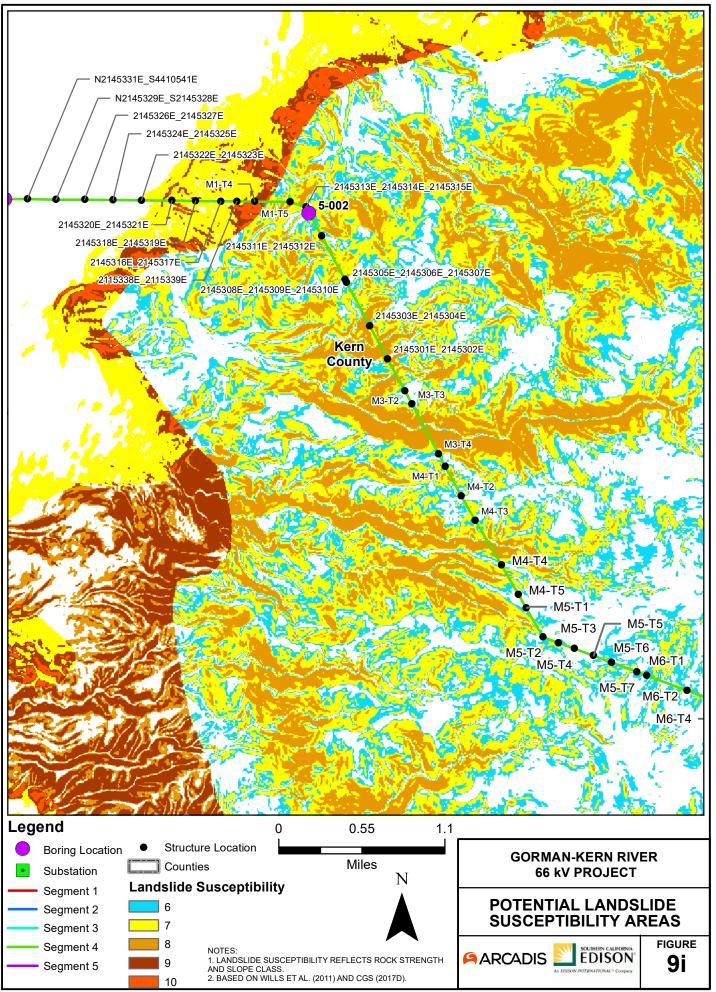


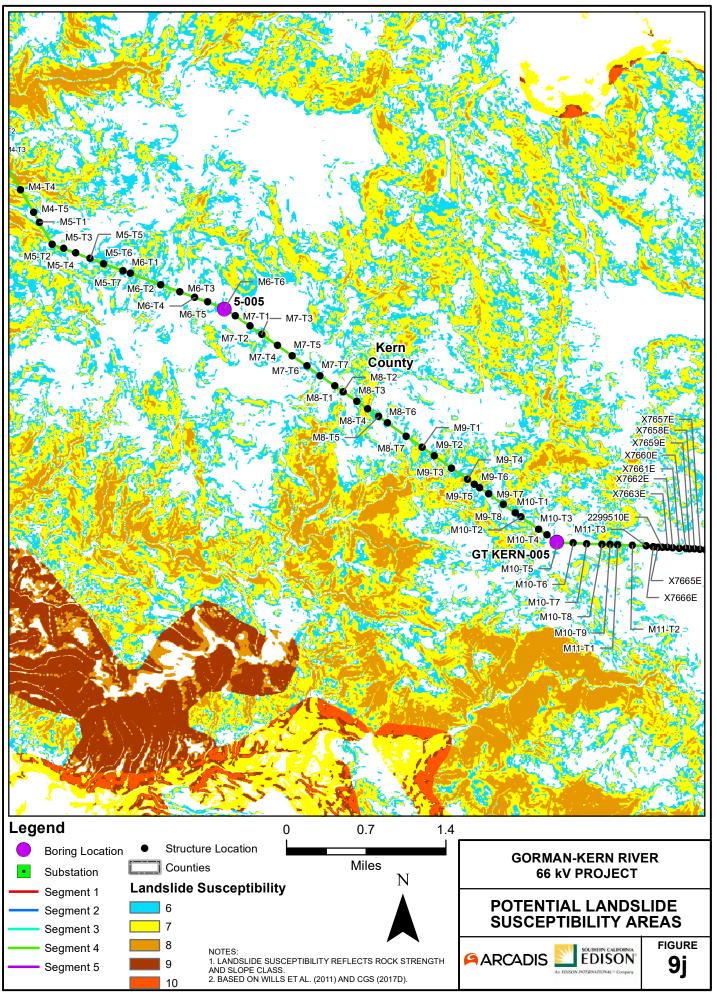


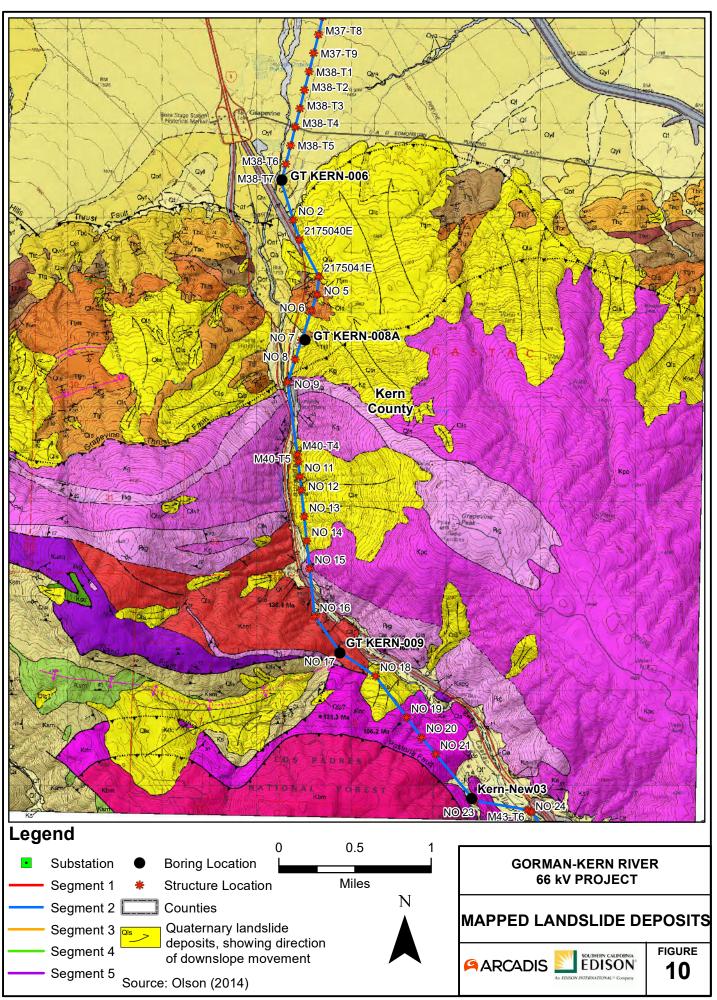

T. ENVISCEISCE_TLLRVarcGIS_Desktop/KERN/Geotech Report Figures-2022/Fig9_Potential Landslide Susceptibility Areas Zoomed-in.mxd 2/17/2022 4:39:16 PM











Reconnaissance Report

Kevin Garrity Scott Richtmyer Southern California Edison Transmission and Distribution

Date: October 29, 2021

Subject: Gorman-Kern River 66kV Geotechnical Investigation Locations

Dear Mr. Garrity and Mr. Richtmyer,

This memorandum presents a geotechnical investigation reconnaissance plan for the remaining portions of the Gorman-Kern River 66 kV Project (Segments 1 through 5). This work includes the installation of borings and cores at select areas along the Gorman-Kern River alignment. Arcadis anticipated that 9 locations (1-002, KERN-NEW1, KERN-NEW3, KERN-8, KERN-9, 3-004, 3-005, 5-002, and 5-005) designated as "Rock Coring" will be installed using a drilling method that will not allow for logging or sampling of unconsolidated materials. The objective of the reconnaissance was two-fold. The first was to determine drill rig and support truck accessibility to the proposed boring locations from existing access or Forest Service roads. The second objective was to determine how many, if any, of the proposed boring locations would need to be rock cored based on the geology observed in the field.

The field observations were performed by one Arcadis geologist with the assistance of one representative from Southern California Edison. The work was noninvasive, and no samples of rock or soil were collected. Field observations were made from existing access or Forest Service roads; field staff did not climb slopes or otherwise placing themselves in unsafe situations to collect data. Below are the findings of the field reconnaissance.

<u>1-002</u>

Arcadis U.S., Inc. 320 Commerce, Suite 200 Irvine, California 92602 Phone: 714-508-2671 www.arcadis.com Kevin Garrity/ Scott Richtmyer Southern California Edison October 29, 2021

Drill Rig Accessibility

The access road leading to 1-002 is well maintained, and there should be no issues with mobilizing the drill rig/support trucks to the location. There are however several gates leading to the proposed boring location, therefore the field teams will require access through the gates during the field mobilization. There is ample space for the drill rig and support trucks to work safely in the area.

Drilling Method

The proposed boring location is located at the top of a hill. There is a considerable number of large boulders in the area and nearby rock outcrops were not observed in the area. It's likely that some amount of drilling can likely be done using a hollow-stem auger (HSA) rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths given the number of large boulders in the immediate area.

<u>5-002</u>

Drill Rig Accessibility

The access road leading to 5-002 is very rough terrain and there are some areas where the drill rig and support trucks will not be able to manage passing through. There is alternate public access road that will also leads to the proposed boring location that is much safer. There are however several gates leading to the proposed boring location, therefore the field teams will require access through the gates during the field mobilization. The drill rig will be unable to set up right next to the existing tower due to inclined topography. The proposed boring will be located approximately 50 feet east of the existing tower. There is ample space for the drill rig and support trucks to work safely in the area.

Drilling Method

The proposed boring location is located at the crest of a hill with some nearby rock outcrops that are close to the same elevation as the proposed boring. There is a considerable number of large boulders in the area. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths.

<u>5-005</u>

Drill Rig Accessibility

The access road leading to 5-005 is very rough terrain and there are some areas where the drill rig and support trucks will not be able to manage passing through. There is alternate public access road that will also leads to the proposed boring location that is much safer. There are however several gates leading to the proposed boring location, therefore the field teams will require access through the gates during the field mobilization. The work area is large enough that the drill/support trucks are able to turn around safely, if needed.

Drilling Method

The proposed boring location is located at the crest of a hill with some rock outcrops that are approximately 150 feet away at approximately the same elevation as the proposed boring. There is a considerable number of large boulders in the area. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths.

KERN-NEW1

Drill Rig Accessibility

The access road leading to KERN-NEW1 is well maintained, and there should be no issues with mobilizing the drill rig/support trucks to the location. There are however several gates leading to the proposed boring location, therefore the field teams will require access through the gates during the field mobilization. There is ample space for the drill rig and support trucks to work safely in the area.

Drilling Method

The proposed boring location is located in a relatively flat plains area with some small hills nearby. There is a considerable number of large boulders in the area. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems likely that rock coring will need to be utilized to get to the proposed depths.

KERN-8

Drill Rig Accessibility

The access road leading to KERN-8 contains some inclined areas and fairly rough terrain however the drill rig and support trucks should be able to mobilize to the location without any issues. There are however several gates leading to the proposed boring location, therefore the field teams will require access through the gates during the field mobilization. Will need approval from security officer from Tejon Ranch prior to mobilizing onto site. There will be limited spacing in the work area so consolidating the number of trucks mobilizing up to the location should be considered beforehand.

Drilling Method

The proposed boring location is located in an area with some nearby rock outcrops that are close to the same elevation as the proposed boring. There is a considerable number of large boulders in the area. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths.

KERN-9

Drill Rig Accessibility

The access road leading to KERN-9 contains some inclined roads however the drill rig and support trucks should be able to mobilize to the location without any issues. There will be very limited spacing in the work area so consolidating the number of trucks mobilizing up to the location should be considered beforehand.

Drilling Method

The proposed boring location is located in an area with some nearby rock outcrops that are close to the same elevation as the proposed boring. There is a considerable number of large boulders in the area. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths.

KERN-NEW3

Drill Rig Accessibility

The access road leading to KERN-NEW3 contains some inclined roads however the drill rig and support trucks should be able to mobilize to the location without any issues. There is one gate leading to the proposed boring location, therefore the field teams will require access through the gate during the field mobilization. There will be extremely limited spacing in the work area so consolidating the number of trucks mobilizing up to the location should be considered beforehand.

Drilling Method

The proposed boring location is located at the top of a hill. The existing tower sits on top of a rock outcrop. There area has a retaining mesh wall adjacent to the existing tower which houses a considerable number of large boulders. It's unlikely that some amount of drilling can likely be done using an HSA rig. It seems very likely that rock coring will need to be utilized to get to the proposed depths.

<u>3-004</u>

Drill Rig Accessibility

The access road leading to 3-004 contains a steep inclined road, however there should be no issues mobilizing the drill rig/support trucks onto site. There is one gate leading to the proposed boring location, therefore the field teams will require access through the gate during the field mobilization. There is ample space for the drill rig and support trucks to work safely in the area.

Drilling Method

The proposed boring location is located at the top of a hill. There is a considerable number of large boulders in the area and a few nearby rock outcrops at slightly lower elevations than the proposed location. It's likely that some amount of drilling can likely be done using a HSA rig, however it also seems very likely that rock coring will need to be utilized to get to the proposed depths given the number of large boulders in the immediate area

<u>3-005</u>

Drill Rig Accessibility

The proposed boring location is located near an existing SCE substation. Driving to the site is accessed from an established public road. There is no way for a drill rig or support trucks to gain access near the existing tower/proposed boring. The tower is only accessible by foot so drilling using any sort of drill rig will not be possible. An alternate location could be placed approximately 150 feet south of the existing tower location near the entrance to the substation.

Drilling Method

The proposed boring location is located in a valley with no observable rock outcrops in the immediate vicinity. No observable rock outcrops or large boulders were observed near the alternate drilling location so it's very likely that drilling can likely be done using an HSA rig. Drilling with rock coring may not be necessary for this location if drilled at the alternate location.

If you have any questions, please contact Geetha Shanmugasundaram at 213.262.3716 or at <u>Geetha.</u> <u>Shanmugasundaram@arcadis.com</u>.

Sincerely, Arcadis U.S., Inc.

Geetha Shanmugasundaram Project Manager

ARCADIS

Photograph 1: IMG_6044

Photograph 2: IMG_6045

Photograph 3: IMG_6050

Photograph 4: IMG_6051

Photograph 5: IMG_6054

Photograph 6: IMG_6055

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 7: IMG_6056

Photograph 8: IMG_6057

Photograph 9: IMG_6058

Photograph 10: IMG_6059

Photograph 11: IMG_6064

Photograph 12: IMG_6065

ARCADIS

Photograph 13: IMG_6066

Photograph 14: IMG_6068

Photograph 15: IMG_6069

Photograph 16: IMG_6070

Photograph 17: IMG_6072

Photograph 18: IMG_6073

Photograph 19: IMG_6074

Photograph 20: IMG_6077

Photograph 21: IMG_6078

Photograph 22: IMG_6086

Photograph 23: IMG_6087

Photograph 24: IMG_6088

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 25: IMG_6090

Photograph 26: IMG_6093

Photograph 27: IMG_6094

Photograph 28: IMG_6095

Photograph 29: IMG_6096

Photograph 30: IMG_6097

Photograph 31: IMG_6104

Photograph 32: IMG_6105

Photograph 33: IMG_6106

Photograph 34: IMG_6145

Photograph 35: IMG_6147

Photograph 36: IMG_6148

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 37: IMG_6149

Photograph 38: IMG_6150

Photograph 39: IMG_6151

Photograph 40: IMG_6152

Photograph 41: IMG_6153

Photograph 42: IMG_6154

Southern California Edison - GKR Geotechnical Borings

Photograph 43: IMG_6156

Photograph 44: IMG_6157

Photograph 45: IMG_6158

Photograph 46: IMG_6159

Photograph 47: IMG_6165

Photograph 48: IMG_6166

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 49: IMG_6167

Photograph 50: IMG_6168

Photograph 51: IMG_6169

Photograph 52: IMG_6170

Photograph 53: IMG_6171

Photograph 54: IMG_6177

ARCADIS

Photograph 55: IMG_6178

Photograph 56: IMG_6184

Photograph 57: IMG_6185

Photograph 58: IMG_6186

Photograph 59: IMG_6187

Photograph 60: IMG_6188

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 61: IMG_6189

Photograph 62: IMG_6190

Photograph 63: IMG_6191

Photograph 64: IMG_6193

Photograph 65: IMG_6194

Photograph 66: IMG_6195

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 67: IMG_6196

Photograph 68: IMG_6197

Photograph 69: IMG_6203

Photograph 70: IMG_6204

Photograph 71: IMG_6205

Photograph 72: IMG_6206

ARCADIS

Southern California Edison – GKR Geotechnical Borings

Photograph 74: IMG_6208

Photograph 75: IMG_6209

Photograph 73: IMG_6207

Photograph 76: IMG_6210

Photograph 77: IMG_6213

Photograph 78: IMG_6214

ARCADIS

Southern California Edison – GKR Geotechnical Borings

Photograph 79: IMG_6215

Photograph 80: IMG_6216

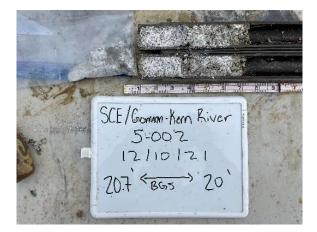
Photograph 81: IMG_6217

Photograph 82: IMG_6221

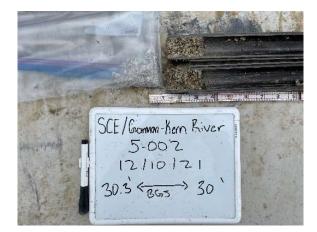
Photograph 83: IMG_6226

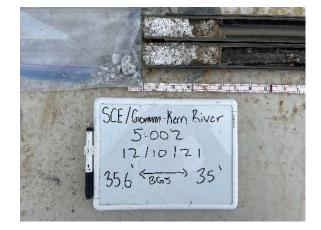
Photograph 84: IMG_6227

ARCADIS


Southern California Edison - GKR Geotechnical Borings

Photograph 85: IMG_6228


Photograph 86: IMG_6230


Photograph 87: IMG_6232

Photograph 88: IMG_6233

Photograph 89: IMG_6234

Photograph 90: IMG_6235

ARCADIS

Photograph 91: IMG_6236

Photograph 92: IMG_6240

Photograph 93: IMG_6266

Photograph 94: IMG_6267

Photograph 95: IMG_6268

Photograph 96: IMG_6269

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 97: IMG_6270

Photograph 98: IMG_6271

Photograph 99: IMG_6272

Photograph 100: IMG_6273

Photograph 101: IMG_6274

Photograph 102: IMG_6275

Photograph 103: IMG_6276

Photograph 104: IMG_6278

Photograph 105: IMG_6279

Photograph 106: IMG_6280

Photograph 107: IMG_6281

Photograph 108: IMG_6282

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 109: IMG_6303

Photograph 110: IMG_6304

Photograph 111: IMG_6305

Photograph 112: IMG_6306

Photograph 113: IMG_6307

Photograph 114: IMG_6308

ARCADIS

SCE/Gorman-Kein River 1-005 12/15/21 7.9' < B65 7'

Photograph 115: IMG_6309

Photograph 117: IMG_6311

Photograph 118: IMG_6312

Photograph 119: IMG_6313

Photograph 120: IMG_6314

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 122: IMG_6316

Photograph 123: IMG_6317

Photograph 121: IMG_6315

Photograph 124: IMG_6318

Photograph 125: IMG_6319

Photograph 126: IMG_6320

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 127: IMG_6321

Photograph 128: IMG_6326

Photograph 129: IMG_6327

Photograph 130: IMG_6328

Photograph 131: IMG_6329

Photograph 132: IMG_6333

ARCADIS

SCE/Garman-Karn River 1-006a 12/16/21 165' - 865 - 45'

Photograph 133: IMG_6334

Photograph 135: IMG_6336

Photograph 136: IMG_6338

Photograph 137: IMG_6339

Photograph 138: IMG_6340

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 139: IMG_6341

Photograph 140: IMG_6342

Photograph 141: IMG_6343

Photograph 142: IMG_6344

Photograph 143: IMG_6345

Photograph 144: IMG_6346

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 145: IMG_6347

Photograph 146: IMG_6351

Photograph 147: IMG_6352

Photograph 148: IMG_6353

Photograph 149: IMG_6354

Photograph 150: IMG_6355

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 151: IMG_6356

Photograph 152: IMG_6357

Photograph 153: IMG_6358

Photograph 154: IMG_6359

Photograph 155: IMG_6360

Photograph 156: IMG_6361

ARCADIS

Southern California Edison – GKR Geotechnical Borings

Photograph 157: IMG_6417

Photograph 158: IMG_6418

Photograph 159: IMG_6419

Photograph 160: IMG_6420

Photograph 161: IMG_6421

Photograph 162: IMG_6422

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 163: IMG_6423

Photograph 164: IMG_6425

Photograph 165: IMG_6426

Photograph 166: IMG_6427

Photograph 167: IMG_6428

Photograph 168: IMG_6429

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 169: IMG_6431

Photograph 170: IMG_6432

Photograph 171: IMG_6434

Photograph 172: IMG_6435

Photograph 173: IMG_6436

Photograph 174: IMG_6437

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 175: IMG_6438

Photograph 176: IMG_6439

Photograph 177: IMG_6440

Photograph 178: IMG_6441

Photograph 179: IMG_6442

Photograph 180: IMG_6443

ARCADIS

Southern California Edison - GKR Geotechnical Borings

Photograph 181: IMG_6444

Photograph 182: IMG_6445

Photograph 183: IMG_6446

Photograph 184: IMG_6447

Photograph 185: IMG_6448

Photograph 186: IMG_6449

Southern California Edison - GKR Geotechnical Borings

Photograph 187: IMG_6450

Photograph 188: IMG_6451

Photograph 189: IMG_6454

Photograph 190: IMG_6455

Boring Logs

CLENT Southern California Edison (SCE) PROJECT NAME TLRR Gorman-Kern River 66kV Geolder Investigation PROJECT NAME 20142821-0123.0 COMPLETED 128/21 GROUND ELEVATION — DATE STARTED 128/21 COMPLETED 128/21 GROUND ELEVATION — HOLE SIZE 3.5 Inches DRILLING CONTRACTOR Creac Definin MORTHMS 1. EASTING 1. — DRILLING METHOD Mad Foldary GROUND METHOD FRACTOR Ground Watter LEVELS: GROUND METHOD Mad Foldary. DOTES Jammar = 140bs. 30-inch drop. Auto Hammar. Groundwater not encountered A TTIME 0 fractory. A STER DRILLING	C		R	CADIS Design & Consultancy for natural and built assets					B	URI	ING	NUN			002 OF 2
DRILLING CONTRACTOR Gregg Drilling NORTHING ft EASTING ft DRILLING METHOD Mud Rotary GROUND WATER LEVELS: AFTER DRILLING LOGGED BY G. Jeffers CHECKED BY N. Trimble AT TIME OF DRILLING AFTER DRILLING NOTES Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered										Kern F	River 60	6kV Geo	otech Inv	vestig <i>a</i>	ition
DRILLING METHOD Mud Rotary GROUND WATER LEVELS: LOGGED BY G. Jeffers CHECKED BY N. Trimble AT TIME OF DRILLING AFTER DRILLING											HOLE	SIZE _	3.5 inche	es	
LOGGED BY G. Jeffers CHECKED BY N. Trimble AT TIME OF DRILLING AFTER DRILLING AFTER DRILLING	DRIL	LING C	ONTRA	CTOR _ Gregg Drilling	NORT	HING	ft				EAST	ING _ft			
NOTES Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered NOTES Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No Hammer = 140lbs, 30-inch drop, Auto Hammer, Groundwater not encountered No MATERIAL DESCRIPTION Hammer, Groundwater,	DRIL	LING N	ETHO	D_Mud Rotary	GROL	JND V	ATER	LEVELS:							
NO H Image: Constraint of the second se	LOG	GED B	<u>G. J</u>	effers CHECKED BY N. Trimble		ΑΤ ΤΙ	ME OF	DRILLING	i		AFTE	ER DRIL	LING		
0 (ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-med subangular to subrounded sand, trace angular to subrounded gravel (Zmm - 6mm), well graded, dry, 10 YR 5/3 brown, trace mica. HA 1 100 -	NOT	E S _ Ha	mmer =	= 140lbs, 30-inch drop, Auto Hammer, Groundwater not	t encou	untere	d								
0 (ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-med subangular to subrounded sand, trace angular to subrounded gravel (Zmm - 6mm), well graded, dry, 10 YR 5/3 brown, trace mica. HA 1 100 -	NO	Т	₽ ₽			IYPE ER	۲۲ % ()	LES LES).ITY (%)	rage (%)	ИС Т (%)	▲ 20	40	60	80
0 (ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-med subangular to subrounded sand, trace angular to subrounded gravel (Zmm - 6mm), well graded, dry, 10 YR 5/3 brown, trace mica. HA 1 100 -	(ff)	(#	APH OG	MATERIAL DESCRIPTION		₩ B B C L	S S S S S S S	ALL	EX (EN1 EN1	EN-				-
0 (ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-med subangular to subrounded sand, trace angular to subrounded gravel (Zmm - 6mm), well graded, dry, 10 YR 5/3 brown, trace mica. HA 1 100 -	LE L	B	GR			N N			IND	I N N	ND	20			
		0				S	R			L L	Ŭ				. ,
				(ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-m	ed							:	:	-	
		-		subangular to subrounded sand, trace C-VC subangular to subrounded sand trace angular to								:		-	-
		-		subrounded gravel (2mm - 6mm), well graded, dry,			100					:	-	-	
				10 YR 5/3 brown, trace mica.		1						:	÷	-	-
		- ·										:	:	:	:
		5										:	:	:	:
		-										: :	•••••	···:	
		-		loose oxide staining		1 66		260	-			·····		· · · · · · · · · · · · · · · · · · ·	
		-		No recovery from 7.65-8.5' bgs	X		44		44	90.0		♠ ≜⊦	·····		
		L .				N									
		10													
		L.		(ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY, VF-F sand_poorly graded	X		33								
	1			No recovery from 10.5' - 11.5' bgs	\vdash			(10)	-			<u>`</u> \			
	5											÷		÷	:
		15											<u> </u>		
SAND, VI-F subarquiar to subrounded sand, dry, mica, trace canche. No recovery from 15.55' - 16.5' bgs loose, dry, 10 YR 6/2 light brownish gray mottled w/ 7.5 YR 6/8 reddish yellow, trace coliche, trace mica. No recovery from 20.75' - 21.5' bgs. No recovery from 25.55' - 26.5' bgs No recovery from 30.55' - 31.5' bgs No recovery from 30.55' - 31.5' bgs				(ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY with		1	36	14-22-27	1						
$\begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		-			\square	4	00	(49)	_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		mica, trace canche.											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		No recovery non 13.33 - 10.3 bgs									/		•••••••
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- 20										·····	/	···. :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_ 20		loose, dry, 10 YR 6/2 light brownish gray mottled w	/ /	ss	50	4-7-10	-	007		·····i/.	•••••	•••••••••••••••••••••••••••••••••••••••	
No recovery from $30.55' - 31.5'$ bgs No recovery from $30.55' - 31.5'$ bgs No recovery from $30.55' - 31.5'$ bgs					a. 🖄	5	50			82.7		····· A		····· ;	µ
No recovery from 25.55' - 26.5' bgs 30 No recovery from 30.55' - 31.5' bgs 35 35 36				No recovery non 20.73 - 21.3 bgs.								·····	•••••	······································	
No recovery from $25.55' - 26.5'$ bgs 30 30 30 30 30 30 30 35 36 3														· · · · · · · · · · · · · · · · · · ·	
No recovery from 25.55' - 26.5' bgs 30 30 30 30 30 35 35 35 35 36 36 36 36 5-7-8 (15) 36	2													· · · · · · · · · · · · · · · · · · ·	
No recovery from 25.55' - 26.5' bgs 30 No recovery from 30.55' - 31.5' bgs 35 35 36		_ 25				1.00		570							
No recovery from 30.55' - 31.5' bgs $X = \frac{5}{7} = \frac{1}{36} = \frac{1}{(25)}$		- ·		No recovery from 25.55' - 26.5' bgs	X		36					♦			
30 No recovery from 30.55' - 31.5' bgs 35		- ·				x			1			<u> </u>			
30 No recovery from 30.55' - 31.5' bgs 35		L .										ŧ.			
30 - </td <td></td> <td>L .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> <u> </u>.</td> <td></td> <td></td> <td></td>		L .										<u> </u> .			
No recovery from 30.55' - 31.5' bgs		30				<i>x</i>						<u> </u>]			
	(L.		No recovery from 30.55' - 31.5' bas	X	SS 7	36						.		
		L		····· , ···· ••••• • ••• • ••	\vdash			(20)	-						
		['													
														:	:
		35										: 			

(Continued Next Page)

BORING NUMBER 1-002 PAGE 2 OF 2

				California Edison (SCE)				TLRR Go		Kern F	River 6	6kV Geotech Investigation
-	ELEVATION (ft)	25 DEPTH (ft) 22	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
				(ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY with SAND, VF-F subangular to subrounded sand, dry, med dense, 10 YR, 6/2 light brownish grey, trace mica, trace canche. <i>(continued)</i> No recovery from 35.5' - 36.5' bgs		SS 8	33	10-11-13 (24)				
CH_INTERNAL\BORING LOGS\GINT FILE\SCE TLRR GKR 2021.GPJ		 - 40 		Color change: 10 YR 5/4 yellowish brown mottled with 5Y 5/1 gray No recovery from 40.6' - 41.5' bgs		SS 9	39	14-17-19 (36)				
G LOGS/GINT FILE/S		 _ <u>45</u> 		No recovery from 45.75' - 46.5' bgs		SS 10	50	11-13-15 (28)				
CH_INTERNAL\BORIN		 50		(ALLUVIUM/ COLLUVIUM) (CH) FAT CLAY wth SAND, same as at 15' bgs, med dense, 7.5 YR 5-6 strong brown mottled with 5Y 6/1 gray. No recovery from 49.2' - 50' bgs Borehole terminated at 50.0 feet depth.	3 	SS 11	47	12-15-16 (31)				

			CADIS Design & Consultancy for natural and built assets							o				
			California Edison (SCE) F					Kern F	River 6	6kV Ge	eotech	<u>1 Inve</u>	stigat	ion
			R 30104283-01325.C F											
			2/14/21 COMPLETED <u>12/15/21</u> C											
			ACTOR Gregg Drilling						EAST	ING _1	řt			
			D Hollow Stem Auger		WATEF	R LEVELS:								
			effers CHECKED BY N. Trimble = 140lbs, 30-inch drop, Auto Hammer, Groundwater not e				3		AFTI	er dri	LLING	3		_
_				Ц	%			Щ	()		SPT	r n va	LUE	
ELEVATION (ft)	Ξ	GRAPHIC LOG		SAMPLE TYPE NUMBFR	RECOVERY (RQD%)	UE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20	<u>0 4</u> PL	<u>10 б</u> МС		<u>80</u> L
LA E	(ft)	LOG D	MATERIAL DESCRIPTION	MB	NG	BLOW COUNTS (N VALUE)	SIC		IEN			10 6		80
		GR GR		AMF			IN LA		No.					<u>80</u> (%)□
	0			ن	R			□	0			10 6		80
			(ALLUVIUM) (SC) CLAYEY SAND, VF-VC									;	÷	
			subangular to subrounded sand, trace angular - subrounded gravel (2mm - 16mm), dry, 10 YR 4/4	Н	Δ					:		;	;	;
			dark yellowish brown VF-VC subangular to subrounded gravel (2mm -	1	1 1 1 1 1 1							÷	÷	
			47mm)									:	:	
	- ·			s:		30-50/4"	-					:	 	>>
	5			F1_2								:	 	
												:	:	
			Color change 10YR, 5/6 yellowish brown, dense.	√ s	\$	15-32-36	-			:		:	· · · · · /	/
						(68)	22	31.0		 		:		
			No recovery from 8.15' - 8.5' bgs.							:		:	÷	
	10		(ALLEN/ILIN) VE VC angular to subrounded cond		2	13-28-	_					: :		
1			(ALLUVIUM) VF-VC angular to subrounded sand, little angular to subangular gravel (2mm - 17mm),			50/4"		41.7				<u>.</u>		>>,
	L .		dry, very dense, 7.5 YR 5/6 strong brown, trace mica No recovery from 11.15' - 11.5' bgs.	l								: 		
	L .													
	L .													
	15				_									
	L.		Color change: 7.5 YR 5/6 strong brown, very dense.		10	21-50/5"	_					:		>>,
	L.											:	<u>.</u>	
2										:		:	÷	:
												:	-	
	20									1				
				V s		36-45-					• • • • • • •			>>
			Drill rig chattered from 21' - 23' bgs, rocks in cuttings	. / 6		50/4"	_							
5			No recovery from 21.1' - 21.5 bgs.											
	25											:	÷	
i i				V s	S 100	21-22-	_				•••••		 	>>
				Δ 7		50/3"	-				•••••	:	÷	
											•••••	:	: : :	
										:			: : :	
	30				2	32-47-48	-					: :	:	·
					81	(95)						:	:	
	Ļ .		No recovery from 31.2' - 31.5' bgs									:	:	
i	Ļ .												÷	.:/
	Ļ .											:	<u>.</u> /	/:
í	35											:	: /	:

(Continued Next Page)

BORING NUMBER 1-004

ROJECT	NUMBER	30104283-01325.C	PROJECT L	OCAT	ION Califo	ornia			
(ff) (ff) DEPTH		MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) 20 40 60 80
33 		(ALLUVIUM) (SC) CLAYEY SAND, VF-VC subangular to subrounded sand, trace angular - subrounded gravel (2mm - 16mm), dry, 10 YR 4/4 dark yellowish brown <i>(continued)</i>	SS 9	100	37-35-28 (63)				
			SS 10	100	15-21-22 (43)				
 			SS 11	100	11-25-36 (61)				
- 50		No recovery from 49.9' - 50' bgs. Borehole terminated at 50.0 feet depth.	SS 12	99	21-32-34 (66)				

			California Edison (SCE)						liver 6	6kV Geoteo	h Investi	gation
				PROJECT							ahaa	
			2/15/21 COMPLETED 12/15/21									
			CTOR Gregg Drilling Hollow Stem Auger						EAST			
			effers CHECKED BY _N. Trimble				<u>.</u>		AETE	ER DRILLIN	G	
			140lbs, 30-inch drop, Auto Hammer, Groundwater not			DRILLING	, <u> </u>		AFT		G <u></u>	
								ш		▲ SP	T N VALU	
ELEVATION (ft)	-	<u>ں</u>		Z PE	% (₀	်စည်	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20	40 60	80
	(#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYP NUMBER	RECOVERY (RQD%)	BLOW COUNTS (N VALUE)	UEX.	S (°	AN ENT	PL	MC	
	<u>כ</u>	2K		MPL	O B	NCOB	NDE	N N N	NEN DEN			80
		Ŭ		SAI	RE		= =		8			
	0		(FILL) (SC) CLAYEY SAND, VF-VC subangular to								<u>40 60</u>	
-	-		subrounded sand, trace angular to subangular grav (2mm - 7mm), dry, 10 YR 4/3 brown, mill material,	el						·····	•	•••••
-	_		micaceous.	HA	100							•••••
-	_			1	100							
-	-											
-	5					-		22.0		<u>ب</u>		
-	_											
_	-						_					
Ļ	_		(ALLUVIUM) (SW) WELL GRADED SAND, VF-VC angular to subrounded sand, some angular to		86	6-7-8 (15)				♠		
	_		subangular gravel (2mm - 16mm), trace fines, dry-moist, 10 YR 5/4 yellowish brown, trace mica,	<u> </u>		(10)						
	10		loose.									
	_		No recovery from 8.3' - 8.5' bgs.		88	5-6-10		4.0				
			No recovery from 11.25' - 11.5' bgs	13		(16)	-					:
Γ										1:		:
Γ												;
_	15									1	:	
			VF-VC subangular to subrounded sand, trace fines,		94	9-7-16						•••••
			dry-moist, loose, 10 YR 4/3 brown, micaceous (ALLUVIUM) (SW) WELL GRADED SAND with	4		(23)	_			T		
-	-,		GRAVEL, med dense. No recovery from 16.4' - 16.5' bgs									
F			10 1000 Very Holli 10.4 - 10.0 Dys									•••••
F.	20											•••••
<u> </u>	20		(ALLUVIUM) (SM) SILTY SAND, F-C subangular	SS SS	75	11-13-15	-					•••••
F	-		sand, non-plastic fines, med dense, angular to subrounded gravel (12mm - 9mm).	5	75	(28)				†		· · · · · : :
F	-		No recovery 21.15' - 21.5' bgs.									
╞	-									·····		•••••
\vdash	_									<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
	25					9-11-12	-			·····		•••••
F	4			SS 6	100	(23)				: 		
F	_									 		
F	_											
F	_									<u>.</u>		
	30						4			<u>.</u>		
Ļ	_				81	9-13-17 (30)						
L			No recovery from 31.2' - 31.5' bgs.				-					
L	_											
	_											
Г	7						1			1 :	: :	

BORING NUMBER 1-005 PAGE 2 OF 2

				California Edison (SCE) R				TLRR Gor		Kern F	liver 6	6kV Geote	<u>ch Inv</u>	vestig	ation
	ELEVATION (ft)	c DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	PL 20 □ FINES	40 MC 40	60 C 60	80 LL -1 80
				(ALLUVIUM) (SM) SILTY SAND, F-C subangular sand, non-plastic fines, med dense, angular to subrounded gravel (12mm - 9mm). <i>(continued)</i>	4	SS 8	100	8-16-21 (37)							
.GPJ		 40													
R GKR 2021				(ALLUVIUM) (SW) WELL GRADED SAND with GRAVEL, color change: 7.5 YR 5/6 strong brown.	2	SS 9	100	13-20-24 (44)							
LE\SCE TLR															
INTERNAL/BORING LOGS/GINT FILE/SCE TLRR GKR 2021.GPJ					,	SS 10	100	16-17-22 (39)					-		
BORING LC						√ ss	100	13-18-27							
INTERNAL\		50		Borehole terminated at 50.0 feet depth.		11	100	(45)							

9	Δ	R	CADIS Design & Consultancy for natural and built assets				BO	RIN	IG N	PAGE 1 OF 2
			California Edison (SCE) 3 30104283-01325.C					Kern F	River 6	6kV Geotech Investigation
			2/15/21 COMPLETED 12/16/21						HOLE	SIZE 7 inches
			ACTOR Gregg Drilling							
			D_Hollow Stem Auger							
			effers CHECKED BY N. Trimble						ΔΕΤΙ	ER DRILLING
			= 140lbs, 30-inch drop, Auto Hammer, Groundwater no							
ELEVATION (ft)	Ŧ	<u>ں</u>		SAMPLE TYPE NUMBER	۲۲ % ()	S E	ПТ (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80
(ATI	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	ABE 1	RECOVERY (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	ENT ()	ENT	
ГЦ	DE DE	GR/		MPI	NOR NOR		NDE	IN ROLL	NAC NT NT	20 40 60 80
ш	•			SA	RE		<u> </u>		60	
	0	؞؞؞؞	(FILL) (SW) WELL GRADED SAND, VF-VC							20 40 60 80
			subangular to subrounded sand, little angular to							
			subrounded gravel (2mm - 22mm), trace fines, moist-wet, 10 YR 4/3 brown, micaceous, trace	НА						
			asphalt chunks.		100					
			(ALLUVIUM) At 2' bgs gravel to trace, no asphalt, dry.							
	5		,							
				🗸 ss	67	3-3-4		3.0		
			No recovery from 8' - 8.5' bgs.	2		(7)	-	0.0		
	10			∬ ss		4-10-11				
				3	100	(21)				↓ ↑ ↓
:										
	15						-			
			(ALLUVIUM) (SW) WELL GRADED SAND with GRAVEL, VF-VC angular to subrounded sand, little		92	9-8-6 (14)				
			angular to subangular gravel (2mm - 12mm) dry, loose, 10 YR 5/4 yellowish brown, micaceous.	<u> </u>		,				
			No recovery from 16.4' - 16.5' bgs.							
	20									
				∬ ss	78	6-7-13				
i			No recovery from 21.15' - 21.5' bgs.	5		(20)	-			
	25		(ALLUVIUM) (SM) SILTY SAND, VF-VC subangula	ar 🛛 ss		10-10-14				
			to subrounded sand, some non-plastic fines, little		100	(24)		7.2		·□····
			angular to subangular gravel (2mm - 14mm), dry, med dense, 7.5 YR 5/6 strong brown, trace mica.							
					1					
	30				<u> </u>					
					92	13-13-16 (29)				
			No recovery from 31.4 - 31.5' bgs.			(23)				
	-				1					
					1					
	 35									

(Continued Next Page)

BORING NUMBER 1-006A

								TLRR Gor		Kern R	liver 6	6kV Geotech Investigation
	ELEVATION (ft)	G DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
				(ALLUVIUM) (SM) SILTY SAND, VF-VC subangula to subrounded sand, some non-plastic fines, little	ır	SS 8	75	12-17-19 (36)				· · · · · · · · · · · · · · · · · · ·
.GPJ		 40		angular to subangular gravel (2mm - 14mm), dry, med dense, 7.5 YR 5/6 strong brown, trace mica. <i>(continued)</i> At 35.5' bgs, pulverized rock fragments. No recovery from 36.2' - 36.5' bgs.								
R GKR 2021					X	SS 9	100	9-11-13 (24)				
INTERNAL\BORING LOGS\GINT FILE\SCE TLRR GKR 2021.GPJ		 45				Å						
S LOGS/GINT				At 45' bgs grades to gravel, trace angular to subangular gravel (2mm - 9mm), med dense to dense.	X	SS 10	100	11-22-34 (56)				
NAL/BORING		 50			X	SS 11	100	19-20-22 (42)				
INTER				Borehole terminated at 50.0 feet depth.								

9	Δ	R	Pesign & Consultancy for natural and built assets					B	ORI	NG	NUMBER 1-008 PAGE 1 OF 2
	I T So	uthern	California Edison (SCE)	PRO		AME	TLRR Go	rman-ł	Kern R	River 60	6kV Geotech Investigation
			R_30104283-01325.C								<u>v</u>
			12/16/21 COMPLETED 12/16/21							HOLE	SIZE _7 inches
			ACTOR _ Gregg Drilling								
			D Hollow Stem Auger								
LOGG	ED BY	' <u>G.</u> J	effers CHECKED BY _N. Trimble		AT TI	ME OF	DRILLING	i		AFTE	R DRILLING
NOTE	S Ha	mmer :	= 140lbs, 30-inch drop, Auto Hammer, Groundwater not	enco	ountere	d					
ELEVATION (ft)	oTH t)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	/ERY % D%)	DW INTS ILUE)	ПСІТҮ X (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ <u>20 40 60 80</u> PL MC LL
ELEV/		GRA LC	WATERAL DESCRIPTION		SAMPL NUM	RECOVERY (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCE	ORG	20 40 60 80
	 5		(ALLUVIUM) (SM) SILTY SAND, VF-VC subangular to subrounded sand, little subangular gravel (2mm - 16mm), moist, 10YR 3/4 dark yellowish brown, micaceous. 1.3' bgs sand grain size (VF- med), no gravel 3.5' bgs trace C-VC sand	r -	HA 1	100			21.0		20 40 60 80
			(ALLUVIUM) Interbedded WELL GRADED SAND (SW) and WELL GRADED SAND with SILT		ss	100	2-2-2	_			A
			(SW-SM), VF-VC subangular to subrounded sand, trace angular to subangular gravel (2mm- 6mm), trace to little fines, moist to dry, very loose 10 YR 3/ dark yellowish brown, micaceous.	14	2 / SS		(4)	-	40.0		
1	 		(ALLUVIUM) (SC) CLAYEY SAND, VF-C angular to subrounded sand, trace VC angular to subrounded sand, moist, very loose, 10YR 3/4 dark yellowish brown, micaceous.			100	(6)	-	40.0		
	 		(ALLUVIUM) (SC) CLAYEY SAND with GRAVEL, VF-VC subangular to subrounded sand, little angula to subrounded gravel (2mm - 12mm), dry, loose, 10 YR 5/4 yellowish brown, trace mica.	ar /	SS 4	100	4-6-7 (13)	-			
	 		At 20' bgs increase in gravel, some angular to subrounded gravel (2mm - 17mm). No recovery fron 21.25' - 21.5' bgs.	m 2	SS 5	83	5-8-12 (20)	-			
			(ALLUVIUM) (ML) SILT, low plasticity, few VF-med subangular to subrounded sand, trace C-VC subangular to subrounded sand, moist, loose, 10YR	2	SS 6	100	5-5-7 (12)	-			
	 		5/3 brown, micaceous. At 30' bgs grades to little angular to subrounded gravel (2mm - 7mm), dry to moist, loose, 10 YR 5/3		SS 7	89	4-5-11 (16)	-			
	 35		brown. No recovery from 31.3' 31.5' bgs.		<u>v</u>		<u> </u>				

GEOTECH BH PLOTS - GINT STD US LAB.GDT - 2/28/22 16:30 - C:\USERSIKSULLIVANIARCADISISCE TLRR - GEOTECH INTERNALIBORING LOGSIGINT FILEISCE TLRR GKR 2021.GPJ

BORING NUMBER 1-008 PAGE 2 OF 2

									6kV Geotech	invesig	allon
RUJ		R _30104283-01325.C I	ROJECT		ION Califo	oma					
ELEVATION (ft)	GE DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT 20 40 PL 20 40 □ FINES C 20 40	MC 60 ONTEN	80 LL 1 80
	35	(ALLUVIUM) (SP) WELL GRADED SAND	V ss	100	5-9-12				20 40	<u>. 00</u>	<u> </u>
		interbedded w/ PÓORLY GRADED SAND (SW)/ (SP), VF-F/ VF-VC subangular to subrounded sand, moist, loose, 10 YR 5/3 brown, micaceous.	8	100	(21)						
	40	(ALLUVIUM) (SW) WELL GRADED SAND, VF-med			4 7 10						
		subangular to subrounded sand, trace C sand, trace fines, moist, loose 10 YR 6/3 brown micaceous.	9	100	4-7-10 (17)						
		(ALLUVIUM) (SM) SILTY SAND, poorly graded, VF- subangular to subrounded sand, some fines, moist, loose, 10 YR 5/4 yellowish brown, micaceous.									
		(ALLUVIUM) (SW-SM) WELL GRADED SAND with SILT and GRAVEL, VF-VC angular to subrounded sand, some angular subrounded gravel (2mm -	SS 10	100	12-13-16 (29)					· · · · · · · · · · · · · · · · · · ·	
		30mm), dry, med dense, 10YR 6/3 pale brown.	∕∕ ss		13-17-19						
	50		11	100	(36)					:	:

9		١F	PERIODIS Design & Consultancy for natural and built assets				B	OR	NG	NUMBER 3-002 PAGE 1 OF 2
PRO DAT DRI	DJECT I TE STAI LLING (NUMBE RTED CONTR	California Edison (SCE) I R _30104283-01325.C I 12/20/21 COMPLETED _12/20/21 ACTOR _Gregg Drilling I D. Hollow: Stam Augor I	PROJECT GROUND E NORTHING	LOCAT ELEVA ⁻ G_ft_	TION <u>Calif</u>	ornia		HOLE	SIZE _7 inches
LOG	GGED B	Y <u>G.</u>	D Hollow Stem Auger 0 Jeffers CHECKED BY _N. Trimble = 140lbs, 30-inch drop, Auto Hammer, Groundwater at 3	AT T			i <u>33.0</u>	<u>0 ft</u>	AFTEI	R DRILLING
ELEVATION	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
			(ALLUVIUM) (CL) SANDY LEAN CLAY, VF-VC subangular to subrounded sand, little silt, trace angular to subrounded gravel (2mm - 27mm), moist, 10 YR 3/3 dark brown, micaceous.	HA 1	100					
	- - - - - - -		VF-VC subangular to subrounded sand, little angula to subangular gravel (2mm - 28mm), well graded, moist to dry, loose, 10 YR 3/3 dark brown. No recovery from 8.3' - 8.5' bgs	$\begin{array}{c c} & & & \\ &$	86	8-5-7 (12) 4-5-7 (12)	17	51.0		
WARGAUISISCE ILKK - GEOLEG	_ _ _ _ _		(ALLUVIUM) (SW-SM) WELL GRADED SAND with SILT and GRAVEL, VF-VC subangular to subrounded sand, little angular to subangular gravel (2mm - 15mm), trace fines, dry, loost, 7.5 YR 5/6 strong brown, trace mica.	SS 4	100	9-9-9 (18)	-			
10:30 - C:\USEKSIKSULLIVA	_ _ <u>20</u> _ _		(ALLUVIUM) (SW) SILTY SAND with GRAVEL, VF-VC subangular to subrounded sand, little angula to subangular gravel (2mm-15mm), trace fines, moist, med dense, 7.5 YR 5/6 strong brown, trace mica.	r ss 5	100	17-31-33 (64)	-	18.0		
1 US LAB.GUI - 2/28/22	25 			SS 6	100	17-29-24 (53)				
GEOTECH BH PLOTS - GINT STD US LAB/GDT - 2/28/22 16:30 - C:/USERS/KSULLIVAN/ARCADISISCE T	- - - -	- • • • • • • • • • • • • • • • • • • •	increased gravel, color change: 7.5 YR 6/3 reddish yellow. Ӯ	SS 7	100	20-21-33 (54)	-			
	35		(Continued Next Page)							

BORING NUMBER 3-002

PAGE 2 OF 2

CLIENT Southern California Edison (SCE) PROJECT NAME _ TLRR Gorman-Kern River 66kV Geotech Investigation PROJECT NUMBER 30104283-01325.C **PROJECT LOCATION** California SAMPLE TYPE NUMBER PERCENTAGE FINES (%) ▲ SPT N VALUE ▲ % ORGANIC CONTENT (%) ELEVATION (ft) PLASTICITY INDEX (%) GRAPHIC LOG RECOVERY (RQD%) BLOW COUNTS (N VALUE) 20 40 60 80 DEPTH (ft) MC PL LL MATERIAL DESCRIPTION 40 60 80 20 □ FINES CONTENT (%) □ 35 20 40 60 80 (ALLUVIUM) (SW) SILTY SAND with GRAVEL, SS 19-25-35 100 VF-VC subangular to subrounded sand, little angular 8 (60) to subangular gravel (2mm-15mm), trace fines, moist, med dense, 7.5 YR 5/6 strong brown, trace mica. (continued) (ALLUVIUM) increased gravel, some angular to subangular gravel (2mm - 14mm), wet. 40 increased gravel, decrease sand, color change: 5 YR SS 25-38-100 >> 5/8 yellowish red, very dense. 9 50/5" 45 increased gravel (angular to subangular gravel (2mm SS 27-48-100 >> - 15mm)), decreased sand 10 50/5" color change: 7.5 YR 6/8 reddish yellow mottled w/ SS 23-41-100 55 7.5 YR 3/2 dark brown. 11 50/4" 50 Refusal of SPT at 49.9' bgs Refusal at 49.9 feet Borehole terminated at 50.0 feet depth.

				California Edison (SCE) [] R_30104283-01325.C []	PROJECT I PROJECT I				Kern R	liver 6	6kV Geo	tech Inv	/estigat	ion
				2/2/21 COMPLETED 12/2/21						HOLE	SIZE 3	3.5 inche	es	
				CTOR Gregg Drilling										
				Mud Rotary										
				effers CHECKED BY N. Trimble			DRILLING	i		AFTE	ER DRILI	LING -		
				140lbs, 30-inch drop, Auto Hammer, Groundwater not										
-	ELEVATION (ft)	т	알		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	v UE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20	SPT N \ 40 M	60	80
	VAT (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	MBI	NG	BLOW COUNTS (N VALUE)	STIC	N U	IEN GAN	l F	40		
	ΞΓĒ		B B L		NUN	N N N N N N		IND C	EIN CIRC	NOR N		40 ES CON		
5	ш	0			ls.	R		L .	Ч	Ō		23 CON 40		• •
E ILKK GKK 2021.		 		(WEATHERED GRANODIORITE) (SM) SILTY SAND, (5, 90, 5), VF-VC, subangular to subrounded sand, trace angular to subangular grave (2mm - 11mm) trace fines, dry, 10 YR 5/3 brown, trace mica		100								
יסיםווו בורביסי		 		at 4' bgs, increased gravel (10%), increased gravel size (2mm - 19mm)										
		 _ 10		grades to angular to subangular gravel (2mm - 12mm), dry, 10YR 5/3 brown, medium dense. No recovery from 7.9' 8.5' bgs. No recovery from 7.9' 8.5' bgs.	SS 2	61	12-21-26 (47)	-	14.0			•		
				trace caliche, dense, weak cementation. no recovery from 10.75' - 11.5' bgs	SS 3	50	15-29-43 (72)	-	14.0					\
		 _ <u>15</u> 		oxidized staining and moderate cementation. no recovery from 15.6' 16.5' bgs.	SS 4	63	25-50	-						
		 <u>20</u> 		(WEATHERED GRANODIORITE) (SM) SILTY SAND, VF-VC angular to subangular sand, little angular to subangular gravel (2mm - 6mm), moist, very dense, trace caliche, oxidize staining, 7.5 YR 3/ dark brown mottled w/ 10R 5/6 red, weak cementation.	3 SS 5	56	29-44- 50/4"	-						>>
77				no recovery from 20.7' - 21.5' bgs.							:	·····:	· · · · · · · · · · · · · · · · · · ·	:
LAB.GUI - 2/28/.		 		increased gravel grain size (2mm - 15mm). no recovery from 25.8' - 26.5' bgs.	SS 6	56	30-42- 50/5"	-						
GEOTECH BH PLOTS - GINT STD US LAB.GDT		 <u>- 30</u> 		wet, very dense, 7.5 YR 3/3 dark brown mottled w/ 1 R 5/6 red. no recovery from 30.6' - 31.5' bgs.		78	37-50/3"	-						>>

⁽Continued Next Page)

BORING NUMBER 3-004

PROJECT NUMBER		ROJECT I		TLRR Go							
ELEVATION (ft) (ft) (ft) (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ S 20 PL 4 20 □ FINE 20	40 M 40	C L 60 NTENT	80 .L 1 80
	(WEATHERED GRANODIORITE) (SM) SILTY SAND, VF-VC angular to subangular sand, little angular to subangular gravel (2mm - 6mm), moist, very dense, trace caliche, oxidize staining, 7.5 YR 3/3 dark brown mottled w/ 10R 5/6 red, weak cementation. <i>(continued)</i> 10 YR 5/2 grayish brown, weak cementation. no recovery from 35.9' - 36.5' bgs		66	20-45- 50/4"	-		-				>>
	no recovery from 40.9' 0 41.5' bgs	SS 9	70	38-42- 50/3"	-		-	·····			>>
 	no recovery from 45' - 46.5' bgs	SS 10		50/3"			-			: : : :	-
50	no recovery from 49' - 50' bgs Borehole terminated at 50.0 feet depth.	11		00/2						:	

			CADIS Design & Consultancy for natural and built assets								
								Kern F	River 60	6kV Geotech Investigat	ion
PROJ	ECT N	UMBE	R <u>30104283-01325.C</u> F	PROJECT	OCAT	ION Calif	ornia				
			12/16/21 COMPLETED 12/13/21 C								
DRILL	ING C	ONTR/	ACTOR Gregg Drilling N	ORTHING	ft				EAST	NG ft	
DRILL	ING M	ethoi	D Mud Rotary C	GROUND V	ATER	LEVELS:					
LOGG	ED BY	<u> </u>	effers CHECKED BY N. Trimble	AT TI	ME OF	DRILLING	33.0	00 ft	AFTE	R DRILLING	
NOTE	S Ha	nmer :	= 140lbs, 30-inch drop, Auto Hammer, Groundwater enco	ountered at	33 fee	et					
					<u>`</u> 0			ш		▲ SPT N VALUE	
ELEVATION (ft)	-	<u>с</u>		RPE	%	. s û	Ľ@	PERCENTAGE	ORGANIC CONTENT (%)	20 40 60	
ff)	DEPTH (ft)	PH	MATERIAL DESCRIPTION	ABE	VER D%	ALUTA	EX S	LN S	NAN INT		L
Ц Л		GRAPHIC LOG		SAMPLE TYP NUMBER	RECOVERY (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	N N N	DRO DEN		80
Ξ		Ŭ		SAI	RE		= =		8		• •
	0	지민군	(ALLUVIUM/ COLLUVIUM) (SM) SILTY SAND,							20 40 60	80 :
			VF-VC subangular to subrounded sand, trace								
			subangular to angular gravel (2mm - 8mm), little non-plastic fines, dry, 10YR, 4/2 dark gravish brown.	НА	100						
				1	100					· · · · · · · · · · · · · · · · · · ·	
										·····	
	5							24.0			
										·····	
			color change: 10 YR 5/6 yellowish brown, med dense.		61	7-10-14					
			no recovery from 7.9' - 8.5' bgs.	<u> </u>		(24)	-				÷
	10										
			little angular to subangular gravel (2mm- 6mm), dry,	V ss	50	10-18-22					
1			med dense, 10 YR 5/4 yellowish brown, trace mica. no recovery from 10.75' - 11.5' bgs.	3	50	(40)	_			·····	
	15			∕∕ ss		17-24-33	-				
			no recovery from 15.8' - 16.5' bgs	4	53	(57)				····· •	
										·····	
										<u>.</u>	
	20						_				\.
			no recovery from 20.6' - 21.5' bgs		39	36-39-43 (82)		19.4			
											<u> </u>
										<u> </u>	
	_ 25										
			no recovery from 25.5' - 26.5' bgs		33	20-30-31					
				0		(61)	-				:
											:
	30										
	_ 30 _			SS 7	20	16-13-27	1				·:····
			no recovery from 30.65' - 31.5' bgs	7	39	(40)	_				:
											:
			$ \Sigma $								
1	35	医包管	4		1		1	1	1		:

⁽Continued Next Page)

BORING NUMBER 3-005

PAGE 2 OF 2

CLIENT Southern California Edison (SCE) PROJECT NAME _ TLRR Gorman-Kern River 66kV Geotech Investigation PROJECT NUMBER 30104283-01325.C **PROJECT LOCATION** California SAMPLE TYPE NUMBER PERCENTAGE FINES (%) ▲ SPT N VALUE ▲ % ORGANIC CONTENT (%) ELEVATION (ft) PLASTICITY INDEX (%) GRAPHIC LOG RECOVERY (RQD%) BLOW COUNTS (N VALUE) 20 40 60 80 DEPTH (ft) MC PL LL MATERIAL DESCRIPTION 40 60 20 80 □ FINES CONTENT (%) □ 35 20 40 60 80 (ALLUVIUM/ COLLUVIUM) (SM) SILTY SAND, 19-22-26 SS 56 VF-VC subangular to subrounded sand, trace 8 (48) subangular to angular gravel (2mm - 8mm), little non-plastic fines, dry, 10YR, 4/2 dark gravish brown. (continued) increased gravel size (2mm - 27mm), wet (groundwater observed) no recovery from 35.85' - 36.5' bgs 40 SS 34-50/3" 94 >> 9 45 SS 23-33-38 61 10 (71) no recovery from 45.9 - 46.5' bgs (SM) SILTY SAND, VF-VC angular to subrounded SS 22-24-50 55 sand, little fines, little angular to subangular gravel 11 50/4" 50 (2mm - 14mm), wet, very dense, 2.5 Y 5/4 light olive brown, oxidized staining, trace mica. No recovery from 49.2' - 50' bgs Borehole terminated at 50.0 feet depth.

			California Edison (SCE)					Kern R	liver 6	6kV Ge	eotecł	n Invest	tigatio	<u>n</u>
				PROJECT I						017E	2 5 1			
			12/10/21 COMPLETED 12/10/21											
			ACTOR Gregg Drilling						EAST	ING _	rt			
			D Mud Rotary									_		
			effers CHECKED BY <u>N. Trimble</u> = 140lbs, 30-inch drop, Auto Hammer, Groundwater not				i <u></u>		AFTE	er dri	LLING	3		-
					%			ш			SPT	N VAL	UE 🖌	<u> </u>
ELEVATION (ft)	т	₽		SAMPLE TYPE NUMBER	2	_sr⊕	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	2	0 4	0 60) 8	
ĒĒ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	NBE -	RCOVERY (RQD%)	BLOW COUNTS (N VALUE)	EX.		EN-			MC		
́ц́	DE	GR L		MP	NG K	NCOB NC	NDI	IN IC	NUT	2	04	0 60) 8	
ш	•	Ĩ		SA	L H		<u> </u>		[°] S			CONTE	•	
	0		(WEATHERED GRANODIORITE) (SM) SILTY							2) 4	<u>0 60</u>	8	<u>0</u> :
			SAND, VF-VC subangular to subrounded sand, little	e										
			angular gravel (2mm - 27mm), trace fines, moist, 10 YR 3/2 very dark grayish brown, organic staining,	D HA										
			roots present.		100									
			grades to trace subangular to subrounded gravel (2mm - 17mm), dry, 10 YR 4/3 brown							:				:
	5		(2mm - 17mm), dry, 10 YR 4/3 brown					25.0						:
										:		: :		:
												:		
							-					:		
			No recovery from 7.7' - 8.5' bgs.		47	11-15-17 (32)						: 		
				<u> </u>		(32)	-							
	10											:		:
	_ 10 _		color change: 2.5 YR 6/3 yellowish brown.	√ ss		11-16-20	1				·····{·	 		
			No recovery from 10.7' - 11.5' bgs.	3	47	(36)								 :
							1							
														\sim
	15													÷
			15' - 15.2' bgs, granodiorite (pulverized).	/ .	100	50/2"	7				• • • • • • • •			>
			(WEATHERED GRANODIORITE) (SW-SM) WELL	4	J									:
			GRADED SAND with SILT, VF-VC subangular to subrounded sand, little subangular to subrounded											
			gravel (2mm - 6mm), little fines, dry to moist, 2.5 Y									: 		
			6/3 light yellowish brown.											
	20													
			(WEATHERED GRANODIORITE) (SM) SILTY	SS S	50	38-49-				:			:	:
			SAND, residual soil from granodiorite, VF-VC, angular sand, little angular gravel (2mm - 7mm), litt	le 5		50/5"	-					: :		:
			fines, very dense, white n/9 white w/ specks of 2.5									· · · · · · · · · · · · · · · · · · ·		:
			Y3/1 very dark gray, oxidized staining. No recovery from 20.7' - 21.5' bgs.											
	25						4							
	L -		No recovery from 25.6' - 25.8' bgs		70	49-50/4"	4							>
			10 1000 vory non 20.0 - 20.0 bys										-	:
										:		: :	:	:
	30				0.0	E0/4"	4							: · · · >
				SS 7	88	50/4"	1							:
			Drilling Rig chatted from 31.5' - 35' bgs.		1									
												: :		:
		민만			1		1			• • • • • • • •				: • • • •
		[.].].			1					:		: :		:

BORING NUMBER 5-002 PAGE 2 OF 2

				California Edison (SCE) 30104283-01325.C				TLRR Go		Kern R	liver 66	6kV Geot	ech In	ivestiga	ation
	ELEVATION (ft)	25 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20 PL 20	40 N 40	60	E▲ 80 LL ■ 80 F (%)□ 80
LOGS/GINT FILE/SCE TLRR GKR 2021.GPJ		 - 40 		(WEATHERED GRANODIORITE) (SM) SILTY SAND, residual soil from granodiorite, VF-VC, angular sand, little angular gravel (2mm - 7mm), lit fines, very dense, white n/9 white w/ specks of 2.5 Y3/1 very dark gray, oxidized staining. <i>(continued)</i> no recovery from 35.6' 35.8' bgs.		X SS 8 SS 9	78	43-50/3"					·····		>>
LOGS/GINT				No recovery from 45' - 45.1' bgs (Possible Bedrock encountered) Borehole terminated at 45.1 feet depth.	` _	SS 10	_0_	50/1"	[- •				

	9		R	CADIS Design & Consultancy for natural and built assets					B	ORI	NG	NUN		R 5- AGE 1	
				California Edison (SCE)						Kern F	liver 6	6kV Geo	otech li	nvestig	ation
				3 30104283-01325.C				ION Calif							
				2/7/21 COMPLETED 12/7/21											
	DRILL	ING C	ONTRA	CTOR _ Gregg Drilling	NO	RTHING	ft				EAST	ING _ft			
	DRILL	ING M	ETHOD	Mud Rotary	GRO	OUND W	ATER	LEVELS:							
				effers CHECKED BY N. Trimble = 140lbs, 30-inch drop, Auto Hammer, Groundwater no				DRILLING	i <u></u>		AFTE	er dril	LING _		
GPJ	ELEVATION (ft)	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20 P 20 □ FIN	40 L N 40 ES CC	MC 60	80 LL − 80 Γ (%) □
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 2/28/22 16:30 - C:\USERS\KSULLIVAN\ARCADIS\SCE TLRR - GEOTECH_INTERNALBORING LOGS\GINT FILE\SCE TLRR GKR 2021.GPJ		 		 (SW) WELL GRADED SAND, VF-VC subangular to subrounded sand, trace subangular gravel (2mm - 8mm), trace fines, dry, 10YR 3/2 very dark grayish brown, micaceous. (WEATHERED GRANODIORITE) (SW) WELL GRADED SAND with GRAVEL, VF-VC angular to subrounded sand, little angular to subangular grave (2mm - 15mm), trace fines, dry, 10 YR 6/3 pale brown, micaceous. 		HA 1	100			16.5					
DGS/GINI				(WEATHERED GRANODIORITE) (SM) SILTY SAND, VF-VC subangular to subrounded sand, littl	e							:	:		
DRING LO				angular to subangular gravel (2mm - 15mm), little fines, dry, 10 YR 5/4 yellowish brown, trace mica. (WEATHERED GRANODIORITE) (SW) WELL		SS 2	44	13-28-30 (58)	_				:	÷	
CH_INTERNAL\BC		 		GRADED SAND with GRAVEL, same as @ 1.8' bo color change: 10 YR 5/3 brown, pulverized rock @ bottom of shoe (granodiorite), dense. no recovery from 7.7' - 8.5' bgs. (WEATHERED GRANODIORITE) (SM) SILTY SAND, VF-VC subangular to subrounded sand, tra		SS 3	42	14-30-31 (61)	-	31.0					
e tlrr - geote		 _ <u>15</u>		strace subangular gravel (2mm - 6mm), SOME fine moist, dense, 10 YR 4/2 dark grayish brown mottle w/ white N/9.5 white, weathered gravel embedded, micaceous, possible residual soil. no recovery from 10.65' - 11.5'	es, d	√ ss		18-21-32	-						
IVAN\ARCADIS\SC		 		no recovery from 15.6' - 16.5' bgs.	2	X 4	39	(53)							
- C:\USERS\KSULL		 		no recovery from 20.5' - 21' bgs	2	SS 5	55	21-50/5"	-						>>
GDT - 2/28/22 16:30		 		no recovery from 25.6' - 26.5' bgs.		SS 6	39	13-18-24 (42)	-						
INT STD US LAB.		 _ 30							_						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GEOTECH BH PLOTS - G		 35		No recovery from 30' - 30.1' bgs. At 30' bgs, rig chattering. Based on driller, bedrock encountered a 30' bgs	ıt	SS 7		50/1"							

⁽Continued Next Page)

ARCADIS Design & Consultancy for natural and built assets	BORING NUMBER 5-00 PAGE 2 OF
CLIENT <u>Southern California Edison (SCE)</u>	PROJECT NAME _TLRR Gorman-Kern River 66kV Geotech Investigation _ PROJECT LOCATION _California
MATERIAL DESCRIPTION	Ample TYPE Sample TYPE Number Number
No recovery from 35' - 35.1' bgs Borehole terminated at 35.1 feet depth.	

9	A	R	CADIS Design & Consultancy for natural and built assets			BOR	RING	S NI	JME	BER KERN-008a PAGE 1 OF 2
			California Edison (SCE)					Kern F	River 60	6kV Geotech Investigation
			12/6/21 COMPLETED 12/6/21							SIZE 3.5 inchos
			ACTOR Gregg Drilling							
			D_Mud Rotary						EAST	
			effers CHECKED BY N. Trimble						AETE	
	_		= 140lbs, 30-inch drop, Auto Hammer, Groundwater not						AFT	ER DRILLING
ELEVATION (ft)		GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □
	0 5		(FILL) (SM) SILTY SAND with GRAVEL, VF-VC angular to subrounded sand, little angular gravel (2mm - 200mm), little fines, dry, 10 YR 4/3 brown, micaceous. (FILL) (LAND DEPOSITS) (SM) SILTY SAND, VF-VC angular to subrounded sand, trace angular to subangular gravel (2mm - 6mm), little fines, dry, 10 YR 4/3 brown, some mica.	HA 1	100					20 40 60 80
	 		No recovery from 7.6' - 8.5' bgs.	SS 2	42	8-10-9 (19)	-			
	 15		color change 10YR 5/3 brown, oxidized staining. No recovery from 10.85' - 11.5' bgs.		56	6-9-15 (24)		18.0		
	 20		some laminations of weather gravel, trace oxidized staining. no recovery from 15.9' - 16.5' bgs.	SS 4	61	5-14-20 (34)	-			
			grades to little angular gravel (2mm - 29mm), trace fines, dry to moist, med dense, 10 YR 5/2 grayish brown, some pulverized gravel, alluvium, mica. No recovery from 20.7' - 21.5' bgs.	SS 5	47	13-15-11 (26)	-			
	 		color change 10 YR 5/3 brown, oxidized staining. No recovery from 25.8' - 26.5' bgs.	SS 6	53	17-21-24 (45)	-			
	 <u>30</u> 		grades to trace subangular gravel (2mm - 16mm), moist, med dense, 10 YR 4/4 dark yellowish brown, micaceous, alluvium. no recovery from 30.7' - 31.5' bgs	SS 7	47	8-14-15 (29)	-			
	35									

BORING NUMBER KERN-008a

								TLRR Gor		Kern F	liver 6	6kV Geote	ech In	vestiga	ation
	ELEVATION (ft)	(#) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ S 20 PL 20 □ FINE 20	40 M 40	60	80 LL 1 80
L'T				(LAND DEPOSITS) (SM) SILTY SAND, VF-VC angular to subrounded sand, trace angular to subangular gravel (2mm - 6mm), little fines, dry, 10 YR 4/3 brown, some mica. <i>(continued)</i> No recovery from 35.75' - 36.5' bgs.	2	SS 8	50	8-12-18 (30)							
		<u>40</u> 45		pulverized gravel fragments No recovery from 40.8' - 41.5' bgs.		SS 9	53	9-16-32 (48)							
KING LUGS/GINI FI	•	 		(ALLUVIUM) (SW) WELL GRADED SAND, VF- med subrounded subangular sand, trace subangular gravel (2mm - 14mm), trace fines, trace C-VC subangular to subrounded sand, moist, dense, GLEY 2 5/5B blueish gray mottles w/ 7.5 YR 6/8 reddish yellow. No recovery from 45.7' - 46.5' bgs.	Z	SS 10	47	16-22-32 (54)							
		 <u>50</u>		Borehole terminated at 50.0 feet depth.		SS 11	47	19-27-24 (51)							

9	Δ	R	CADIS Design & Consultancy for natural and built assets				BO	RIN	G N	IUN	IBER KERN-009 PAGE 1 OF 2
	IT So	uthern	California Edison (SCE) PI	roji		IAME	TLRR Go	rman-l	Kern R	liver 6	6kV Geotech Investigation
			R_30104283-01325.C PF								jjjjj
			2/1/21 COMPLETED 12/1/21 G							HOLE	SIZE 3.5 inches
			ACTOR _Gregg Drilling No								
			D_Mud RotaryG								
			effers CHECKED BY N. Trimble							AFTE	ER DRILLING
			= 140lbs, 30-inch drop, Auto Hammer, Groundwater not er								
ELEVATION (ft)	o DEPTH (ft)		MATERIAL DESCRIPTION	1	NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
			(COLLUVIUM) (SM) SILTY SAND, VF-VC, angular to		HA	100					
			subrounded sand, few angular gravel (2mm - 112mm), dry, 10 YR 3/3 dark brown, trace mica.		1						
			@1.4' bgs, iron oxide staining, increase in fines (10%), w/ silt. no recovery from 2.3' - 4' bgs	Ш	RC 2						
			weak cementation, some mica, medium dense		SS		9-16-22	-			
	5			М	3	100	(38)				·····
					66		13-15-21	-			
				Х	SS 4	100	(36)		36.0		
								1			
	10							-			
			no recovery from 10' - 11.5' bgs	X	SS 5	0	17-17-18 (35)				
I				\square	SS		9-16-18	-			
			no recovery from 12.1' 13' bgs	\square	6	39	(34)				_T
	15										
				М	SS 7	67	9-15-15				
	_		no recovery from 16' - 16.5' bgs	Р	1		(30)	-			
	20										
			grades to some gravel	\square	SS	47	10-14-25		38.0		
			no recovery from 20.7' 21.5' bgs.	Д	8		(39)	-			
	25		(GW) WELL GRADED GRAVEL with SAND, 23.9' -		RC						
	_ 20 _		24.5' bgs, gravel clast (6 inches), fractured granodiorite, lens, gravel angular to subangular (2mm	Ц	9						
			- 28mm), some med-VC subangular to subrounded sand, wet (drilling thick), 10YR 5/3 brown mottles w/	ш	RC						
		>>>	iron oxide, colluvial deposites.	Ц	10						
			IGNEOUS GRANODIORITE BEDROCK, course grained crystals, GLEY 2 3/10 B (lught bluish gray)	ш	RC 11						
	 30	\mathbb{K}	mottles w/ GLEY 2 3/10BG (v dark greenish gray),	Η	RC						
			slightly weathered, very hard, intensely gractured, CRD = 100%, RQD - 0%, poor quality		12						
		K	at 35.6' bgs CRD = 93%, RQD = 0% at 27.6' bgs CRD = 100%, RQD = 0%	Π	PC						
		\bigcup	at 29' bgs CRD = 47%, RQD = 0%, very intensely		RC 13						
			fractured \neg at 30.7' bgs CRD - 100%, RQD = 23%, intensely	╢	RC						
			fractured	Π	14						
	35	<u>₩</u>	(SW) WELL GRADED SAND. VF-VC, anular to (Continued Next Page)		RC						

(Continued Next Page)

GEOTECH BH PLOTS - GINT STD US LAB. GDT - 2/28/22 16:30 - C:/USERSIKSULLI/VAN/ARCADISISCE TLRR - GEOTECH_INTERNALIBORING LOGSIGINT FILEISCE TLRR GKR 2021.GPJ

BORING NUMBER KERN-009

PAGE 2 OF 2

CLIENT Southern California Edison (SCE)

PROJECT NAME _ TLRR Gorman-Kern River 66kV Geotech Investigation

PROJECT LOCATION California

ELEVATION (ft)	HL DEPTH 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ S 20 PL - 20 □ FINE 20	40 . M 40	VALU 60 1C 60 NTEN 60	80 LL 1 80
			subrounded sand, little gravel (2mm - 31mm), subangular, trace silt nodules, 10 YR 5/2 grayish brown, possible lens in traces of bedrock IGNEOUS GRANODIORITE BEDROCK, CRD = 100%, RQD = 0% no recovery from 34.9' - 36' bgs (SW) WELL GRADED SAND with GRAVEL, VF-VC angular to subangular sand, little gravel (2mm - 7mm), angular trace fines, 10 YR 6/4 light yellowish brown, oxidized staining. <i>(continued)</i> Borehole terminated at 36.0 feet depth.	15									

	9	Δ	R	PERIOD Design & Consultancy for natural and built assets			BO	RIN	IG N	IUN	IBER I		1 OF 2
	PROJ DATE DRILL DRILL LOGG	ECT NU START LING CO LING MI GED BY	JMBE FED _ ONTR ETHO	California Edison (SCE) R 30104283-01325.C 12/21/21 COMPLETED 12/21/21 ACTOR Gregg Drilling D Hollow Stem Auger leffers CHECKED BY N. Trimble	PROJEC GROUNE NORTHIN GROUNE AT	F LOCAT ELEVA IG <u>ft</u> WATER	TION <u>Calif</u>	ornia		HOLE	: SIZE <u>7 ir</u> ING <u>ft</u>	nches	
I.GP.J	ELEVATION (ft)	B Har DEPTH (ft) 0	GRAPHIC LOG	= 140lbs, 30-inch drop, Auto Hammer, Groundwater at		RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20 PL 20	PT N VAL <u>40 60</u> <u>40 60</u> <u>5 CONTER</u> <u>40 60</u>	80 LL 80 NT (%) □
SINT FILE/SCE TLRR GKR 202		 5		 (FILL, TOPSOIL) (SM) SILTY SAND, well graded VF-VC subangular - subrounded sand, little fines, trace subangular gravel (2mm - 12mm), mott, 10YI 3/3 dark brown, organic material. (ALLUVIUM) (SC-SM) SILTY, CLAYEY SAND, VF-VC angular to subrounded sand, trace angular subangular gravel (2mm - 17mm), dry, 10 YR 4/3 brown, trace mica. 	_ H	1 100	-						
GEOTECH BH PLOTS - GINT STD US LAB GDT - 2/28/22 16:30 - C:\USERS\KSULLIVANARCADISISCE TLRR - GEOTECH INTERNALBORING LOGS\GINT FILE\SCE TLRR GKR 2021.GPJ		 - 10 		increased grain size gravel (2mm - 28mm), loose. No recovery 8.2' - 8.5' bgs color change 10 YR 5/4 yellowish brown. No recovery 11.4' - 11.5' bgs ☑		S 01	4-7-8 (15) 5-5-7 (12)	-			1	: :	
JLLIVANARCADIS/SCE TLRR - GE		 				S 100	4-5-5 (10)	7	28.0				
3/22 16:30 - C:\USERS\KSL		 25		color change: 7.5 YR 5/6 strong brown mottled w/ 5/3 olive oxidized staining. No recovery 21.15' - 21.5' bgs	5Y S	S 78	7-12-15 (27)	-					
NT STD US LAB.GDT - 2/28		 		 (ALLUVIUM) (SW-SM) WELL GRADED SAND with SILT and GRAVEL, VF-VC angular to subrounded sand, some angular to subangular gravel (2mm - 28mm), wet loose, 10 YR 5/3 brown. (ALLUVIUM) (CL) SANDY LEAN CLAY, VF-F subangular to subrounded sand, trace M-VC subangular to subrounded sand, little fines, wet, v loose, 7.5 YR 5/6 strong brown. 			11-4-3 (7)	12	6.0 51.7				
GEOTECH BH PLOTS - GI		 35		(ALLUVIUM) (SM) SILTY SAND, VF-VC subangula to subrounded sand, little angular to subangular (2mm - 19mm), trace fines, wet, med dense, 7.5 Y 5/6 strong brown.			5-10-12 (22)		17.7				·····

BORING NUMBER KERN-011

								TLRR Gor		Kern R	liver 6	6kV Geotech Investigation
ELEVATION		6 DEPTH (ft) 22	GRAPHIC LOG	MATERIAL DESCRIPTION		NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) [20 40 60 80
PJ	-			(ALLUVIUM) (SM) SILTY SAND with GRAVEL, same as @ 25' bgs, color change: 7.5 YR 5/6 strong brown, med dense.	X	SS 8	100	7-15-21 (36)	-			
E\SCE TLRR GKR 2021.G	-	40 -		increased gravel (some angular to subangular gravel) *heaving sands*	X	SS 9	100	10-14- 50/4"	-			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
RING LOGS/GINT FIL	-	<u>45</u> - -		increase in gravel, med dense to very dense. *heaving sands*	A	SS 10	100	31-50/4"	-			>
NAL/BO	_	_		decrease in gravel (little angular to subrounded gravel), dense to v dense. *heaving sands*	Х	SS 11	97	45-38- 50/4"				>
30 - C.\USERS\KSULLIVANARCADIS\SCE TLRR - GEOTECH_INTERNALBORING LOGS\GINT FILE\SCE TLRR GKR 2021.GFJ				Borehole terminated at 49.9 feet depth.								

9	Δ	R	CADIS Design & Consultancy for natural and built assets	BORING NUMBER KERN-012 PAGE 1 OF 2								
CLIEN	NT So	uthern	California Edison (SCE) P	ROJECT	NAME	TLRR Go	rman-ł	Kern R	River 60	6kV Geotech Investigation		
			R_30104283-01325.C P									
			2/20/21 COMPLETED <u>12/20/21</u> G						HOLE SIZE _7 inches			
			ACTOR Gregg Drilling N									
DRILLING METHOD _ Hollow Stem Auger LOGGED BY _G. Jeffers CHECKED BY _N. Trimble												
									AFTER DRILLING			
NOTE	S <u>Ha</u>	nmer =	= 140lbs, 30-inch drop, Auto Hammer, Groundwater at 23	8 feet								
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □		
	0			Ś	R		-	Ē	0	20 40 60 80		
	 5		 (FILL/ TOPSOIL) (SW-SM) WELL GRADED SAND with SILT, VF-VC angular to subangular sand, little angular to subangular gravel (2mm - 9mm), little fines, moist, 10YR 2/2 dark brown, trace mica, trace organics. (ALLUVIUM) (SC) CLAYEY SAND, VF-VC subangular to subrounded sand, trace angular to subangular gravel (2mm - 22mm), trace fines, dry to 	HA 1	100							
			moist, 10 YR 3/3 dark brown, micaceous. At 3.5' bgs, increased gravel (10%), little angular to subangular gravel (2mm - 22mm), color change: 10 YR 5/4 yellowish brown									
			No recovery from 8.3' - 8.5' bgs.	SS 2	92	4-7-7 (14)				1		
	10		color change 10 YR 5/3 brown mottled w/ 7.5 YR 6/8	∕ ss	92	5-7-9	_	20.0				
	 		reddish brown, trace mica.	3	92	(16)	_	20.0				
	 			SS 4	100	7-7-7 (14)	-					
	 20		color change 2.5 V 4/1 dark grov mottled w/ 7.5 VP			0.5.7	_					
			color change 2.5 Y 4/1 dark gray mottled w/ 7.5 YR 6/8 reddish yellow, trace mica.	SS 5	100	3-5-7 (12)	12	25.0				
			Σ									
	_ 25		color change: 5 Y 4/3 olive mottles w/ 7.5 6/8 reddish yellow, oxidized staining, trace mica.		100	7-11-15 (26)						
	 30											
				SS 7	100	8-10-12 (22)		22.0				
	 35											

_

- -

.

BORING NUMBER KERN-012

			2 <u>30104283-01325.C</u> P			ION Calif	ornia	ш		▲ SPT N VALUE ▲
ELEVATION (ft)	HTH (ff) 32	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20 40 60 80 PL MC LL → 1 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
			(ALLUVIUM) (CL) SANDY LEAN CLAY, trace subangular gravel (2mm - 5mm), wet, loose, 5 Y 3/2 dark olive gray, trace mica.		100	5-5-10 (15)	15	67.6		
5	 40		dark olive gray, trace mica.				-			
1 202 11			(ALLUVIUM) (SC) CLAYEY SAND with GRAVEL, color change: 5 Y 3/2 dark olive gray mottles w/ 7.5 YR 6/8 reddish yellow.	SS 9	100	8-10-17 (27)				
	 45									
				SS 10	100	7-11-16 (27)				
	50			SS 11	100	5-7-12 (19)	-	22.0		
	00	7. 7 . 7 . 7	Refusal at 49.9 feet. Borehole terminated at 50.0 feet depth.	_/					l	

oate Drili Drili Ogo				PROJECT NAME _TLRR Gorman-Kern River 66kV Geotech Ir PROJECT LOCATION _California								Jugar	<u>1</u> 0	
RILI RILI OGC	STARTE		R <u>30104283-01325.C</u> PF 12/19/21 COMPLETED <u>12/19/21</u> GF											
RILI OGC				NORTHING _ft EASTING _ft										
OGO			D_Mud Rotary GF							LAST				
			leffers CHECKED BY N. Trimble					<u> </u>		VETE	או ו וופח פ			
			= 140lbs, 30-inch drop, Auto Hammer, Groundwater not er					·						
7				ЪЕ		%			Щ	(%)		T N VA		
	는 달	LOG		1	NUMBER	RCOVERY (RQD%)	BLOW COUNTS (N VALUE)	SCI (%	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	20 PL	40 6 MC		8 _L
ξŧ	DEPTH (ft)	Į	MATERIAL DESCRIPTION	L L L	IMB	No.		STI	ES N	TEN	L L	40 6		1
		5		AMF	Z	ы С Ц	^m oz	ING	E H	ЧО ЧО ЧО				
-	0			0 N		R		-	Ē	0		40 6		
			(ALLUVIUM/ COLLUVIUM) (SM) SILTY SAND, VF-C									:	:	
			subangular to subrounded sand, trace VC sand, trace subangular to subrounded gravel (2mm - 6mm), dry,									-	-	
			trace mica, 10YR 4/2 dark grayish brown.		HA	100						:	:	
	F 1				1			1			:		:	
											:	:	:	
				┝┻┴									÷	
											:	:	:	
			aradaa ta littla aubangular ta raundad arayal (2mm		~~		0.5.0	-					÷	
			grades to little subangular to rounded gravel (2mm - 19mm), micaceous.	X	SS 2	44	3-5-6 (11)	1					÷	
			No recovery from 7.65' - 8.5' gs		-		()	1			\		<u>.</u>	
	10													
			(ALLUVIUM/ COLLUVIUM) (SM) SILTY SAND, VF -	\mathbb{N}	ss	50	5-8-10						:	. •
	[]]		med subangular to subrounded sand, trace	μ	3		(18)	-					:	•••
			subangular gravel (2mm - 4mm), dry, med dense, 11YR 6/3 pale brown, oxidized staining.					1						•••
	F 11		No recovery from 10.75' - 11.5' bgs					1			·····\	\	:	• •
								1				.X .X	÷	• •
	15		grades to little subangular to rounded gravel (2mm -		ss		19-23-28	1			 !	····	 	••
			24mm) trace dines, dry, med dense, 5 Y 7/2 light	М	4	72	(51)				<u>.</u>	∱ .	: :	
			gray, oxidize staining No recovery 16.2' - 16.5' bgs					1			 :	····	:	
	11												÷	
								1					: 	
	20							4						
	LH			X	SS 5	67	16-17-29 (46)		20.0					
			No recovery 21' - 21.5' bgs	μ	5		(40)	-					<u>.</u>	
												Ň		
	[]]							1					<u>}</u>	
	25		4					1					1	• •
				\square	SS	81	20-32-43	1			 :	:	÷	 \
	F +		No recovery 26.2' - 26.5' bgs	Д	6	01	(75)	4					A E	÷,
	+ +]		(POSSIBLE WEATHERED BEDROCK) Drill rig					1			 :		 	• •
			chattered @ 27' - 30' bgs								 :	:	:	
													:	
	30				<u> </u>			4					÷	
			no oxidation, very dense, moist No recovery from 30.6' - 30.8' bgs	Щ	SS 7	70	44-50/4"	4					<u>:</u>	
								1						
]]							1						
	r †:∣							1			:	:	:	• •
								1			·····	·	. <u>.</u>	·

ſ

Design & Consultancy for natural and built assets

BORING NUMBER KERN-NEW01

PAGE 2 OF 2

				· · ·				TLRR Gor		Kern R	iver 66	6kV Geotech Investigation
	ELEVATION (ft)	G DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPI E TVDE	NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
				(ALLUVIUM/ COLLUVIUM) (SM) SILTY SAND, VF - med subangular to subrounded sand, trace subangular gravel (2mm - 4mm), dry, med dense, 11YR 6/3 pale brown, oxidized staining. <i>(continued)</i> oxidize staining. No recovery 35.8' - 36.5' bgs		SS 8	59	29-43- 50/4"				>>
TLRR GKR 2021.GPJ		40		color change: 5Y 7/3 pale yellow mottled w/ 10 YR 6/8 brown yellow. No recovery from 45.6' - 46.5' bgs		SS 9	39	15-15-13 (28)				
ERNAL\BORING LOGS\GINT FILE\SCE TLRR GKR 2021.GPJ		 		trace subangular to subrounded gravel (2mm- 4mm), very dense No recovery 45.6' - 46.5' bgs		SS 10	41	31-48- 50/5"				>>
ERNAL/BOR		 50		Borehole terminated at 50.0 feet depth.	X	SS 11	39	21-34-39 (73)				

ehole terminated at 50.0 feet depth.

9	Δ	R	CADIS Design & Consultancy for natural and built assets		E	Borin	G N	UM	IBEI	R KERN-NEW02 PAGE 1 OF 2
PROJ		UMBE	California Edison (SCE) P R _30104283-01325.C P	ROJECT I		ION Calif	ornia			
			<u>12/17/21</u> COMPLETED <u>12/17/21</u> G							
			ACTOR Gregg Drilling N						EAST	ING _ft
			D Hollow Stem Auger G							
			leffers CHECKED BY N. Trimble			DRILLING	• <u></u>		AFTE	ER DRILLING
NOTE	S _Har	mmer	= 140lbs, 30-inch drop, Auto Hammer, Groundwater not e	ncountere	d					
ELEVATION (ft)	Ξ.	GRAPHIC LOG		SAMPLE TYPE NUMBER	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL
Ξ Ψ Ψ	DEPTH (ft)	LOR	MATERIAL DESCRIPTION	PLE	No Co		AST	NES	NGA UTEN	20 40 60 80
		ū		MAS		_oz	Γ	뜄트	Ιōś	□ FINES CONTENT (%) □
	0				-			Ľ		20 40 60 80
			(ALLUVIUM) (SM) SILTY SAND, VF-C subangular to subrounded sand, trace VC sand, trace subanglar to							
			subrounded gravel (2mm - 6mm), trace fines, dry, trace mica, 10 YR 4/2 drak grayish brown.	НА						
					100					
	5									
			color change: 10 YR 4/4 dark yellowish brown, loose		100	4-4-6 (10)		32.0		
				<u> </u>		(10)	-			
	10		- - -							
				M ss	100	4-5-5				
l				3		(10)	-			
5										
	15									
			grades to no gravel, very loose	🛛 ss	100	3-3-4	1			
			•	4		(7)	-			
	20									
				∕ ss	100	4-4-6	1			
			No recovery from 21' - 21.5' bgs	5		(10)	-			\Box
	 25									
Ĩ	20		color change 10YR 5/3 brown	V ss	100	9-12-14	1			
				6	100	(26)				
	30		grades to little angular to subangular gravel (2mm -	X ss	180	13-17-	-			
			22mm) dry, med dense, 10 YR 6/3 pale brown	A 7		24/0"				
			4							
			1							
	35		•		1					

⁽Continued Next Page)

Design & Consultancy for natural and built assets

BORING NUMBER KERN-NEW02

PAGE 2 OF 2

PROJECT NAME ______ TLRR Gorman-Kern River 66kV Geotech Investigation CLIENT Southern California Edison (SCE) PROJECT NUMBER 30104283-01325.C **PROJECT LOCATION** California SAMPLE TYPE NUMBER PERCENTAGE FINES (%) ▲ SPT N VALUE ▲ % ORGANIC CONTENT (%) ELEVATION (ft) PLASTICITY INDEX (%) GRAPHIC LOG RECOVERY (RQD%) BLOW COUNTS (N VALUE) 20 40 60 80 DEPTH (ft) MC PL LL MATERIAL DESCRIPTION 40 60 80 20 □ FINES CONTENT (%) □ 35 20 40 60 80 (ALLUVIUM) (SM) SILTY SAND, VF-C subangular to 44-32-SS 97 27/4" subrounded sand, trace VC sand, trace subanglar to 8 subrounded gravel (2mm - 6mm), trace fines, dry, trace mica, 10 YR 4/2 drak gravish brown. (continued) at 35.5' bgs pulverized gravel fragments No recovery from 36.3' - 36.5' bgs 40 color change: 10 YR 5/4 yellowish brown SS 14-17-22 100 9 (39)45 SS 10 13-31-106 37/5" SS 10-14-5 44 at 49' bgs pulverized gravel fragments 11 (19) 50 Borehole terminated at 50.0 feet depth.

9	Δ	R	CADIS Design & Consultancy for natural and built assets			E	BORIN	G N	UM	BEI	R KERN-NEW03 PAGE 1 OF 1	
CLIEN	IT Sou	uthern	California Edison (SCE)	PRC			TLRR Go	rman-k	Kern R	River 6	6kV Geotech Investigation	
			3 0104283-01325.C	PROJECT LOCATION California								
DATE	STAR	FED <u>1</u>	1/30/21 COMPLETED <u>11/30/21</u>	GRO	DUND E	LEVAT				HOLE	SIZE _3.5 inches	
				NORTHING _ft EASTING _ft								
			Mud Rotary									
			effers CHECKED BY N. Trimble							AFTE	ER DRILLING	
ELEVATION (ft)	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		 SAMPLE TYPE NUMBER 	RECOVERY % (RQD%)	BLOW COUNTS (N VALUE)	PLASTICITY INDEX (%)	PERCENTAGE FINES (%)	ORGANIC CONTENT (%)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80	
		••••••	(SW) WELL GRADED SAND with GRAVEL, VF-V angular to subrounded sand, some angular to → subangular gravel (2mm - 91mm), trace fines, dry,		HA 1	100						
			YR 4/3 brown, alluvium deposits. GRAVEL, colluvium bed of granodiorite, highly fractured, slightly weatherd gravel, coarse grained		RC 2	100						
	5		crystals GRANODIORITE IGNEOUS ROCK, slightly	Î	RC 3	100						
			weathered, very hard, intensely fractured, GLEY 2 8/10 B light bluish gray, mottled w/ GLEY 2 3/10BC	3	RC 4	100						
		very dark greenish gray, CRD = 100%, RQD = 0% 3.9' bgs, very poor quality. CRD = 100%, RQD = 0% at 5' bgs, very poor qua CRD = 100%, RQD = 0% at 6.3' bgs, very poor				93						
quality 10 8' - 8.7' bgs, bedrock crumbled due to too much pressure on drill bit from driller moderately fractured, CRD = 100%, RQD = 68%					RC 6	100						
			8.7' bgs, fair quality.	_								

ARCAD	S Design & for natura built asse	Consultancy al and ts					Boring	No.: <u>GT-KERN-(</u>	002
Soil Borin									
Project Name:			ifornia Edison (SCE	<u>), TLR</u>	R D	Date Started:08/03/2017_Field Ge		Sheet: 1 of askrent	1
Project Number:					_ Date		Editor:		
Project Location	: <u>Kern</u>	County,	CA		_	Review	ved by: <u>Steve Bea</u>	adle, CEG	
Depth Sample (feet) Interva	e Blow Counts	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	NA	HA		5.2		(0.0-5.0') Sandy SILT (ML) with little gravel, 5/4), dry, (20,30,50,0) very fine to very coars granule to small cobbles (2-100 mm), subany nonplastic, medium dry strength.	se grained sand,		
	10, 42, 47	15/18	GT KERN-002 (5.5-6.0)	25.9		(5.0-6.5') Silty SAND (SM) with little gravel, v brown (7.5YR 6/3), dry, (20,50,30,0) fine to sand, granule to very large pebbles (2-60 mr subrounded, nonplastic, medium dry strengt	very coarse grained m), subangular to		
	50/3"	9/18		104		(8.5-10.0') Decreasing gravel size, granule to (2-40 mm), low dry strength.	o very large pebble		
11 12 13									
	20, 27, 23	12/18	GT KERN-002 (13.5-15.0)	225		(13.5-15.5') Poorly graded SAND (SM) with I very dense, very pale brown (10YR 7/4), dry very coarse grained sand, granule to very lai mm), subangular to subrounded, nonplastic.	r, (20,70,10,0), fine to	Backfilled with native material	
17 18 19 20	17, 17, 20	16/18	GT KERN-002 (19.0-19.5)	27.8		(18.5-19.0') Poorly graded SAND (SM) with 1 very dense, very pale brown (10YR 7/4), dry very coarse grained sand, granule to very lai mm), subangular to subrounded, nonplastic.	r, (20,70,10,0), fine to rge pebble (2-60		
21 22 23						(19.0-20.0') SILT (ML) with little sand, dense (10YR 6/6), dry, (2,88,10,0), very fine to med granules (2 mm), subangular, low plasticity, l toughness.	e, yellowish brown dium grained sand,		
24 25 25	21, 50/2"	NA				(23.5-25.0') No recovery, auger refusal.			
27 27 28 28									
	50/2"	NA				(28.5-30.0') No recovery, auger refusal.			
						End of boring at 30.0' bgs.			
j 31 Drilling Co.:	Gread	a Drilling		I	I	Sampling Method: <u>CA MO</u>	D.Split Spoon 18	"/3"/2.5"	
Driller/Helper:			astillo / Jose Castillo)		Sampling Interval <u>:2-ft (sai</u>			
Drilling Method:			Hollow Stem Auge			Water Level Start (ft. bgs.			
Drilling Fluid:	NA	-	Ū			Water Level Finish (ft. bto	.):NE		
Drilling Rig:			<u>lb pneumatic hamm</u>	•	•	•	Yes	No	
Remarks:			inch; mm= millimeter						
			parts per million; NE =						
Š	= not a	applicable	e / available; Hand Au	ger to 5	bgs.	East Coor: 118°48'30.2	2356"		

ARCADIS Design & Consultancy torratural and transactions	Boring No.: GT-KERN-003
Soil Boring Log Project Name: Southern California Edison (SCE), TLRR Date Started:08/02/2017_Field C	Sheet: 1 of 2
Project Number: 05032060.0000 Date Completed:08/02/2017	Editor:
	iewed by: Steve Beadle, CEG
Depth (feet)Sample IntervalBlow CountsRecovery (in.)Sample IDPID (ppm)USCS ClassDescription	Construction Details Well
	sand (0.0625-0.25 mm),
5 (4.0-5.5') Silty SAND (SM), little clay, trac 6 3, 7, 12 16/18 GT-KERN-003 (5.5-6.0) 1.4 1.4 (5.5-6.5') Sandy CLAY (CH), very stiff, da 3/3), moist, (0,40,10,50) very fine to fine 1.4	0,10) very fine to coarse lar to subrounded, ark olive brown (2.5Y sand (0.0625-0.25 mm),
8 9 14, 10, 18/18 GT-KERN-003 (9.0-9.5) 4.3 10 11 18/18 GT-KERN-003 (9.0-9.5) 4.3	, dry, (5,50,30,10) very mm), subangular to
12 13 14 14 15 16 16 17 18 18 18 10 112 12 13 14 14 15 16 16 17 18 18 10 10 10 10 10 10 10 10 10 10	ine to fine grained sand ded, low plasticity, no tiff, moist, (0,20,30,50), 0.0625-0.25 mm), sticity, no dilatancy, stiff, moist, (0,15,40,45), 0.0625-0.25 mm),
19 9, 13, 20 18/18 1.7 (18.7-19.6') SAND with SILT (SM), very fine to fine to fine to fine to subround dilatancy, medium dry strength.	ine grained sand
	10D.Split Spoon 18"/3"/2.5"
	sample #'s 1-2) to 5-feet
Drilling Method: <u>Hand Auger / Hollow Stem Auger</u> Water Level Start (ft. bg Drilling Fluid: <u>NA</u> Water Level Finish (ft. l	
Drilling Fluid: <u>NA</u> Water Level Finish (ft. ا التقليم Drilling Rig: <u>CME 95 140-lb pneumatic hammer (30-in drop)</u> Converted to Well:	Dtoc. <u>):NE</u>
Remarks: //ft = feet; "/in = inch; mm= millimeter; bgs= below ground Surface Elev: NA	
surface; ppm= parts per million; NE = not encountered; NA North Coor: 35.17309	92°
= not applicable / available. East Coor: -118.805	

ARCADIS	Design & Consultancy for natural and built assets					Boring	No.: <u>GT-KERN-(</u>	003
Soil Boring						s	heet: 2 of	2
Project Name:	Southern Calif				Date Started: 08/02/2017_Field Geo	ologist: <u>Hannah H</u>	agemann	L
Project Number: <u>0</u> Project Location: <u>1</u>				_ Date		Editor: ved by: <u>Steve Bea</u>		
						,		
Depth Sample I (feet) Interval C	Blow Recovery ounts (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
21 22 22 23					(19.6-20.0') Silty SAND (SM), little clay, medi brown (2.SY 4/3), dry, (5,50,30,15), very fine sand with large pebbles (0.0625-30 mm) sub subrounded, nonplastic, low dry strength. Fle minerals, mica, muscovite and granodiorite p	e to coarse grained bangular to ecks of ferrous (Fe+)		
24 25 25 26 27 27	^{6, 20,} 16/18		1.4		(23.9-29.0') Poorly graded SAND (SM), little loose, light olive brown (2.5Y 5/3), dry, (5.85, very coarse grained (0.0625-4.0 mm) subang low dry strength.	,10,0), very fine to		
30 31 31 32 33 33 34	5, 10, 21 18/18 9, 19, 23 16/18		0.7		(29.0-30.0') Silty SAND (SM), little clay, medi brown (2.5Y 4/3), dry, (5,50,30,15), very fine sand with large pebbles (0.0625-30 mm) sub subrounded, nonplastic, low dry strength. Fle minerals, mica, muscovite and granodiorite p (30.0-35.0') Poorly graded SAND (SM), little + loose, light olive brown (2.5Y 5/3), dry, (5,85, very coarse grained (0.0625-4.0 mm) subang low dry strength.	e to coarse grained angular to ecks of ferrous (Fe+) pebbles present. gravel, little silt, ,10,0), very fine to	Backfilled with native material	
	7, 14, 20 18/18		1.1		(36.5-39.0') Silty SAND (SM), little clay, med brown (2.5Y 4/3), dry, (5,50,30,15), very fine sand with large pebbles (0.0625-30 mm) sub subrounded, nonplastic, low dry strength. Fle minerals, mica, muscovite and granodiorite p (39.0-40.0') Poorly graded SAND (SM), little loose, light olive brown (2.5Y 5/3), dry, (5,85, very coarse grained (0.0625-4.0 mm) subang low dry strength. End of boring at 40.0 ft bgs.	to coarse grained angular to acks of ferrous (Fe+) bebbles present. gravel, little silt, ,10,0), very fine to		
5	/ft = feet; "/in = applicable / av		neter; bǫ	gs= belo	ow ground surface; ppm= parts pe	r million; NE = no	t encountered;	NA = not
5								

ARCAD	S Design & Consultancy for natural and huilt accord					Boring	No.: <u>GT-KERN-(</u>	005
Soil Borin								
Project Name:	Southern Cal	lifornia Edison (SCE	E), TLR	R D	Date Started: <u>08/04/2017</u> Field Geo		<u>heet: 1 of</u> skrent	1
Project Number:			·		Completed: <u>08/04/2017</u>	Editor:		
Project Location	: <u>Kern County</u>	CA			Review	ved by: <u>Steve Bea</u>	dle, CEG	
Depth Sample (feet) Interva	e Blow Recovery Counts (in.)	, Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	NA HA		37.4		(0.0-3.0') Sandy SILT (ML) with little clay, loc (7.5YR 2.5/2), damp, (0,30,10,10), very fine sand, subangular to subrounded, medium pla strength, low toughness. (3.0-5.0') Poorly graded SAND (SM) with little very dense, dark brown (7.5YR 3/2), damp, (to medium grained asticity, low dry e gravel and silt, (20.70,10,0), fine to		
	7, 8, 50 18/18	GT-KERN-005 (5.5-6.0)	24.8		very coarse grained sand, granule to medium subangular to subrounded. (5.0-6.0') Clayey SAND (SC) with little clay, le brown (7.5YR 2.5/2), damp, (0,30,10), ve grained sand, subangular to subrounded, me dry strength, low toughness. At 5.5' color transition to brown (7.5YR 4/2). (6.0-6.5') Weathered bedrock, granodiorite w biotite) with iron staining.	oose, very dark ry fine to medium edium plasticity, low		
9 10	50/3" 4/18		10.5		(8.5-10.0') Auger refusal on bedrock, low rec bedrock, granodiorite with mica (muscovite, staining.		Backfilled with native material	
	50/2" 5/18		41.6		(13.5-15') Auger refusal on weathered bedro from grinding of rock bit.	ck, powered bedrock		
					End of boring at 15.0 ft bgs.			
្ទ <u>ី</u> 16 ឱ្យDrilling Co.:	Gregg Drilling			<u> </u>	Sampling Method:CA MO	D Split Speep 19	'/3"/2 5"	
Driller/Helper:		g LLC astillo / Jose Castillo	0		Sampling Method. <u>CA MO</u> Sampling Interval:2-ft (sar			
Drilling Method:		/ Hollow Stem Auge			Water Level Start (ft. bgs.	. ,	1001	
Drilling Fluid:	<u>NA</u>				Water Level Finish (ft. bto			
Drilling Rig:		lb pneumatic hamn	ner (30-	in drop] No	
Remarks:	'/ft = feet; "/in =	inch; mm= millimeter	r; bgs= b	elow gro	ound Surface Elev: <u>NA</u>			
		parts per million; NE :						
о С	= not applicabl	e / available; Hand Au	iger to 5	bgs.	East Coor: 118°39'40.1	902"		

Soil Boring Log Sheet: 1 of 1 Project Name: Southern California Edison (SCE), TLRR Date Started: 08/01/2017. Field Geologist: Valerie Naskrent Date Started: 08/01/2017. Editor: Project Location: Kern County, CA Date Completed: 08/01/2017. Editor: Reviewed by: Steve Beadle, CEG Project Location: Kern County, CA Sample Blow Recovery Sample ID Vippin USCS Description Construction Description Description Vippin Vippin - - - - - - Reviewed by: Steve Beadle, CEG - - - - - - - - - -
Project Name: Southern California Edison (SCE), TLRR Date Started: 08/01/2017_Field Geologist: Valerie Naskrent Project Number: 05032060.0000 Date Completed: 08/01/2017_Reviewed by: Steve Beadle, CEG Project Location: Kern County, CA Reviewed by: Steve Beadle, CEG Depth Sample Biow Recovery Sample ID PID USCS Depth Sample Counts Field Geologist: Construction Details Well
Project Number: 05032060.0000 Date Completed: Da
Depth (feet) Sample Blow Interval Counts Recovery (in.) Sample ID PID (ppm) USCS Class Description Construction Details Well
(feet) Interval Counts (in.) Sample ID (ppm) Class Description Details -
A constraint of the second
- -
6
Driller/Helper: Daniel Del Castillo / Jose Castillo Sampling Interval: 5-feet
Drilling Method: Hand Auger / Hollow Stem Auger Water Level Start (ft. bgs.): NE
Drilling Fluid: <u>NA</u> Water Level Finish (ft. btoc. <u>):NE</u>
Drilling Rig: <u>CME 95 140-lb pneumatic hammer (30-in drop)</u> Converted to Well: <u>Yes</u> <u>No</u>
Remarks: //ft = feet; "/in = inch; mm= millimeter; bgs= below ground Surface Elev: NA
surface; ppm= parts per million; NE = not encountered; NA North Coor: <u>34.935704</u> °

[
ARCAD	S Design & Co for natural a built assets	nsultancy Ind					Boring N	lo.:_GT-KERN-0)13
Soil Borin								neet: 1 of	2
Project Name:	<u>Southe</u>	ern Cali	ifornia Edison (SCE	<u>E), TLR</u>	<u>R</u> [Date Started:07/31/2017_Field Geo	logist: <u>Valerie Na</u> s	skrent	
Project Number:	05032	060.000	00		_ Date	Completed:07/31/2017 E	Editor:		
Project Location	: <u>Kern C</u>	County,	CA			Reviewe	ed by: <u>Steve Bead</u>	lle, CEG	
					I				
	e Blow R I Counts	lecovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	NA	НА				Asphalt 4"	and clay, loose.		
	1, 2, 4	11/18		0.5		very dark gray (7.5YR 3/1), damp, (5,70,20,5) medium grained, subangular to subrounded. (6.0-6.5) Increasing Clay (5,65,15,15), brown	, very fine to		
9 9 10 11	7, 10, 13	16/18	GT-KERN-013 (9.0-9.5)	1.2		(8.5-9.5') Silty SAND (SM) with little gravel, tra dense, very dark gray (7.5YR 3/1) moist, (10,7 to coarse grained, subangular to subrounded, (9.5-10') Decreasing Gravel and Clay (5,75,20 4/4).	70,15,5), very fine no plasticity	Backfilled with native material	
	8, 14, 15	14/18		2.8		(13.5-14.5') Silty SAND (SM) with little gravel, (5,60,25,10), dark greenish gray (GLEY 4/1). At 14.5' Silty SAND (SM) (5,70,15,10), greenis			
	4, 18, 20	16/18	GT-KERN-013 (19.0-19.5)	3.4		(18.5-19.5') Poorly graded SAND (SM) with litt clay, dense, dark yellowish brown (10YR 4/6), (2,70,18,10), very fine to medium grained, sub subrounded, low plasticity.	moist,		
g 20 / `						, . F	/		
Drilling Co.:	Grega	Drilling	LLC			Sampling Method:Rings 18	8"/2.5"		
Driller/Helper:		•	astillo / Jose Castillo	 כ		Sampling Interval <u>:2-ft (sam</u>		eet	
5 .							. ,		
Drilling Method:		-uger /	Hollow Stem Auge	1		Water Level Start (ft. bgs.):			
Drilling Fluid:	NA					Water Level Finish (ft. btoc			
Drilling Rig:)-lb pneumatic ham	•		.,	Yes 🛛 🕅	No	
Remarks:	'/ft = fee	et; "/in =	inch; mm= millimeter	; bgs= b	elow gro	ound Surface Elev: <u>NA</u>			
ЯЯ	surface	; ppm= i	parts per million; NE =	not en	countere	ed; NA North Coor: 34.7908055°			
			e / available; Hand Au			East Coor: -118.826925			
~ _					J-1				

	Consultancy and Is				Boring N	No.: <u>GT-KERN-C</u>)13
Soil Boring Lo					SI	neet: 2 of	2
Project Name: South	ern California Edison (SCE	,		Date Started: <u>07/31/2017</u> Field Geo	ologist: Valerie Na	skrent	
Project Number: 05032			_ Date		Editor:		
Project Location: Kern (County, CA		_	Review	ved by: <u>Steve Beac</u>	dle, CEG	
Depth Sample Blow I (feet) Interval Counts	Recovery (in.) Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	18/18 4/18 6/18 6/18 eet; "/in = inch; mm= millim rable / available; Hand Aug		-	 (23.5-24.5') SAND (SP) with little silt and trac yellowish brown (10YR 4/6), moist, (2,70,18, coarse grained, subangular to subrounded, la (24.5-25.0') Poorly graded SAND (SM), very brown (2.5Y 5/3), wet, (2,88,10,0), fine to vel subangular to subrounded, nonplastic. At 24.5' Water flowing on top of bedrock, loca (29.6-30') Poorly graded SAND (SM), very de brown (2.5Y 5/3), wet, (2,88,10,0), fine to vel subangular to subrounded, nonplastic. (33.5-34.5') No recovery, wet, refusal upon b (34.5-35') Poorly graded SAND (SM), very de brown (2.5Y 5/3), wet, (2,88,10,0), fine to vel subangular to subrounded, nonplastic. (34.5-35') Poorly graded SAND (SM), very de brown (2.5Y 5/3), wet, (2,88,10,0), fine to vel subangular to subrounded, nonplastic. End of boring at 35.0 ft bgs. 	ee clay, dense, dark 10), fine to very ow plasticity. dense, light olive ry coarse grained, alized spring uphill. ense, light olive ry coarse grained, eedrock (weathered). ense, light olive ry coarse grained,	Backfilled with	NA = not
	abic / availabic, Hallu Aug		nga.				
2 							

SPT Hammer Energy Reports

November 16, 2020

Gregg In-house Test Attn: Brian Savela

Re: Standard Penetration Energy Measurements Portable Hammer, PH-1 on D-20 Signal Hill Yard, Signal Hill, CA

Dear Mr. Savela,

This report offers results of energy measurements and related calculations made on November 13, 2020 during Standard Penetration Testing (SPT) and Modified California sampling on Gregg Drilling's portable automatic hammer on drill rig D20. Dynamic tests were performed on an instrumented section of NWJ drill rod attached to the sampler rod string. All dynamic measurements were obtained and recorded using a SPT Analyzer[®].

Average Energy: 78% Modified California samples, 81% SPT samples Sample Depths tested (in feet): 1, 2, 3.16, 5ft (MC samples) and 1, 2.5, 4, 5ft (SPT samples)

*Note: If the SPT Analyzer did not measure all blows for a sample depth, the reported blow count and therefore calculated N60 value in the following tables will be incorrect. Often blows are excluded from calculations if the sensors are loose or have drifted from the baseline. Field records of actual blow count values should be used in place of the blow counts shown in the following tables.

Equipment:

SPT energy measurements were made on SPT samplers driven by the hammer/anvil system on the Gregg Drilling drill rig on November 13, 2020. The rig was tested in the Gregg Drilling Signal Hill yard. In total, 4 energy measurements were collected corresponding to 4 different samples at increasing depth using both SPT and Modified California samplers.

Gregg used a SPT Analyzer (SPTA) to acquire and process measurements of force and velocity with every impact of the automatic hammer on the sample rods. Gregg follows the procedure outlined in ASTM D4633. Two strain gauges mounted on a two foot section of NWJ rod measured force, while two piezoresistive accelerometers bolted on the same rod measured acceleration. The gauges were mounted approximately 6" from the top of the rod.

Analog signals from the gauges and accelerometers were collected, digitized, displayed in real-time, and stored by the SPTA. Selected output from the SPTA for each recorded impact of the hammer included:

- Maximum force in the rod (FMX)
- Maximum velocity in the rod (VMX)
- Maximum calculated transferred energy (EFV)
- Blows per minute (BPM)
- Energy transferred to the rods (ETR)

Data and Calculations:

The purpose of testing was to measure the energy transferred from the hammer to the drill rod and to calculate the energy efficiency of the hammer. The SPTA measurements of force and velocity were reviewed after field testing and analyzed to calculate the transferred energy (EFV).

The maximum energy transferred past the gauge location, EFV, is computed by the SPTA using force (F) and velocity (V) records as follows:

 $EMX = \int_{a} F(t) V(t) dt$

The time "a" corresponds to the start of the record when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. The energy transferred is defined as ETR, and is usually used to define the efficiency of the hammer/anvil system.

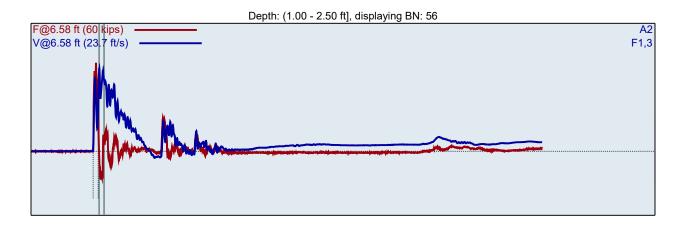
Results:

Tables for each sample depth summarize the average calculated energies for each sample tested as well as the details for each sample. It is shown that the overall average (ETR) energy for this system is 78% using Modified California samplers and 81% using SPT samplers . The Summary of SPT Test Results table at the end provides a summary of all the samples tested at each sampling depth. The plots and tables present selected measured and calculated results as a function of blow number. The results include:

- the blow number
- BC (blow count in feet) *NOTE: This is calculated by dividing the number of blows for each 6" of penetration by the 6" depth interval and is therefore only approximate. If some blows were deleted due to erroneous or poor data, the penetration depths are not correct.
- FMX (maximum rod force)
- VMX (maximum rod velocity)
- BPM (blows per minute)
- EFV (energy using the Force Velocity method in ft-lbs)
- ETR (energy transferred as a percentage of maximum)

At the end of each table is a statistical evaluation of the results for each variable including the average, standard deviation, maximum, minimum and what blow number these maximums and minimums occurred.

If you have any questions or comments on this report, please do not hesitate to call or e-mail me: kcabal@greggdrilling.com.


Sincerely,

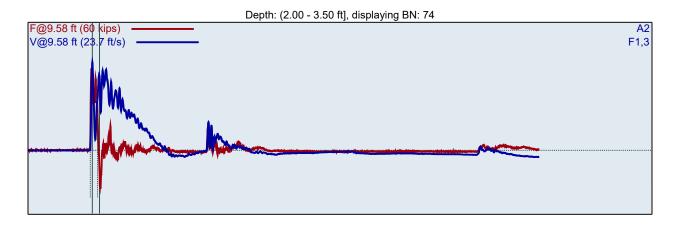
Kelly Cabal

Kelly Cabal Data Management & Communications Gregg Drilling, LLC

Appendix A

Pile Dynamics, Inc. Page 1 of 9 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1 Test date: 11/13/2020 Wessam Zanaty Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 6.58 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1


FMX: Maximum Force VMX: Maximum Velocity BPM: Blows/Minute				EFV: Maximum Energy ETR: Energy Transfer Ratio - R						
BL#	BC	FMX	VMX	BPM	EFV	ETR				
	/6"	kips	ft/s	bpm	ft-lb	%				
5	13	36	15.0	42.8	270	77.1				
6	13	37	15.4	43.7	269	76.9				
7	13	36	15.9	45.0	282	80.7				
8	13	36	15.2	45.0	260	74.3				
9	13	37	15.6	40.3	280	80.1				
10	13	37	16.3	45.0	295	84.2				
11	13	39	14.8	46.0	266	76.1				
12	13	38	15.9	46.3	280	80.0				
13	13	39	16.9	47.6	320	91.3				
14	13	40	17.1	53.2	312	89.2				
15	13	40	16.9	52.3	297	84.8				
16	13	39	17.2	54.2	303	86.5				
17	13	38	15.3	54.0	271	77.6				
18	15	36	15.3	39.8	253	72.2				
19	15	39	16.4	46.0	304	87.0				
20	15	38	16.6	48.7	294	83.9				
21	15	39	14.6	48.9	276	78.7				
22	15	37	14.7	41.2	262	74.8				
23	15	38	15.2	41.3	272	77.8				
24	15	38	16.3	47.7	294	84.0				
25	15	36	15.1	45.8	245	70.1				
26	15	39	14.9	39.8	273	77.9				
27	15	40	14.7	48.8	278	79.5				
28	15	38	16.0	47.7	275	78.6				
29	15	38	16.2	46.1	277	79.2				
30	15	37	16.1	46.6	275	78.5				
31	15	39	14.2	45.4	262	74.7				
32	15	36	15.2	45.4	262	74.8				

Page 2 of 9 PDA-S Ver. 2018.30 - Printed: 11/16/2020

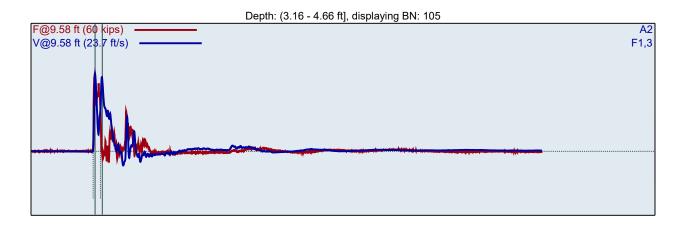
33	23	37	14.1	45.2	282	80.6
34	23	37	13.2	44.7	261	74.6
35	23	37	13.3	44.9	263	75.1
36	23	40	14.3	44.9	276	79.0
37	23	39	13.6	44.3	263	75.1
38	23	38	13.7	44.8	264	75.5
39	23	40	15.1	44.3	276	78.7
40	23	38	13.2	44.5	270	77.1
41	23	38	13.4	44.4	269	76.8
42	23	38	12.9	44.3	271	77.5
43	23	39	13.0	44.5	267	76.2
44	23	38	12.8	44.2	263	75.1
45	23	39	12.9	44.3	262	74.8
46	0	39	13.2	44.0	263	75.1
47	0	37	12.7	43.9	267	76.4
48	0	37	12.4	40.2	264	75.5
49	0	39	12.8	39.0	260	74.4
50	0	39	12.8	42.1	267	76.2
51	0	38	13.4	42.9	267	76.2
52	0	39	12.6	43.1	270	77.2
53	13	39	16.9	1.9	242	69.2
 54	13	41	16.9	22.8	259	74.0
55	15	37	16.6	67.3	255	72.8
56	23	41	15.4	63.5	288	82.2
 57	23	40	15.4	67.1	265	75.8
	Average	38	14.3	46.1	270	77.1
	Std Dev	1	1.3	6.3	11	3.3
	Maximum	41	16.6	67.3	304	87.0
	Minimum	36	12.4	39.0	245	70.1
		N-\	/alue: 38			

Sample Interval Time: 734.76 seconds.

Pile Dynamics, Inc. Page 3 of 9 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1 Test date: 11/13/2020 Wessam Zanaty Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 6.58 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
33	23	37	14.1	45.2	282	80.6
34	23	37	13.2	44.7	261	74.6
35	23	37	13.3	44.9	263	75.1
36	23	40	14.3	44.9	276	79.0
37	23	39	13.6	44.3	263	75.1
38	23	38	13.7	44.8	264	75.5
39	23	40	15.1	44.3	276	78.7
40	23	38	13.2	44.5	270	77.1
41	23	38	13.4	44.4	269	76.8
42	23	38	12.9	44.3	271	77.5
43	23	39	13.0	44.5	267	76.2
44	23	38	12.8	44.2	263	75.1
45	23	39	12.9	44.3	262	74.8
46	23	39	13.2	44.0	263	75.1
47	23	37	12.7	43.9	267	76.4
48	23	37	12.4	40.2	264	75.5
49	23	39	12.8	39.0	260	74.4
50	23	39	12.8	42.1	267	76.2
51	23	38	13.4	42.9	267	76.2
52	23	39	12.6	43.1	270	77.2
53	23	39	16.9	1.9	242	69.2
54	23	41	16.9	22.8	259	74.0
55	23	37	16.6	67.3	255	72.8
56	23	41	15.4	63.5	288	82.2
57	23	40	15.4	67.1	265	75.8
58	23	41	15.2	41.8	270	77.0
59	5	40	17.1	45.8	264	75.4
60	5	31	11.6	47.8	160	45.6
61	5	39	15.5	73.6	249	71.2
62	5	40	16.1	55.4	263	75.3
63	5 5	37	17.2	63.8	273	78.1


Page 4 of 9 PDA-S Ver. 2018.30 - Printed: 11/16/2020

64	5	41	16.8	62.6	267	76.2
65	5	43	16.4	62.9	255	72.7
66	5	40	15.6	63.0	257	73.3
67	0	40	17.3	65.9	264	75.5
68	0	43	16.5	60.4	265	75.8
69	5	39	16.7	1.9	278	79.3
71	5	40	15.1	69.2	244	69.7
72	5	36	15.5	58.4	244	69.7
73	5	39	16.4	48.7	280	80.0
	Average	39	16.0	55.7	254	72.7
	Std Dev	3	1.4	16.8	28	8.1
	Maximum	43	17.3	73.6	280	80.0
	Minimum	31	11.6	1.9	160	45.6
		NL	(alua: 14			

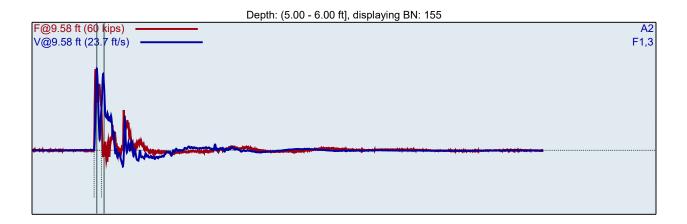
N-value: 14

Sample Interval Time: 967.20 seconds.

Pile Dynamics, Inc. Page 5 of 9 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1 Test date: 11/13/2020 Wessam Zanaty Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 6.58 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
65	13	43	16.4	62.9	255	72.7
66	13	40	15.6	63.0	257	73.3
67	13	40	17.3	65.9	264	75.5
68	13	43	16.5	60.4	265	75.8
69	13	39	16.7	1.9	278	79.3
71	13	40	15.1	69.2	244	69.7
72	13	36	15.5	58.4	244	69.7
73	13	39	16.4	48.7	280	80.0
74	13	39	16.3	58.4	286	81.6
75	13	36	15.5	55.8	267	76.3
76	13	35	15.2	55.0	275	78.5
77	13	39	16.1	54.3	305	87.0
78	13	36	16.1	53.8	299	85.3
79	13	35	15.2	53.6	290	82.9
80	13	36	15.8	52.7	293	83.8
81	13	35	15.4	53.0	307	87.8
82	13	35	15.0	53.1	287	82.0
83	13	36	15.6	52.6	291	83.1
84	13	34	15.0	52.6	288	82.2
85	13	36	15.4	52.4	281	80.3
86	13	34	15.0	52.3	297	84.9
87	13	37	15.4	56.4	287	82.1
88	13	33	14.8	56.0	281	80.4
89	13	37	15.3	54.9	269	77.0
90	13	35	14.8	52.7	286	81.7
91	13	39	15.6	51.6	299	85.3
92	13	35	14.7	52.2	303	86.5
93	13	38	15.2	52.5	284	81.1
94	13	37	15.6	52.8	295	84.3
95	13	41	15.6	21.8	317	90.7
96	13	38	15.4	49.7	306	87.3


Page 6 of 9 PDA-S Ver. 2018.30 - Printed: 11/16/2020

		NL-X	/alue: 26			
	Minimum	33	13.7	21.8	253	72.2
	Maximum	41	15.6	56.4	317	90.7
	Std Dev	2	0.5	6.4	13	3.7
	Average	36	14.9	51.5	289	82.4
107	13	34	14.1	55.4	290	82.9
106	13	35	15.1	52.3	297	84.7
105	13	35	14.3	45.5	296	84.7
104	13	34	13.7	53.8	267	76.2
103	13	37	14.9	54.3	286	81.6
102	13	36	14.7	55.8	288	82.3
101	13	35	14.6	47.8	298	85.2
100	13	35	14.5	51.6	253	72.2
99	13	33	13.8	54.5	274	78.4
98	13	37	15.4	51.7	289	82.5
97	13	33	14.4	53.1	293	83.7

N-value: 26

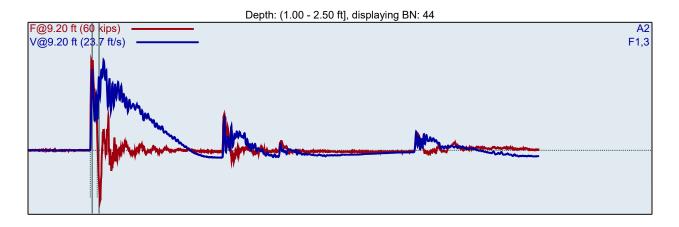
Sample Interval Time: 300.30 seconds.

Pile Dynamics, Inc. Page 7 of 9 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1 Test date: 11/13/2020 Wessam Zanaty Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 9.58 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
22//	/6"	kips	ft/s	bpm	ft-lb	%
108	23	36	15.0	1.9	246	70.4
109	23	36	14.5	24.1	241	68.8
110	23	36	15.4	46.8	274	78.2
111	23	40	15.5	52.3	270	77.1
112	23	39	15.4	49.3	261	74.6
113	23	36	15.0	59.6	265	75.6
114	23	40	15.4	57.0	263	75.1
115	23	39	15.2	55.2	272	77.6
116	23	36	15.6	55.0	275	78.6
117	23	38	15.4	56.1	267	76.2
118	23	37	15.5	54.8	273	78.1
119	23	39	15.3	55.1	278	79.5
120	23	41	15.9	54.7	275	78.6
121	23	38	15.0	54.6	277	79.2
122	23	39	15.4	55.1	265	75.7
123	23	39	15.7	54.4	285	81.5
124	23	40	15.6	54.6	279	79.7
125	23	39	15.7	54.4	262	75.0
126	23	41	15.2	54.6	284	81.2
127	23	39	15.6	54.2	286	81.8
128	23	37	15.4	54.4	273	78.0
129	23	37	15.4	54.3	273	77.9
130	23	37	15.7	54.2	265	75.7
131	27	42	16.0	60.5	275	78.6
132	27	36	15.3	53.6	250	71.5
133	27	37	14.4	47.4	246	70.4
134	27	39	14.9	46.6	249	71.2
135	27	37	14.5	46.3	266	76.0
136	27	40	14.9	47.4	253	72.2
137	27	40	15.4	47.2	274	78.3
138	27	41	15.7	53.0	273	78.1

Page 8 of 9 PDA-S Ver. 2018.30 - Printed: 11/16/2020


139	27	39	15.3	52.6	279	79.8
140	27	38	15.9	52.0	263	75.1
141	27	41	15.9	51.9	274	78.4
142	27	41	15.5	52.9	277	79.1
143	27	39	15.8	52.3	277	79.2
144	27	38	15.4	51.9	267	76.3
145	27	41	15.5	52.2	271	77.4
146	27	39	15.2	51.5	279	79.7
147	27	39	15.5	51.2	280	79.9
148	27	38	15.4	51.8	264	75.4
149	27	41	15.4	51.3	280	79.9
150	27	42	15.5	51.7	276	78.9
151	27	41	15.3	51.2	282	80.7
152	27	39	15.4	51.4	277	79.0
153	27	40	15.3	51.2	286	81.8
154	27	41	15.5	51.4	280	79.9
155	27	38	15.1	51.3	277	79.1
156	27	39	15.4	50.7	281	80.3
157	27	39	15.4	50.8	281	80.3
	Average	39	15.4	51.0	271	77.4
	Std Dev	2	0.3	8.6	11	3.1
	Maximum	42	16.0	60.5	286	81.8
	Minimum	36	14.4	1.9	241	68.8
		N-\	value: 50			

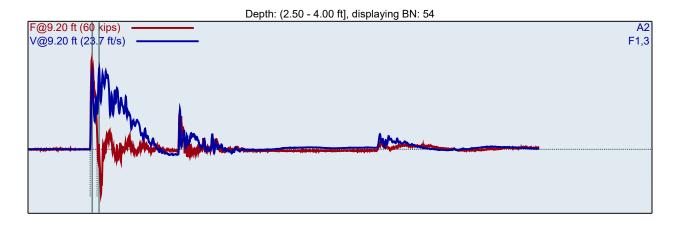
Sample Interval Time: 57.42 seconds.

Summary of SPT Test Results

MX: Maximum Force						Ef	V: Maximum Energ	у
/MX: Maximum Velocity						ET	TR: Energy Transfer	Ratio - Rated
3PM: Blows/Minute								
Instr.	Blows	N	N60	Average	Average	Average	Average	Average
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"			kips	ft/s	bpm	ft-lb	%
6.58	13-15-23	38	49	38	14.3	46.1	270	77.1
6.58	23-5-5	10	12	39	16.0	55.7	254	72.7
6.58	13-13-13	26	33	36	14.9	51.5	289	82.4
9.58	23-27	27	35	39	15.4	51.0	271	77.4
		Overall Ave	rage Values:	38	15.0	50.2	272	77.8
	Standard Deviation:		2	1.4	12.9	19	5.3	
		Overall Max	imum Value:	43	17.3	73.6	317	90.7
		Overall Min	imum Value:	31	11.6	1.9	160	45.6

Pile Dynamics, Inc. Page 1 of 8 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1-a Wessam Zanaty Test date: 11/13/2020 Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 7.20 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

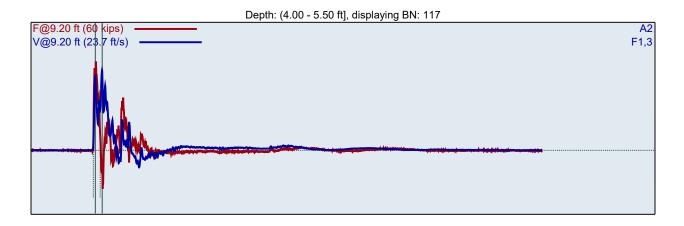

FMX: Maximum Force VMX: Maximum Velocity BPM: Blows/Minute				EFV: Maximum Energy ETR: Energy Transfer Ratio - Rated			
BL#	BC	FMX	VMX	BPM	EFV	ETR	
	/6"	kips	ft/s	bpm	ft-lb	%	
21	10	41	14.1	45.6	259	73.9	
22	10	42	15.2	46.3	300	85.7	
23	10	40	14.5	49.7	278	79.5	
24	10	43	14.9	49.9	291	83.1	
25	10	40	14.8	48.8	272	77.7	
26	10	39	14.6	48.5	268	76.6	
27	10	40	15.9	49.1	286	81.7	
28	10	40	15.6	49.0	274	78.1	
29	10	39	14.4	49.1	276	78.9	
30	10	41	14.9	48.5	255	72.9	
31	10	41	15.2	48.4	276	78.9	
32	10	40	15.6	48.2	275	78.5	
33	10	41	14.5	48.6	267	76.2	
34	10	39	14.1	48.5	250	71.5	
35	10	37	14.6	44.5	239	68.3	
36	10	39	14.8	43.0	256	73.0	
37	10	42	15.2	43.3	273	77.9	
38	10	40	14.9	53.5	294	84.1	
39	10	38	14.4	53.5	296	84.5	
40	10	40	15.2	52.0	322	92.0	
41	6	37	16.0	1.9	234	66.8	
42	6	32	12.5	68.0	169	48.3	
43	6	38	15.6	24.0	247	70.7	
44	6	42	16.7	43.4	294	84.1	
45	6	40	15.4	61.3	262	75.0	
46	6	41	15.9	56.2	269	76.9	

Page 2 of 8 PDA-S Ver. 2018.30 - Printed: 11/16/2020

Average	39	15.0	46.2	264	75.4
Std Dev	2	0.9	14.7	33	9.5
Maximum	42	16.7	68.0	322	92.0
Minimum	32	12.5	1.9	169	48.3
	N-\				

Sample Interval Time: 394.95 seconds.

Pile Dynamics, Inc. Page 3 of 8 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1-a Wessam Zanaty Test date: 11/13/2020 Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 9.20 ft EM: 30000 ksi WS: 16807.9 ft/s

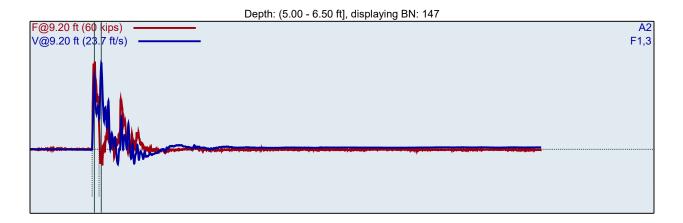

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

A2 (PR): [K3719] 368 mv/6.4v/5000g (1) VF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
47	5	40	16.0	56.7	276	78.8
48	5	41	16.2	57.5	264	75.5
49	5	37	14.8	59.0	220	62.9
50	5	39	15.8	63.2	250	71.5
51	5	41	17.4	64.7	254	72.6
52	5	42	17.4	61.9	273	77.9
53	5	42	17.1	61.1	279	79.8
54	5	42	15.0	59.3	292	83.5
55	5	40	15.9	59.1	310	88.5
56	5	40	14.7	59.6	273	78.0
	Average	41	16.0	60.2	285	81.5
	Std Dev	1	1.1	1.1	14	4.0
	Maximum	42	17.4	61.9	310	88.5
	Minimum	40	14.7	59.1	273	77.9
		N-	value: 5			

Sample Interval Time: 8.92 seconds.

Pile Dynamics, Inc. Page 4 of 8 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1-a Wessam Zanaty Test date: 11/13/2020 Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 9.20 ft EM: 30000 ksi WS: 16807.9 ft/s


F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

	()					
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
57	11	38	15.9	1.9	264	75.6
59	11	35	14.9	25.2	235	67.1
60	11	39	15.6	50.3	293	83.7
61	11	38	14.3	57.4	275	78.4
62	11	39	15.0	58.1	285	81.5
63	11	37	14.6	57.9	274	78.3
64	11	37	14.9	58.5	279	79.8
65	11	39	14.7	51.6	286	81.7
66	11	38	15.4	52.6	299	85.4
67	11	39	14.9	53.3	287	81.9
68	16	39	15.7	53.9	301	86.1
69	16	39	15.3	53.8	301	86.1
70	16	38	15.1	53.9	294	83.9
71	16	39	15.4	54.1	285	81.5
72	16	39	15.8	54.0	295	84.3
73	16	39	15.7	54.2	304	86.8
74	16	38	15.1	54.0	291	83.0
75	16	38	14.1	60.9	265	75.8
76	16	39	15.9	55.9	294	84.1
77	16	37	14.7	56.6	283	80.9
78	16	38	15.1	56.8	292	83.4
79	16	38	15.6	55.8	287	82.0
80	16	39	14.7	56.0	291	83.2
81	16	39	15.3	56.1	304	86.8
82	16	33	12.0	57.3	205	58.6
83	16	36	14.5	68.4	273	77.9
84	36	37	13.3	60.5	254	72.5
85	36	36	13.4	63.1	246	70.3
86	36	33	12.0	59.6	189	54.1
87	36	36	14.6	69.5	266	75.9
88	36	38	13.9	53.7	284	81.1

89	36	39	14.7	52.2	317	90.6
90	36	36	14.1	60.2	265	75.7
91	36	38	14.0	54.8	284	81.1
92	36	37	13.7	54.7	286	81.8
93	36	38	14.1	53.1	289	82.7
94	36	38	14.5	51.7	319	91.0
95	36	38	13.5	52.6	277	79.2
96	36	38	14.6	53.1	309	88.4
97	36	40	15.0	52.7	307	87.7
98	36	37	13.6	53.3	300	85.6
99	36	38	14.1	53.3	285	81.4
100	36	39	14.3	53.1	294	84.1
101	36	40	14.4	52.7	307	87.8
102	36	38	13.1	53.5	297	84.9
103	36	39	14.5	53.1	311	88.7
104	36	38	13.5	53.4	300	85.6
105	36	38	13.7	53.5	289	82.4
106	36	38	13.2	53.1	292	83.5
107	36	38	15.9	1.9	253	72.3
108	36	42	17.3	18.6	290	82.8
109	36	41	15.2	55.9	281	80.3
110	36	39	14.4	57.7	267	76.3
111	36	39	14.1	60.4	298	85.2
112	36	40	15.0	55.7	306	87.5
113	36	39	14.8	55.5	299	85.4
114	36	40	15.0	55.4	303	86.6
115	36	40	14.2	55.4	301	86.1
116	36	40	14.3	55.6	298	85.2
117	36	42	14.9	55.5	299	85.4
118	36	40	13.7	54.9	294	84.0
119	36	39	15.2	54.9	309	88.3
	Average	38	14.5	54.0	287	82.0
	Std Dev	2	1.0	9.6	24	6.8
	Maximum	42	17.3	69.5	319	91.0
	Minimum	33	12.0	1.9	189	54.1
		N-\	/alue: 52			

Sample Interval Time: 322.50 seconds.

Page 6 of 8 Pile Dynamics, Inc. SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/16/2020 PH-1 1-a Wessam Zanaty Test date: 11/13/2020 Signal Hill yard BH AR: 1.42 in^2 SP: 0.492 k/ft3 LE: 9.20 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
84	36	37	13.3	60.5	254	72.5
85	36	36	13.4	63.1	246	70.3
86	36	33	12.0	59.6	189	54.1
87	36	36	14.6	69.5	266	75.9
88	36	38	13.9	53.7	284	81.1
89	36	39	14.7	52.2	317	90.6
90	36	36	14.1	60.2	265	75.7
91	36	38	14.0	54.8	284	81.1
92	36	37	13.7	54.7	286	81.8
93	36	38	14.1	53.1	289	82.7
94	36	38	14.5	51.7	319	91.0
95	36	38	13.5	52.6	277	79.2
96	36	38	14.6	53.1	309	88.4
97	36	40	15.0	52.7	307	87.7
98	36	37	13.6	53.3	300	85.6
99	36	38	14.1	53.3	285	81.4
100	36	39	14.3	53.1	294	84.1
101	36	40	14.4	52.7	307	87.8
102	36	38	13.1	53.5	297	84.9
103	36	39	14.5	53.1	311	88.7
104	36	38	13.5	53.4	300	85.6
105	36	38	13.7	53.5	289	82.4
106	36	38	13.2	53.1	292	83.5
107	36	38	15.9	1.9	253	72.3
108	36	42	17.3	18.6	290	82.8
109	36	41	15.2	55.9	281	80.3
110	36	39	14.4	57.7	267	76.3
111	36	39	14.1	60.4	298	85.2
112	36	40	15.0	55.7	306	87.5
113	36	39	14.8	55.5	299	85.4
114	36	40	15.0	55.4	303	86.6

Page 7 of 8 PDA-S Ver. 2018.30 - Printed: 11/16/2020

115	36	40	14.2	55.4	301	86.1
116	36	40	14.3	55.6	298	85.2
117	36	42	14.9	55.5	299	85.4
118	36	40	13.7	54.9	294	84.0
119	36	39	15.2	54.9	309	88.3
120	20	40	15.5	55.2	288	82.2
121	20	40	13.9	55.0	276	78.9
122	20	41	15.3	54.9	306	87.6
123	20	40	14.0	54.9	271	77.5
124	20	42	15.4	53.2	292	83.5
125	20	40	14.8	54.1	281	80.2
126	20	40	15.0	55.6	294	84.0
127	20	40	14.3	54.8	283	80.9
128	20	40	15.2	55.8	291	83.2
129	20	39	14.5	53.2	290	82.8
130	20	42	15.9	52.9	292	83.5
131	20	40	15.3	52.9	290	82.8
132	20	39	16.0	52.2	289	82.4
133	20	40	16.1	50.9	293	83.7
134	20	40	16.9	50.7	277	79.1
135	20	40	17.2	61.0	266	76.1
136	20	38	17.0	60.7	294	84.0
137	20	39	15.5	59.0	291	83.0
138	20	40	16.7	52.5	295	84.3
139	20	42	15.9	52.7	290	82.8
140	10	41	16.6	52.0	309	88.1
141	10	39	15.4	51.7	301	86.1
142	10	39	17.1	51.3	299	85.4
143	10	41	16.7	52.0	317	90.5
144	10	41	16.9	51.4	311	88.8
145	10	40	16.3	51.2	303	86.6
146	10	40	15.7	52.3	298	85.0
147	10	41	16.0	50.5	311	89.0
148	10	40	16.3	51.1	321	91.8
149	10	41	16.4	51.6	339	96.9
	Average	40	15.8	53.6	295	84.4
	Std Dev	1	0.9	2.7	15	4.3
	Maximum	42	17.2	61.0	339	96.9
	Minimum	38	13.9	50.5	266	76.1
		N-\	/alue: 30			

Sample Interval Time: 326.20 seconds.

Summary of SPT Test Results

Project: PH-1, Test Date: 11/13/2020 FMX: Maximum Force								EFV: Maximum Energy	
VMX: Maximum Velocity							ETR: Energy Transfer Ratio - Rated		
BPM: Blows/Minute									
Instr.	Blows	N	N60	Average	Average	Average	Average	Average	
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR	
ft	/6"			kips	ft/s	bpm	ft-lb	%	
7.20	10-10-6	16	21	39	15.0	46.2	264	75.4	
9.20	5-5-0	5	6	41	16.0	60.2	285	81.5	
9.20	11-16-36	52	70	38	14.5	54.0	287	82.0	
9.20	36-20-10	30	40	40	15.8	53.6	295	84.4	
		Overall Ave	rage Values:	39	15.0	53.0	286	81.7	
	Standard Deviation:			2	1.3	11.7	29	8.3	
		Overall Max	imum Value:	42	17.4	69.5	339	96.9	
		Overall Min	imum Value:	32	12.0	1.9	169	48.3	

November 17, 2020

Gregg Drilling In-house Attn: Brian Savela

Re: Standard Penetration Energy Measurements Automatic Hammer on Mud Rotary Drill Rig, D-43 Gregg Drilling yard, Signal Hill, CA

Dear Mr. Savela,

This report offers results of energy measurements and related calculations made on November 12, 2020 during Standard Penetration Testing (SPT) and Modified California sampling on Gregg Drilling's mud rotary drill rig. Dynamic tests were performed on an instrumented section of NWJ drill rod attached to the sampler rod string. All dynamic measurements were obtained and recorded using a SPT Analyzer[®].

Average Energy: 81% Sample Depths tested (in feet): 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5

*Note: If the SPT Analyzer did not measure all blows for a sample depth, the reported blow count and therefore calculated N60 value in the following tables will be incorrect. Often blows are excluded from calculations if the sensors are loose or have drifted from the baseline. Field records of actual blow count values should be used in place of the blow counts shown in the following tables.

Equipment:

SPT energy measurements were made on SPT samplers driven by the hammer/anvil system on the Gregg Drilling drill rig on November 12, 2020. The rig was tested Gregg Drilling yard in Signal Hill, CA. In total, 8 energy measurements were collected corresponding to 8 different samples at increasing depth.

Gregg used a SPT Analyzer (SPTA) to acquire and process measurements of force and velocity with every impact of the automatic hammer on the sample rods. Gregg follows the procedure outlined in ASTM D4633. Two strain gauges mounted on a two foot section of NWJ rod measured force, while two piezoresistive accelerometers bolted on the same rod measured acceleration. The gauges were mounted approximately 6" from the top of the rod.

Analog signals from the gauges and accelerometers were collected, digitized, displayed in real-time, and stored by the SPTA. Selected output from the SPTA for each recorded impact of the hammer included:

- Maximum force in the rod (FMX)
- Maximum velocity in the rod (VMX)
- Maximum calculated transferred energy (EFV)
- Blows per minute (BPM)
- Energy transferred to the rods (ETR)

Data and Calculations:

The purpose of testing was to measure the energy transferred from the hammer to the drill rod and to calculate the energy efficiency of the hammer. The SPTA measurements of force and velocity were reviewed after field testing and analyzed to calculate the transferred energy (EFV).

The maximum energy transferred past the gauge location, EFV, is computed by the SPTA using force (F) and velocity (V) records as follows:

 $EMX = \int_{a} F(t) V(t) dt$

The time "a" corresponds to the start of the record when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. The energy transferred is defined as ETR, and is usually used to define the efficiency of the hammer/anvil system.

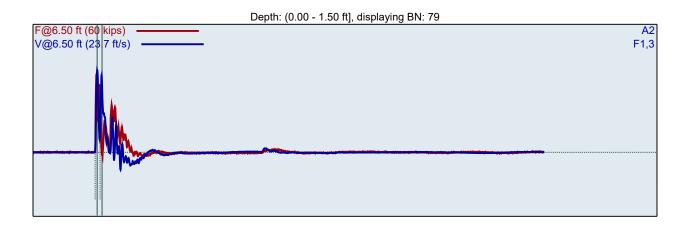
Results:

Tables for each sample depth summarize the average calculated energies for each sample tested as well as the details for each sample. It is shown that the overall average (ETR) energy for this system is 81%. The Summary of SPT Test Results table at the end provides a summary of all the samples tested at each sampling depth. The plots and tables present selected measured and calculated results as a function of blow number. The results include:

- the blow number
- BC (blow count in feet) *NOTE: This is calculated by dividing the number of blows for each 6" of penetration by the 6" depth interval and is therefore only approximate. If some blows were deleted due to erroneous or poor data, the penetration depths are not correct.
- FMX (maximum rod force)
- VMX (maximum rod velocity)
- BPM (blows per minute)
- EFV (energy using the Force Velocity method in ft-lbs)
- ETR (energy transferred as a percentage of maximum)

At the end of each table is a statistical evaluation of the results for each variable including the average, standard deviation, maximum, minimum and what blow number these maximums and minimums occurred.

If you have any questions or comments on this report, please do not hesitate to call or e-mail me: kcabal@greggdrilling.com.


Sincerely,

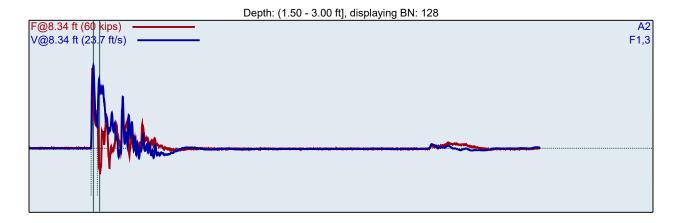
Kelly Cabal

Kelly Cabal Data Management & Communications Gregg Drilling, LLC

Appendix A

Pile Dynamics, Inc. Page 1 of 17 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/17/2020 D-43 0 Wessam Zanaty Test date: 11/12/2020 Signal Hill yard BH AR: 1.42 SP: 0.492 k/ft3 in^2 LE: 6.50 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1


FMX: Maximum Force VMX: Maximum Velocity BPM: Blows/Minute	Velocity			EFV: Maximum Energy ETR: Energy Transfer Ratio - Rateo			
BL#	BC	FMX	VMX	BPM	EFV	ETR	
	/6"	kips	ft/s	bpm	ft-lb	%	
2	14	37	14.9	16.2	260	74.3	
3	14	35	15.2	34.2	269	76.7	
4	14	29	14.5	34.0	200	57.0	
5	14	35	14.6	34.3	261	74.6	
6	14	34	14.5	34.0	256	73.0	
7	14	36	14.7	36.4	263	75.0	
8	14	36	14.8	38.2	262	74.9	
9	14	37	14.9	38.7	269	76.7	
10	14	37	14.7	38.4	271	77.5	
11	14	37	14.5	20.2	267	76.3	
12	14	37	14.7	38.8	266	76.1	
13	14	37	14.8	38.6	271	77.6	
14	14	37	14.4	38.5	277	79.1	
15	24	37	14.5	38.7	267	76.4	
16	24	37	14.5	38.5	269	76.8	
17	24	36	14.5	38.5	269	76.8	
18	24	37	14.8	38.5	273	78.0	
19	24	37	14.6	38.8	291	83.2	
20	24	36	14.5	38.7	276	79.0	
21	24	39	15.2	38.2	288	82.2	
22	24	36	14.7	38.4	283	81.0	
23	24	36	14.5	38.9	274	78.3	
24	24	35	14.7	38.4	272	77.7	
25	24	37	14.8	38.6	274	78.4	
26	24	36	14.5	38.6	267	76.2	
27	24	37	14.6	38.6	274	78.4	
28	24	37	14.8	38.4	273	78.0	
29	24	37	15.3	38.7	274	78.3	

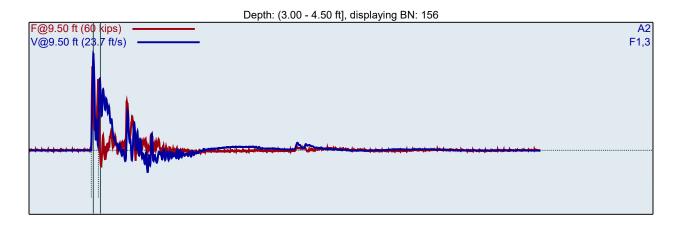
•						
30	24	36	14.6	38.5	261	74.7
31	24	37	14.6	38.4	285	81.3
32	24 24	36	14.8	38.8	285	81.5
33	24	37	14.9	38.3	290	82.8
34	24	37	14.8	41.3	292	83.5
35	24	37	14.9	41.4	285	81.5
36	24	36	14.7	41.2	291	83.2
37	24	37	14.9	41.1	290	83.0
38	24	37	14.8	40.9	295	84.2
39	43	36	14.8	41.4	283	80.7
40	43	37	14.9	41.2	284	81.2
41	43	36	14.9	40.9	291	83.0
42	43	37	14.8	41.5	286	81.7
43	43	37	14.8	41.3	282	80.7
44	43	37	14.9	40.6	286	81.8
45	43	36	14.6	41.7	281	80.4
46	43	37	14.8	40.8	288	82.3
47	43	36	14.8	41.5	285	81.4
48	43	37	15.0	40.6	288	82.2
49	43	37	14.8	41.7	282	80.5
50	43	37	14.7	41.0	284	81.0
51	43	36	14.7	41.4	284	81.0
52	43	37	14.8	41.0	284	81.1
53	43	36	14.6	41.2	285	81.5
54	43	37	14.7	40.9	283	80.9
55	43	36	14.7	41.5	285	81.4
56	43	37	14.7	41.0	283	80.8
57	43	36	14.8	41.2	286	81.7
58	43	37	15.1	40.7	287	81.9
59	43	37	14.7	41.5	282	80.6
60	43	36	14.8	40.8	283	80.9
61	43	37	14.7	41.2	283	80.7
62	43	37	14.8	40.9	284	81.3
63	43	36	14.9	41.4	283	80.9
64	43	37	14.9	40.8	282	80.6
65	43	37	14.8	41.3	284	81.1
66	43	37	14.7	41.1	283	80.7
67	43	37	14.8	41.1	281	80.4
68	43	36	15.0	41.2	280	80.1
69	43	36	14.7	41.0	280	80.0
70	43	36	14.9	41.2	283	80.7
71	43	36	14.6	41.2	279	79.8
72	43	36	15.0	40.9	286	81.7
73	43	36	14.6	41.3	281	80.4
73	43	37	14.9	40.4	286	81.8
75	43	35	15.0	41.5	283	80.8
76	43	37	15.1	40.8	285	81.5
70	43	36	14.8	41.3	288	82.1
78	43	36	14.9	40.9	288	82.4
78	43	36	14.9	40.9	290	82.7
80	43	37	14.9	41.2	290	83.1
81	43	39	14.9	41.1	309	88.2
01	Average	39	14.8	40.4	283	80.8
	Std Dev	1	0.2	1.2	203	2.1
	Maximum	39	15.4	42.6	309	88.2
	Minimum	35	14.5	38.2	261	74.7
	winningin		alue: 67	00.2	201	/4./
		IN-V				

Sample Interval Time: 120.54 seconds.

Page 3 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

D-43	0
Wessam Zanaty	Test date: 11/12/2020
Signal Hill yard BH	
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 8.34 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1


BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
82	13	37	15.7	1.9	268	76.7
83	13	36	15.0	19.7	271	77.4
84	13	37	16.1	35.5	282	80.5
85	13	40	16.0	39.3	286	81.8
86	13	39	15.7	40.4	284	81.1
87	13	39	16.4	40.0	289	82.6
89	13	39	16.9	37.8	302	86.4
90	13	36	15.4	40.8	278	79.5
91	13	38	17.0	40.6	273	78.0
92	13	37	15.3	40.3	289	82.6
93	13	39	15.9	40.6	286	81.6
94	13	37	15.3	40.4	281	80.2
95	18	38	15.6	40.1	280	80.0
96	18	39	15.6	40.8	279	79.6
97	18	38	15.7	40.5	287	82.0
98	18	39	15.7	40.5	290	82.7
99	18	37	15.2	40.5	286	81.7
100	18	39	15.8	40.2	291	83.1
101	18	39	15.9	40.6	292	83.4
102	18	38	15.3	40.5	289	82.6
103	18	37	15.4	40.5	286	81.7
104	18	38	16.3	40.5	296	84.6
105	18	38	15.2	40.5	283	80.9
106	18	37	15.4	40.3	288	82.2
107	18	38	15.8	40.5	285	81.4
108	18	37	15.2	40.4	289	82.4
109	18	38	15.1	40.0	291	83.2
110	18	37	15.3	40.7	289	82.6
111	18	40	16.0	40.1	303	86.5
112	18	38	15.5	43.7	293	83.7
113	18	40	16.3	43.7	302	86.3

Page 4 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

114	18	39	16.0	43.8	302	86.1
115	18	39	15.7	43.6	280	80.1
116	18	39	15.7	43.9	288	82.3
117	18	40	16.5	43.6	298	85.0
118	18	38	15.4	44.0	289	82.6
119	18	40	16.3	43.1	297	84.9
120	18	38	15.7	44.2	293	83.6
121	18	39	16.7	43.5	293	83.7
122	18	39	15.8	43.8	299	85.4
123	18	38	15.5	43.6	299	85.3
124	18	38	15.6	43.9	291	83.1
125	18	38	15.6	43.4	288	82.3
126	18	39	15.7	43.7	289	82.5
127	18	39	16.4	43.9	291	83.3
128	18	38	15.3	43.3	287	82.1
129	18	40	16.1	44.0	289	82.5
130	18	38	15.3	43.9	274	78.3
	Average	38	15.7	42.2	290	82.9
	Std Dev	1	0.4	1.7	6	1.8
	Maximum	40	16.7	44.2	303	86.5
	Minimum	37	15.1	40.0	274	78.3
		N-\	/alue: 36			

Sample Interval Time: 70.57 seconds.

Pile Dynamics, Inc. Page 5 of 17 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 11/17/2020 D-43 0 Wessam Zanaty Test date: 11/12/2020 Signal Hill yard BH AR: 1.42 SP: 0.492 k/ft3 in^2 LE: 9.50 ft EM: 30000 ksi WS: 16807.9 ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

	. ,					
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
131	6	34	17.0	1.9	244	69.7
132	6	37	16.3	19.6	262	75.0
133	6	38	16.2	35.1	243	69.3
134	6	39	16.4	37.5	250	71.4
135	6	37	17.5	38.0	249	71.0
136	6	39	16.0	39.0	257	73.6
137	7	39	17.3	39.6	252	71.9
138	7	37	16.9	39.9	233	66.7
139	7	37	17.3	39.2	246	70.2
140	7	38	17.3	39.0	254	72.5
141	7	38	17.3	40.1	246	70.1
142	7	39	17.5	39.0	249	71.0
143	7	37	17.6	39.4	253	72.4
144	15	37	17.8	39.9	239	68.4
145	15	39	18.0	39.3	256	73.2
146	15	39	18.1	39.1	264	75.4
147	15	39	17.4	39.9	263	75.2
148	15	35	16.6	39.2	256	73.2
149	15	36	18.3	39.3	262	75.0
150	15	37	17.8	39.7	253	72.4
151	15	38	17.8	39.8	264	75.4
152	15	40	18.1	39.5	274	78.4
153	15	38	17.5	39.0	285	81.3
154	15	40	17.8	40.1	270	77.2
155	15	39	17.8	39.6	268	76.6
156	15	39	17.9	39.6	279	79.7
157	15	38	18.0	39.3	275	78.5
158	15	39	18.2	39.1	275	78.5

Page 6 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

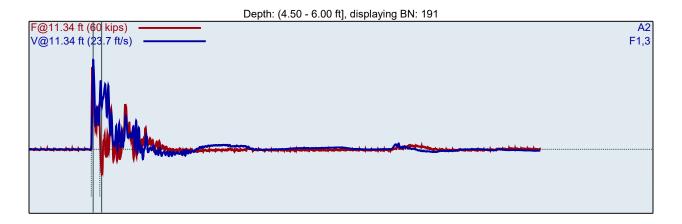
Average	38	17.7	39.5	260	74.2
Std Dev	1	0.4	0.3	13	3.7
Maximum	40	18.3	40.1	285	81.3
Minimum	35	16.6	39.0	233	66.7
	N-\	/alue: 22			

Sample Interval Time: 42.92 seconds.

 Pile Dynamics, Inc.
 Page 7 of 17

 SPT Analyzer Results
 PDA-S Ver. 2018.30 - Printed: 11/17/2020

 D-43
 0


 Wessam Zanaty
 Test date: 11/12/2020

 Signal Hill yard BH
 7

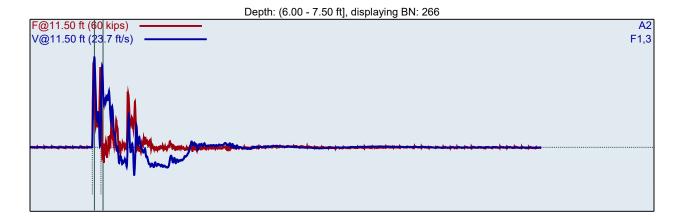
 AR: 1.42
 in^2

 LE: 11.34
 ft

 WS: 16807.9
 Ft/s

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

•						
E	BL# B	C FM	X VMX	K BPN	1 EFV	ETR
	/6			s bpn	າ ft-lb	%
1	159 1	0 4				76.9
	160 1	0 3		1 21.4	1 240	68.6
	161 1	0 3	3 15.9	9 41.5	5 252	72.0
1	162 1	0 3	4 15.4	42.1	1 262	74.7
1	163 1	0 3	5 15.2	43.7	7 268	76.6
1	164 1	0 3	4 15.3	3 45.4	1 262	74.9
1	165 1	0 3	6 16.3	3 45.1	1 281	80.4
1	166 1	0 3	7 16.0) 46.3	3 290	82.9
	167 1	0 3	9 16.7	7 45.4	1 299	85.4
	168 1	0 3	4 15.2	2 45.5	5 296	84.6
-	169 1	1 3	4 15.3	3 46.0) 285	81.5
1	170 1	1 3	6 15.6	6 45.8	3 278	79.4
1	171 1	1 4	1 16.5	5 45.8	3 296	84.5
1	172 1	1 3	9 16.2	2 45.9	9 293	83.6
	173 1	1 3	8 16.1	1 45.4	4 296	84.5
1	174 1	1 3	8 16.2	2 45.6	6 287	82.0
	175 1		5 16.1	1 46.1	1 280	
	176 1	1 4	1 16.6	6 45.8	3 313	89.6
1	177 1	1 3	6 16.´	1 45.3	3 291	83.0
	178 1	1 3	9 16.7	46.2	1 303	86.6
1	179 1	1 3	8 16.6	6 45.4	4 300	85.8
			8 15.4			
	181 1	4 3	6 16.0) 45.6	6 288	82.2
1	182 1	4 4	0 16.4	45.6	300	85.8
	183 1	4 3	6 15.9		295	84.2
1	184 1	4 3			1 297	84.9
1	185 1	4 3	6 16.5	5 46.0) 293	83.7
	186 1	4 3	8 16.4	45.3	3 303	86.7
		4 3	9 17.5			87.8
			6 16.4			81.5
1	189 1	4 3	7 17.0) 45.6	302	86.2


Page 8 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

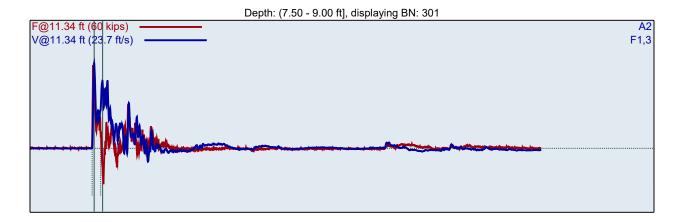
190	14	38	16.1	45.9	293	83.8
191	14	39	16.6	45.8	299	85.5
192	14	37	16.3	45.6	304	86.8
193	14	37	16.2	46.1	289	82.7
	Average	38	16.3	45.8	295	84.2
	Std Dev	2	0.5	0.3	8	2.4
	Maximum	41	17.5	46.2	313	89.6
	Minimum	34	15.3	45.1	278	79.4
		N-1	value: 25			

Sample Interval Time: 46.44 seconds.

Page 9 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

D-43	0
Wessam Zanaty	Test date: 11/12/2020
Signal Hill yard BH	
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 11.50 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1


BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
194	6	37	17.8	1.9	281	80.4
195	6	35	16.7	25.2	273	78.1
196	6	36	17.4	48.1	278	79.5
197	6	38	17.7	48.4	273	78.0
198	6	37	17.4	48.7	261	74.6
199	6	37	16.9	48.4	271	77.4
200	22	38	16.4	48.3	286	81.8
201	22	38	15.9	48.4	288	82.2
202	22	39	16.2	48.6	285	81.3
203	22	38	15.6	48.5	286	81.7
204	22	41	16.3	47.9	291	83.3
205	22	39	15.8	48.2	306	87.3
206	22	39	15.6	48.8	287	82.1
207	22	38	15.9	48.4	295	84.2
208	22	38	15.7	48.5	299	85.6
209	22	40	15.6	48.2	298	85.2
210	22	38	15.5	48.6	301	86.0
211	22	40	16.0	48.2	306	87.5
212	22	38	15.9	47.9	304	86.8
213	22	39	15.8	48.2	309	88.2
214	22	38	15.7	48.8	305	87.2
215	22	41	16.2	48.1	312	89.1
216	22	38	15.9	49.1	297	84.9
217	22	41	16.5	47.8	309	88.4
218	22	40	15.9	48.8	298	85.1
219	22	38	15.8	48.7	304	86.9
220	22	40	15.7	48.9	304	86.8
221	22	39	16.0	48.5	306	87.6
222	46	41	16.4	48.3	299	85.4
223	46	38	16.1	48.1	301	85.9
224	46	40	16.0	48.8	297	84.9

,							
	225	46	37	16.0	48.4	297	84.7
	226	46	40	16.1	48.9	292	83.4
	227	46	37	16.0	48.5	301	86.0
	228	46	38	16.0	50.1	299	85.6
	229	46	37	15.9	52.0	301	86.0
	230	46	39	16.5	51.1	303	86.6
	231	46	38	16.1	52.6	296	84.5
	232	46	38	16.3	50.9	306	87.5
	233	46	39	16.3	51.8	299	85.4
	234	46	38	16.3	51.7	303	86.7
	235	46	38	16.1	51.4	302	86.4
	236	46	39	16.4	51.7	297	84.7
	237	46	38	16.1	51.7	300	85.7
	238	46	39	16.4	51.7	296	84.5
	239	46	38	16.7	51.3	297	84.8
	240	46	38	16.6	51.5	291	83.1
	241	46	39	16.6	51.7	294	84.1
	242	46	41	16.8	51.2	299	85.5
	243	46	40	16.8	52.0	294	83.9
	244	46	38	16.6	51.2	289	82.7
	245	46	42	16.9	51.9	298	85.3
	246	46	41	16.8	51.7	296	84.6
	247	46	40	16.8	51.2	296	84.6
	248	46	41	16.6	51.5	296	84.5
	249	46	40	17.0	51.9	294	84.1
	250	46	42	17.1	51.3	294	83.9
	251	46	40	16.7	51.7	295	84.2
	252	46	40	17.1	51.3	302	86.3
	253	46	41	16.9	51.7	299	85.6
	254	46	40	16.2	51.5	298	85.2
	255	46	40	16.6	51.6	296	84.6
	256	46	40	16.4	51.4	298	85.1
	257	46	41	16.5	51.3	305	87.0
	258	46	41	16.5	51.7	298	85.1
	259	46	40	16.6	51.3	297	84.8
	260	46	41	16.5	51.3	303	86.5
	261	46	40	16.5	51.9	297	85.0
	262	46	41	16.8	51.6	305	87.2
	263	46	39	16.1	51.5	284	81.2
	264	46	42	16.9	51.0	297	84.8
	265	46	41	16.5	51.5	301	86.0
	266	46	40	16.7	51.4	295	84.4
	267	46	41	16.4	51.9	293	83.7
	268	46	36	19.4	1.9	250	71.5
		Average	39	16.3	49.6	297	85.0
		Std Dev	1	0.5	6.0	8	2.3
		Maximum	42	19.4	52.6	312	89.1
		Minimum	36	15.5	1.9	250	71.5
			N-v	alue: 69			

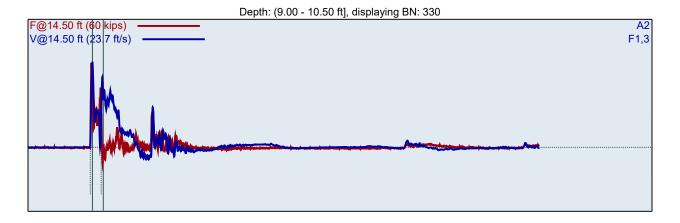
Sample Interval Time: 323.29 seconds.

Page 11 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

D-43	0
Wessam Zanaty	Test date: 11/12/2020
Signal Hill yard BH	
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 11.34 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

$\begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$	ft/s 16.9 16.7 17.1 17.1 16.4 16.6 16.6 15.8	bpm 19.8 37.7 38.4 41.5 41.7 41.8 41.6	ft-lb 249 259 278 277 272 274	% 71.2 74.1 79.4 79.0 77.8
270 9 39 271 9 36 272 9 40 273 9 36 274 9 40 275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	16.7 17.1 17.1 16.4 16.6 16.6 15.8	37.7 38.4 41.5 41.7 41.8	259 278 277 272	74.1 79.4 79.0
271 9 36 272 9 40 273 9 36 274 9 40 275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	17.1 17.1 16.4 16.6 16.6 15.8	38.4 41.5 41.7 41.8	278 277 272	79.4 79.0
272 9 40 273 9 36 274 9 40 275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	17.1 16.4 16.6 16.6 15.8	41.5 41.7 41.8	277 272	79.0
273 9 36 274 9 40 275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	16.4 16.6 16.6 15.8	41.7 41.8	272	
274 9 40 275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	16.6 16.6 15.8	41.8		77.8
275 9 40 276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	16.6 15.8		274	
276 9 37 277 9 39 278 11 39 279 11 39 280 11 39 281 11 38	15.8	41.6		78.2
277 9 39 278 11 39 279 11 39 280 11 39 281 11 38			287	81.9
278 11 39 279 11 39 280 11 39 281 11 38	1 = 0	42.0	269	77.0
279113928011392811138	15.9	41.9	273	78.1
28011392811138	16.7	41.6	287	82.1
281 11 38	15.9	41.3	276	79.0
	16.5	41.9	288	82.3
282 11 36	15.7	15.9	286	81.6
	16.7	42.9	280	80.0
283 11 39	15.6	40.6	283	80.8
284 11 38	16.3	42.1	284	81.1
285 11 40	15.8	41.9	280	79.9
286 11 36	15.1	41.9	275	78.7
287 11 40	16.2	41.5	287	82.0
288 11 39	15.3	41.5	280	79.9
289 14 38	15.0	42.1	274	78.3
290 14 37	14.5	41.8	266	76.0
291 14 34	14.0	41.9	258	73.9
292 14 37	14.9	41.2	282	80.5
293 14 37	14.5	41.6	267	76.3
294 14 38	14.7	41.7	282	80.7
295 14 40	15.1	41.8	286	81.9
296 14 37	14.5	42.0	280	80.1
297 14 38	14.9	41.6	283	80.9
298 14 38	15.1	41.6	288	82.4
299 14 39	15.3	41.7	291	83.3


Page 12 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

300	14	38	15.5	41.7	295	84.3
301	14	39	15.8	41.9	298	85.0
302	14	39	16.5	41.3	281	80.2
303	14	39	16.7	1.9	241	68.9
	Average	38	15.5	39.2	280	80.0
	Std Dev	1	0.8	9.0	11	3.3
	Maximum	40	16.7	42.9	298	85.0
	Minimum	34	14.0	1.9	241	68.9
		N-\	/alue: 26			

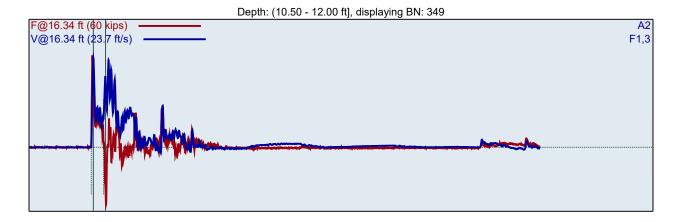
Sample Interval Time: 536.39 seconds.

Page 13 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

D-43	0
Wessam Zanaty	Test date: 11/12/2020
Signal Hill yard BH	
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 14.50 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
305	6	38	16.9	17.4	243	69.5
306	6	35	15.5	41.4	263	75.1
307	6	35	16.0	42.4	285	81.3
308	6	38	16.8	41.8	283	80.9
309	6	35	15.6	42.6	272	77.6
310	9	39	16.9	42.0	277	79.2
311	9	40	16.9	41.5	278	79.5
312	9	40	15.7	42.0	270	77.3
313	9	41	16.5	42.2	272	77.6
314	9	38	16.1	42.0	269	76.9
315	9	38	15.6	42.2	275	78.5
316	9	38	15.2	41.8	268	76.6
317	9	39	15.6	42.2	270	77.2
318	9	38	15.7	41.8	266	75.9
319	13	38	16.0	42.2	251	71.7
320	13	38	15.2	42.2	266	75.9
321	13	40	15.1	41.9	271	77.4
322	13	44	16.8	41.7	280	80.1
323	13	36	15.0	42.6	268	76.5
324	13	38	15.3	42.3	265	75.7
325	13	40	15.2	41.5	270	77.1
326	13	39	16.0	41.7	267	76.3
327	13	39	16.5	42.4	260	74.4
328	13	39	15.2	41.8	278	79.3
329	13	41	14.8	42.0	268	76.6
330	13	40	15.8	41.7	266	76.1
331	13	38	15.3	42.6	257	73.5
332	13	41	17.3	1.9	236	67.4


Page 14 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

Average	39	15.8	40.3	267	76.4
Std Dev	1	0.7	8.2	9	2.7
Maximum	44	17.3	42.6	280	80.1
Minimum	36	14.8	1.9	236	67.4
	N-\	/alue: 23			

Sample Interval Time: 282.25 seconds.

Page 15 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

D-43 Wessam Zanaty	0 Test date: 11/12/2020
Signal Hill yard BH	
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 16.34 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F1 : [150NWJ1] 210.83 PDICAL (1) FF1 F3 : [150NWJ2] 212.78 PDICAL (1) FF1

A2 (PR): [K3719] 368 mv/6.4v/5000g (1) VF1

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
333	5	41	19.3	23.5	246	70.4
334	5	40	17.7	40.5	246	70.4
335	5	40	17.0	41.1	269	76.7
336	5	35	15.8	40.8	240	68.5
337	5	38	16.8	41.4	286	81.8
338	7	34	15.6	41.2	238	67.9
339	7	36	16.6	40.9	262	74.8
340	7	36	15.8	40.7	258	73.8
341	7	35	15.8	41.2	260	74.2
342	7	38	16.5	41.3	265	75.6
343	7	38	17.1	40.5	274	78.4
344	7	35	15.5	41.4	273	78.0
345	7	35	15.8	40.4	276	78.7
346	7	36	16.0	41.3	284	81.0
347	7	32	14.6	40.6	287	82.1
348	7	34	14.9	40.9	263	75.3
349	7	43	16.5	40.9	292	83.3
350	7	35	15.3	41.2	270	77.3
351	7	39	15.6	41.2	283	81.0
	Average	36	15.8	41.0	270	77.3
	Std Dev	3	0.7	0.3	14	3.9
	Maximum	43	17.1	41.4	292	83.3
	Minimum	32	14.6	40.4	238	67.9
		N-'	value: 14			

Sample Interval Time: 26.36 seconds.

Page 16 of 17 PDA-S Ver. 2018.30 - Printed: 11/17/2020

Summary of SPT Test Results

FMX: Maximum Force						El	V: Maximum Energ	у
VMX: Maximum Velocity					E	R: Energy Transfer	nsfer Ratio - Rated	
BPM: Blows/Minute								
Instr.	Blows	N	N60	Average	Average	Average	Average	Average
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"			kips	ft/s	bpm	ft-lb	%
6.50	14-24-43	67	90	37	14.8	40.4	283	80.8
8.34	13-18-18	36	48	38	15.7	42.2	290	82.9
9.50	6-7-15	22	29	38	17.7	39.5	260	74.2
11.34	10-11-14	25	33	38	16.3	45.8	295	84.2
11.50	6-22-46	68	92	39	16.3	49.6	297	85.0
11.34	9-11-14	25	33	38	15.5	39.2	280	80.0
14.50	6-9-13	22	29	39	15.8	40.3	267	76.4
16.34	5-7-7	14	18	36	15.8	41.0	270	77.3
		Overall Ave	rage Values:	38	15.8	43.2	284	81.3
			rd Deviation:	2	0.9	6.2	15	4.2
		Overall Max	imum Value:	44	19.4	52.6	313	89.6
		Overall Min	imum Value:	32	14.0	1.9	233	66.7

Geotechnical Laboratory Reports

AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com **ATTERBERG LIMITS ASTM D 4318** Client Name: Arcadis Tested By: LS Date: 01/26/22 Computed By: Project Name: SCE - TLRR NR Date: 01/31/22 30002905-01325.C Date: 01/31/22 AP Project No.: Checked By: 60 ne 50 CH or QH PLASTICITY INDEX (PI) 40 ine CL 30 20 MH or OH 10 ML or OL CL-ML 0 10 20 30 40 60 70 80 0 50 90 100 LIQUID LIMIT (LL) PROCEDURE USED 75 Wet Preparation Moisture Content (%) 70 Х **Dry Preparation** 65 Х Procedure A Multipoint Test 60 Procedure B **One-point Test** 55 10 100 25 Number of Blows Plasticity Depth Boring Sample LL PL ΡI Symbol Chart Number Number (feet) Symbol

1-002_7.0-7.65

٠

7.0-7.65

_

68

24

44

СН

AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com ATTERBERG LIMITS **ASTM D 4318** Client Name: Arcadis Date: 01/26/22 Tested By: LS Computed By: Project Name: SCE - TLRR NR Date: 01/31/22 30002905-01325.C Date: 01/31/22 Checked By: AP Project No.: 60 ne 50 CH or OH PLASTICITY INDEX (PI) 40 ine CL 30 20 MH or OH 10 ML or OL CL-ML 0

PROCEDURE USED

Dry Preparation

0

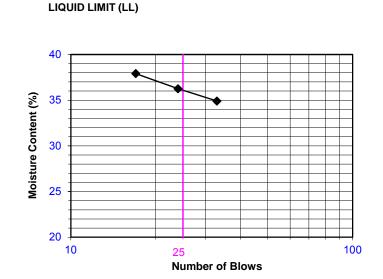
10

20

30

40

Wet Preparation


Х

Х

^

Procedure B One-point Test

Procedure A Multipoint Test

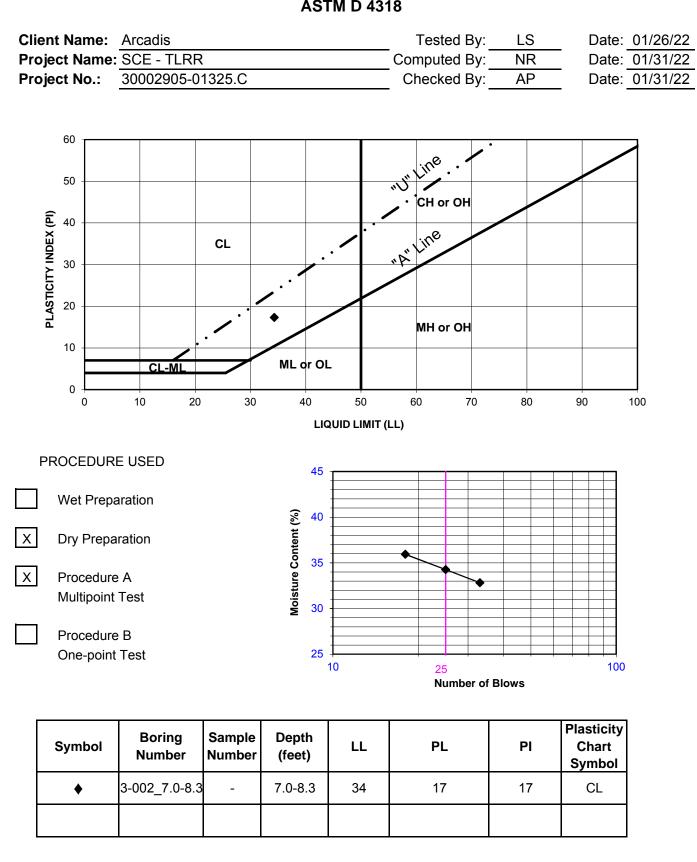
70

80

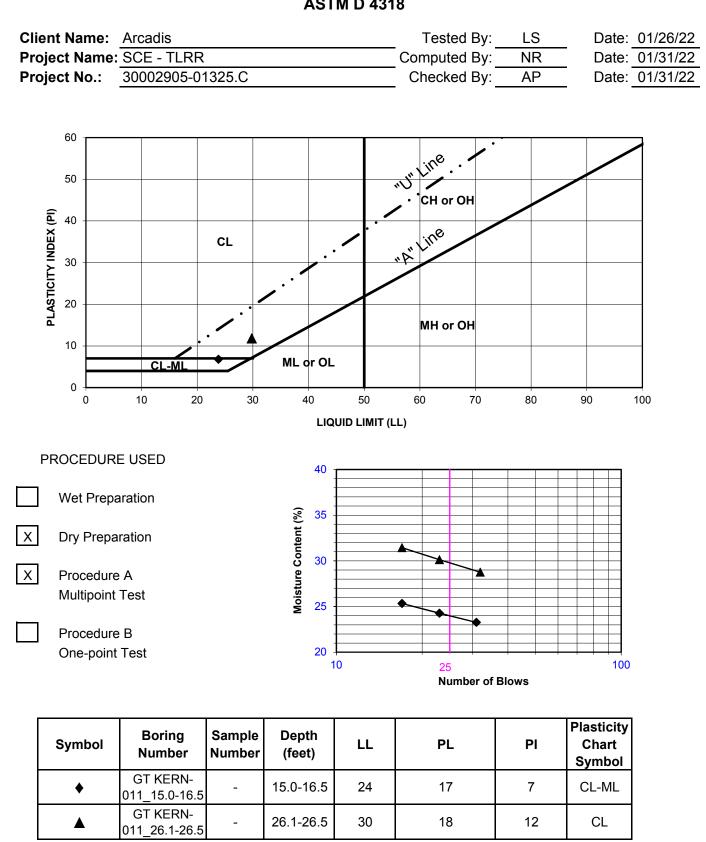
90

100

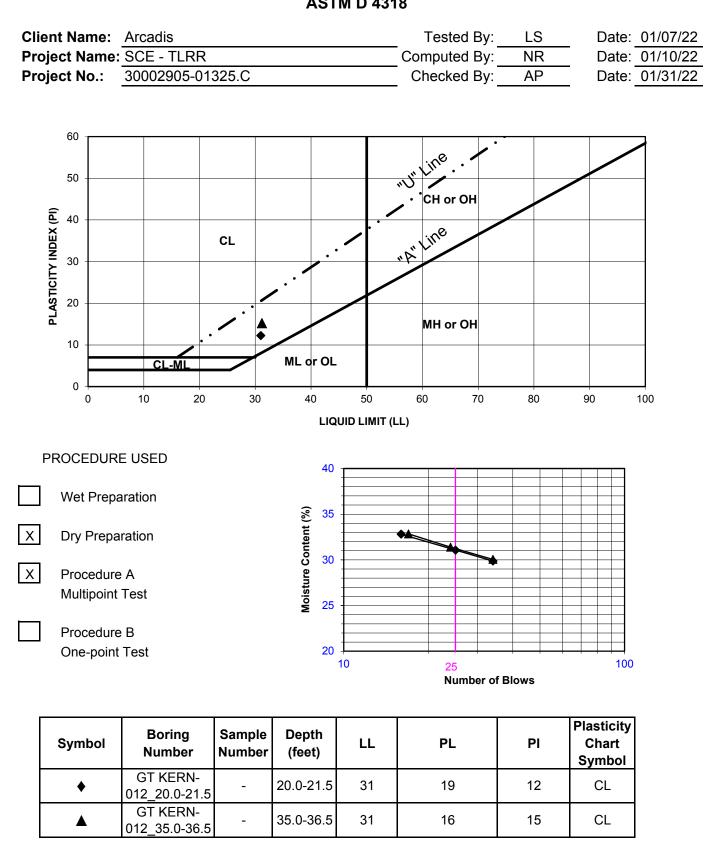
60


50

Plasticity Depth Sample Boring LL PL Ы Chart Symbol Number Number (feet) Symbol 1-004_7.0-8.15 7.0-8.15 36 14 22 CL ٠ _


AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com ATTERBERG LIMITS **ASTM D 4318** Date: 01/26/22 Client Name: Arcadis Tested By: LS Project Name: SCE - TLRR Computed By: NR Date: 01/31/22 Checked By: 30002905-01325.C AP Project No.: Date: 01/31/22 60 ne 50 CH or OH PLASTICITY INDEX (PI) 40 Line CL 30 20 MH or OH 10 ML or OL CL-M 0 10 20 30 40 50 60 70 80 100 0 90 LIQUID LIMIT (LL) PROCEDURE USED 40 Wet Preparation Moisture Content (%) 35 Х **Dry Preparation** 30 Х Procedure A **Multipoint Test** 25 Procedure B **One-point Test** 20 10 100 25 Number of Blows

Symbol	Boring Number	Sample Number	Depth (feet)	LL	PL	PI	Plasticity Chart Symbol	
	1-006a_25.0-26.5	-	25.0-26.5	NP	NP	NP		
* NP denotes	* NP denotes "non-plastic"							


ATTERBERG LIMITS ASTM D 4318

ATTERBERG LIMITS ASTM D 4318

ATTERBERG LIMITS ASTM D 4318

Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/03/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
1-002_20.0-20.75	-	20.0-20.75	82.7

Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/03/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
1-004_10.0-11.15	-	10.0-11.15	41.7

Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/25/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
1-006a_25.0-26.5	-	25.0-26.5	7.2

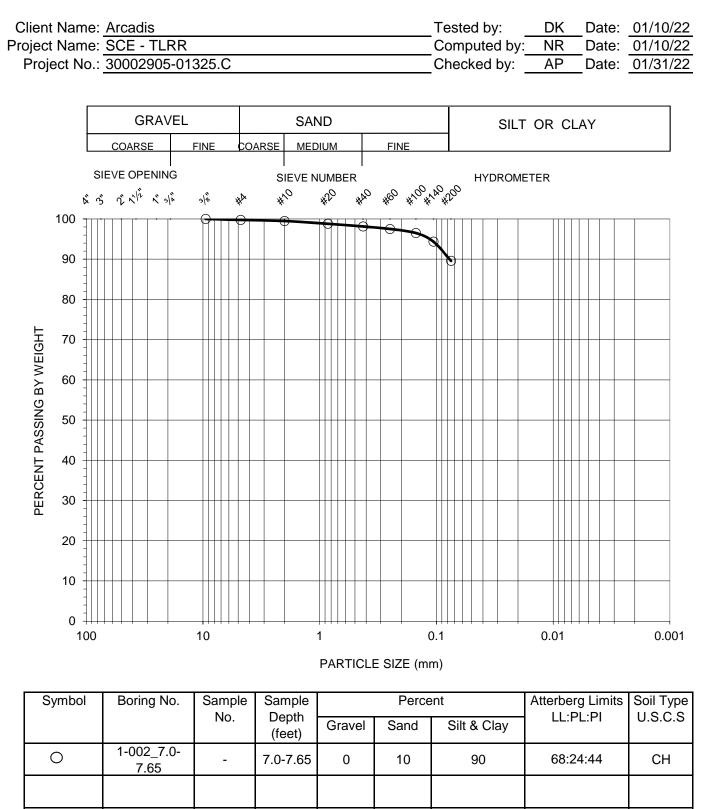
Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/03/22
Project Number:	30002905-01325.C		

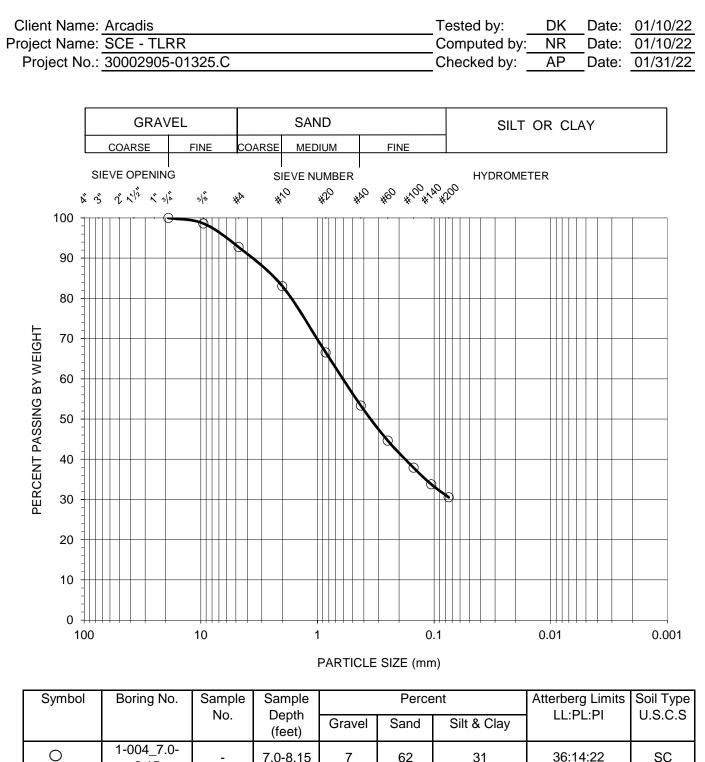
Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
3-005_20.0-20.6	-	20.0-20.6	19.4

Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	12/10/21
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
5-005_4.5-5.0	-	4.5-5.0	16.5

Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/03/22
Project Number:	30002905-01325.C		


Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
GT KERN-011_26.1-26.5		26.1-26.5	51.7
GT KERN-011_30.0-31.5	-	30.0-31.5	17.7


Client:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Test Date:	01/03/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Percent Fines
No.	No.	(ft)	(%)
GT KERN-012_35.0-36.5	-	35.0-36.5	67.6

GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913

7.0-8.15

8.15

31

SC

Ο

1-005_4.5-5.0

1-005 10.0-

11.25

*Note: Based on visual classification of sample

-

4.5-5.0

10.0-11.25

1

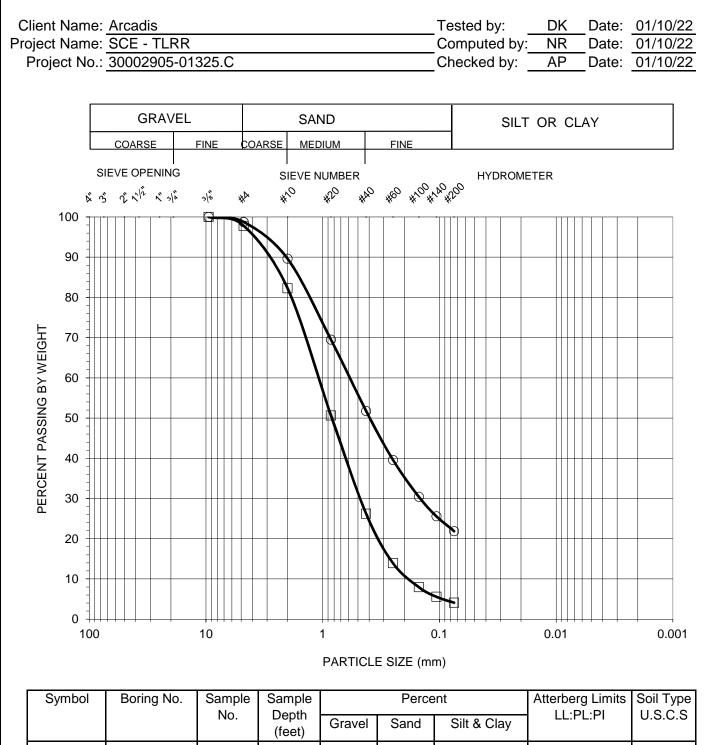
2

77

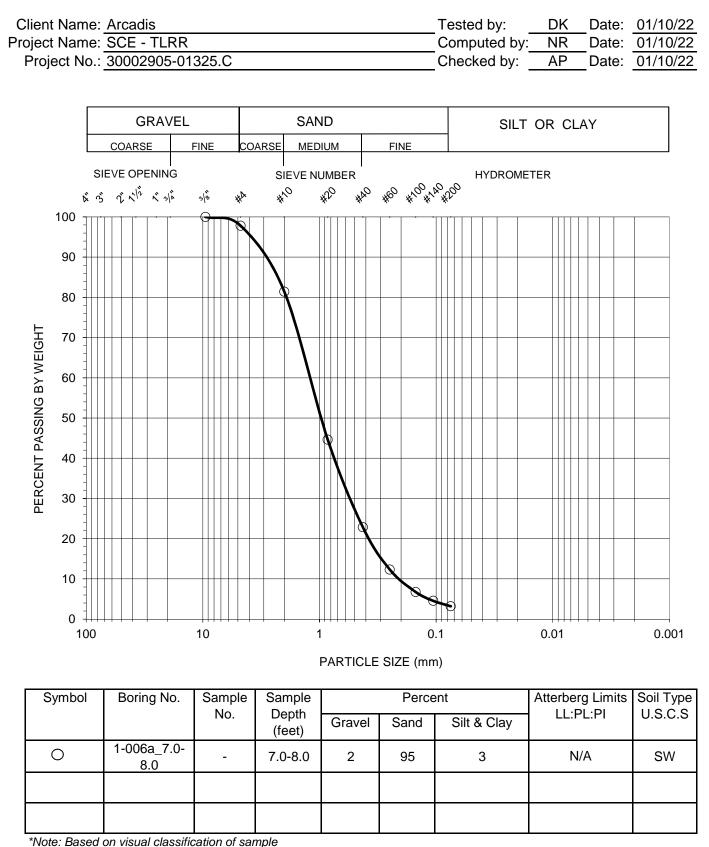
94

22

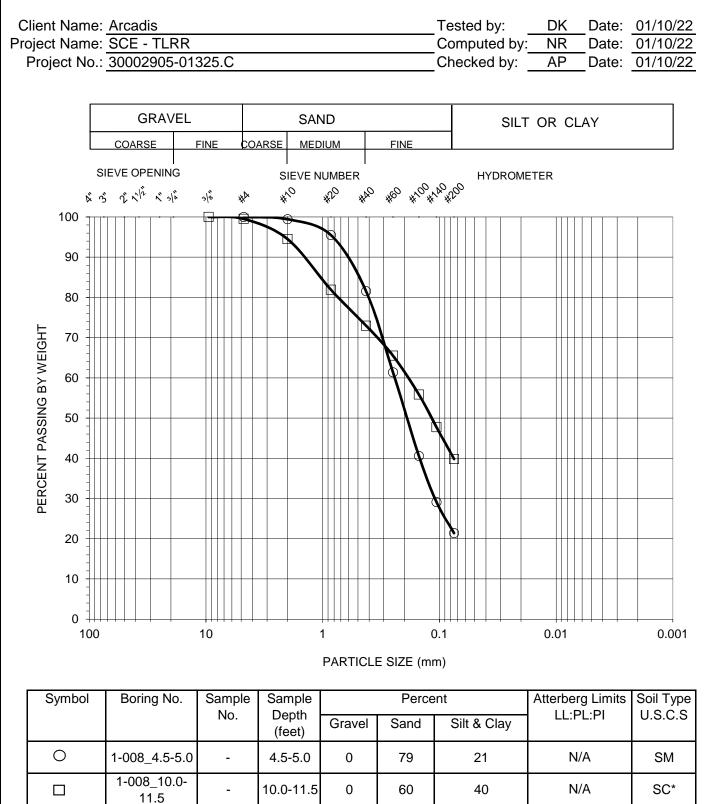
4


N/A

N/A


SC*

SW



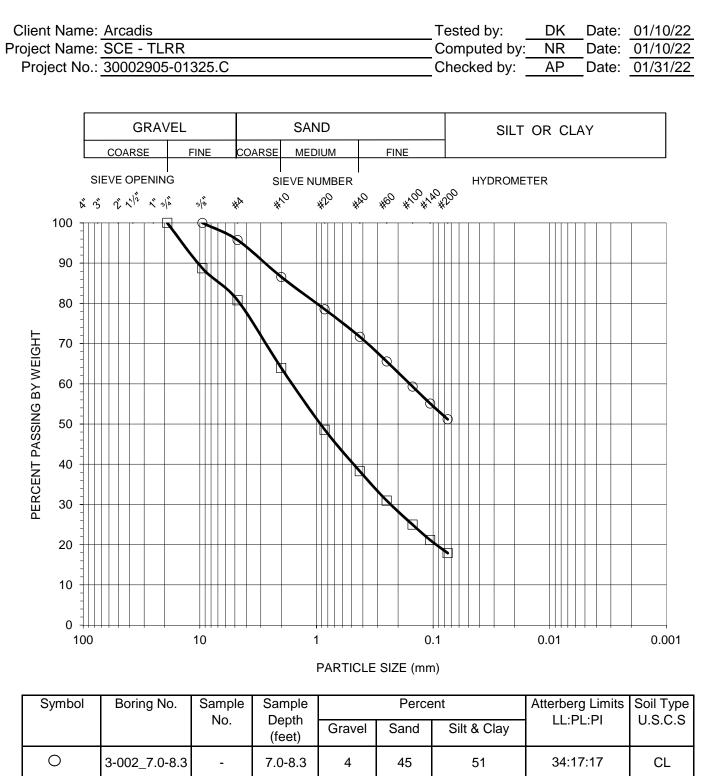
*Note: Based on visual classification of sample

3-002 20.0-

21.5

_

20.0-21.5


19

63

18

N/A

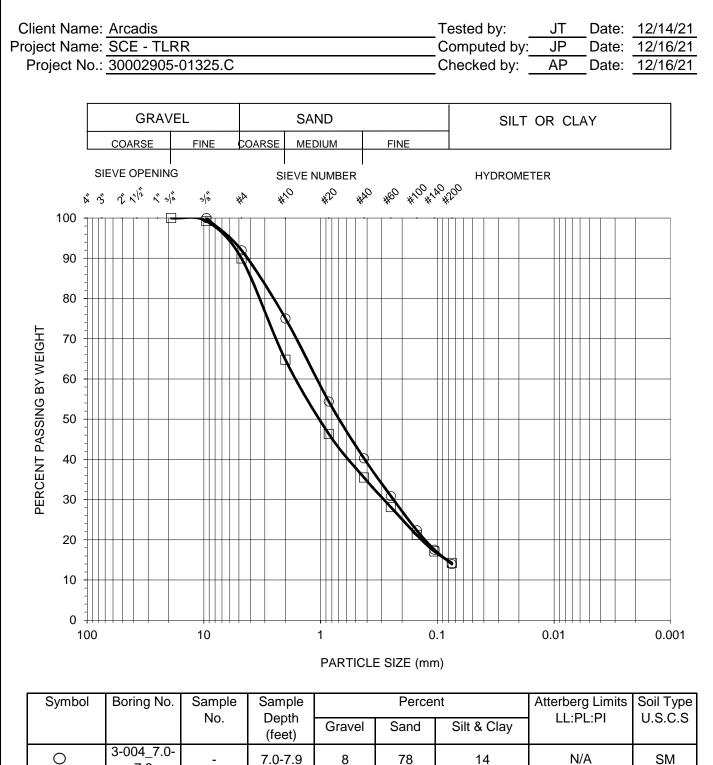
SM

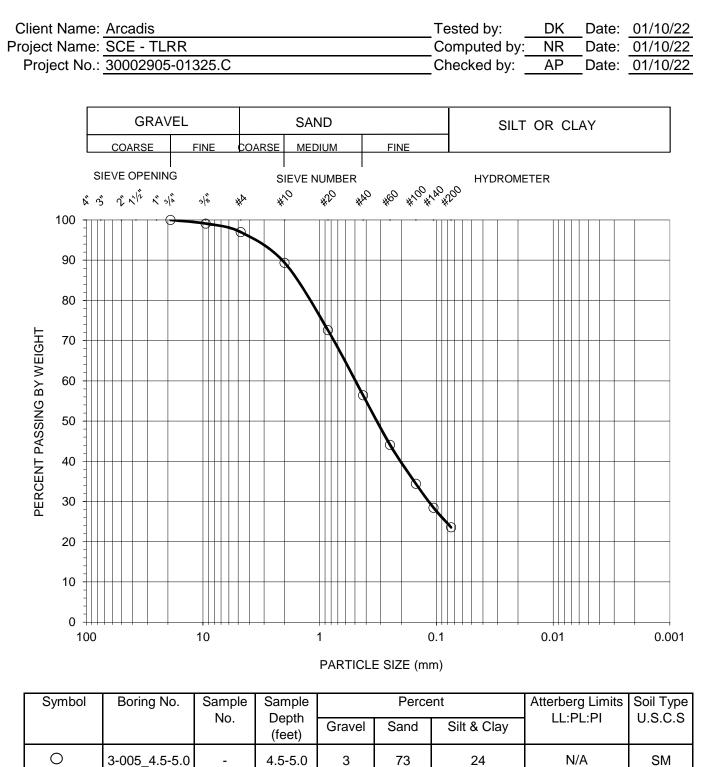
> 7.9 3-004_10.0-

<u>10.75</u>

_

10.0-10.75

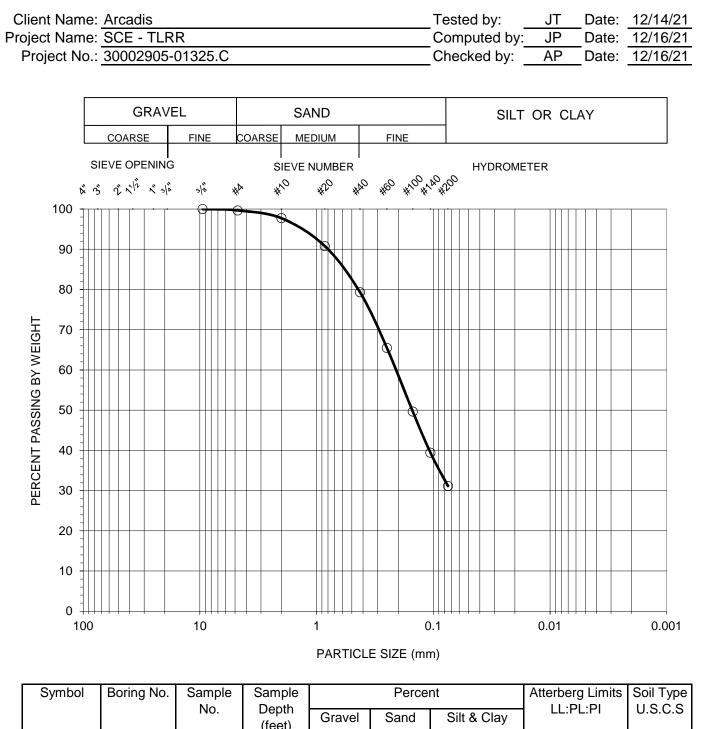

10

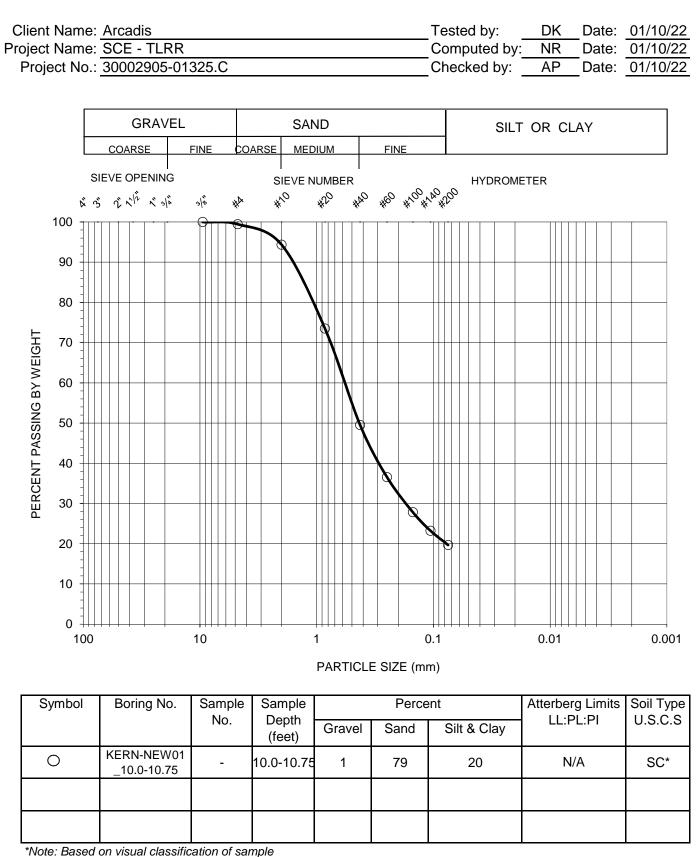

76

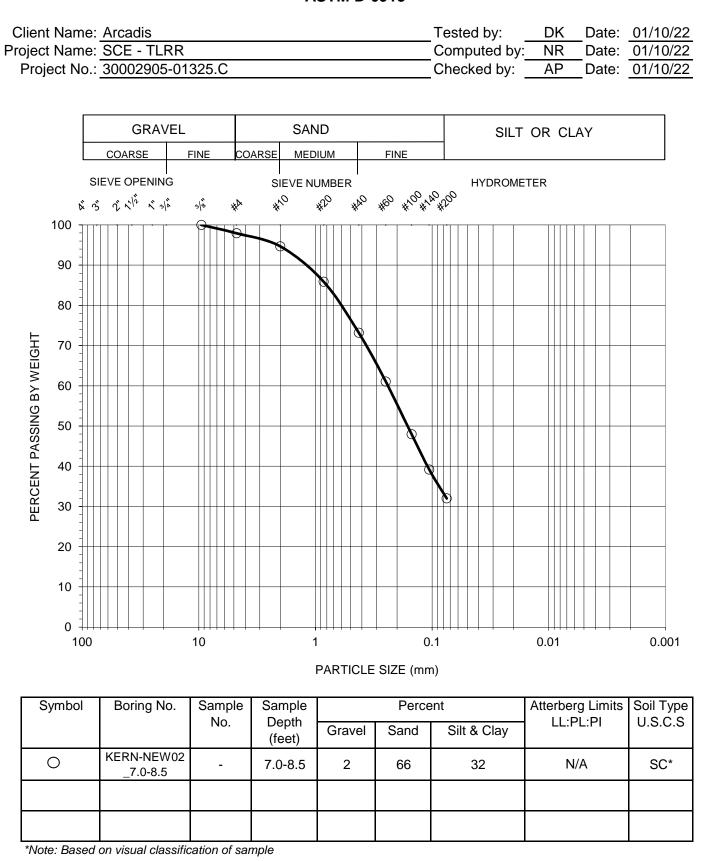
14

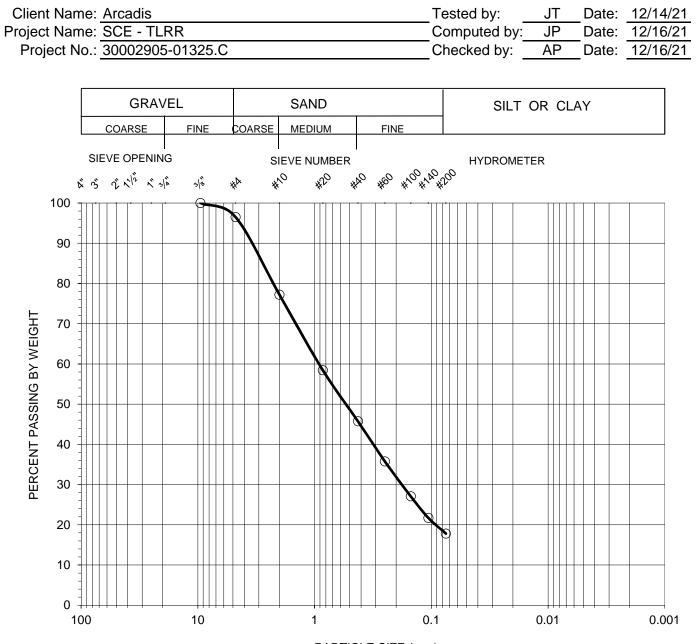
N/A

SM

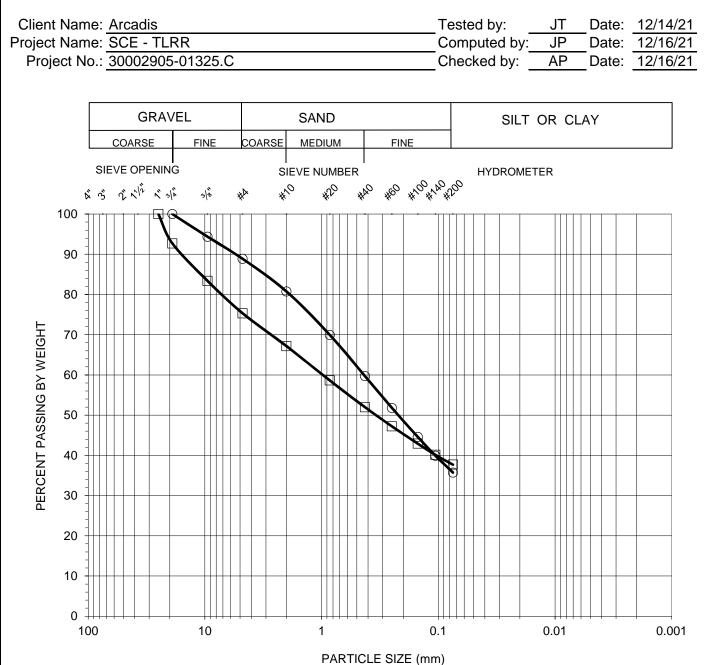




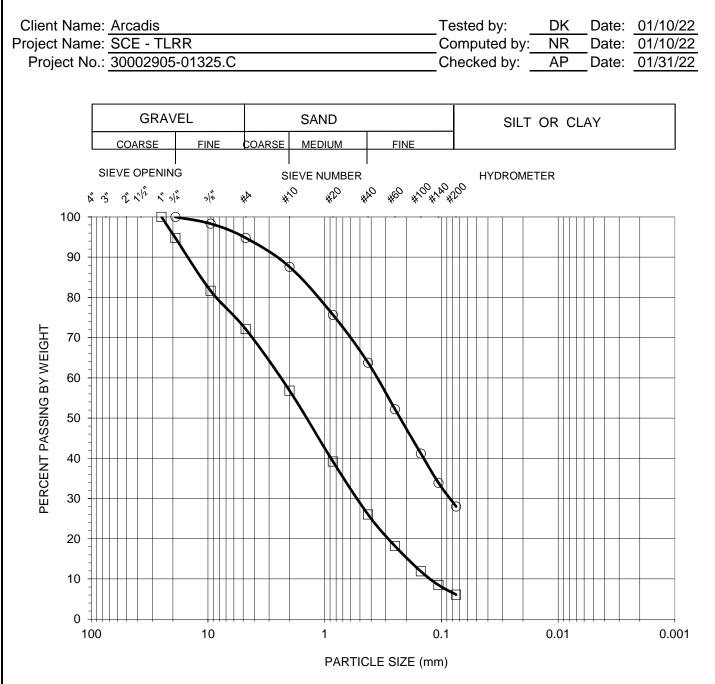

*Note: Based on visual classification of sample

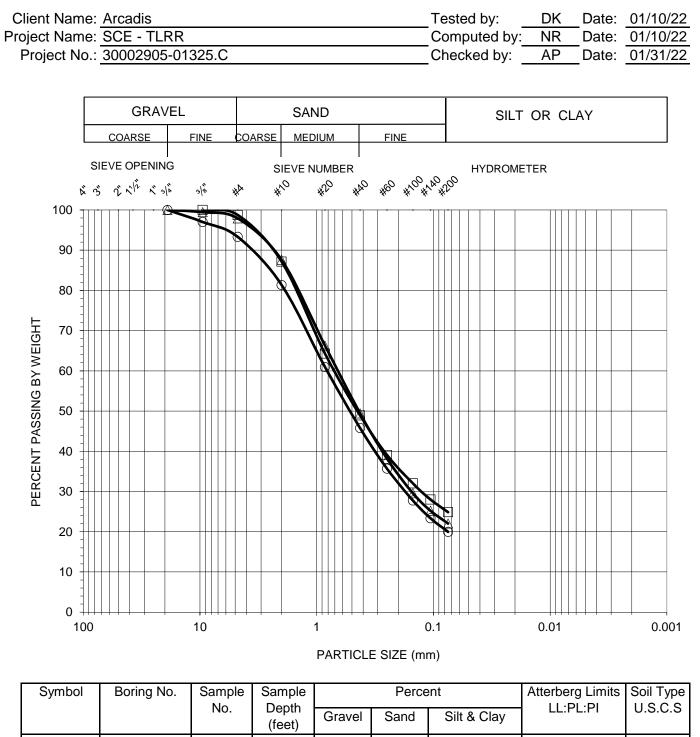


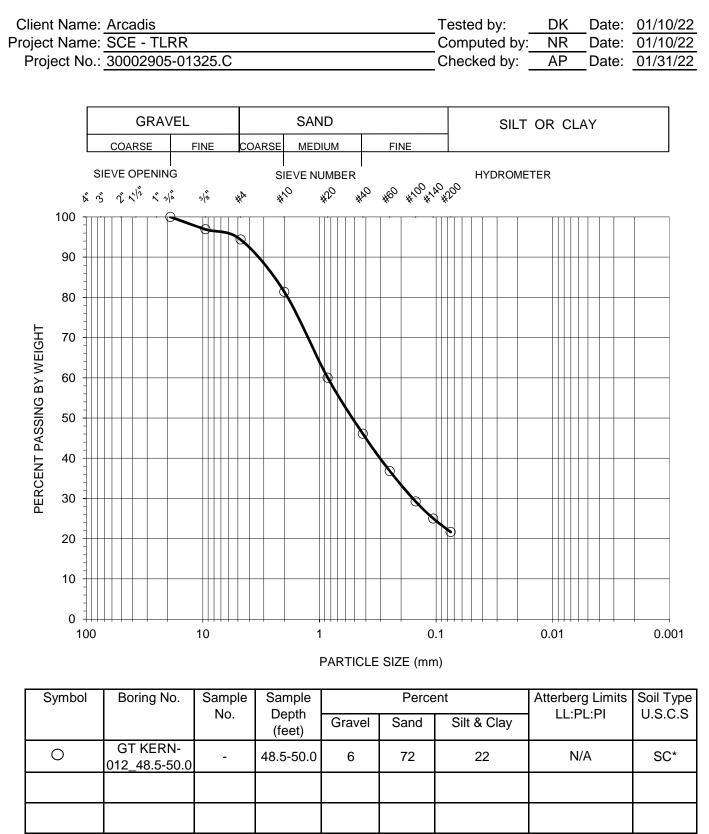
		No.	Depth (feet)	Gravel Sand Silt & Clay			LL:PL:PI	U.S.C.S
0	5-005_10.0- 10.65	-	10.0-10.65	0	69	31	N/A	SM

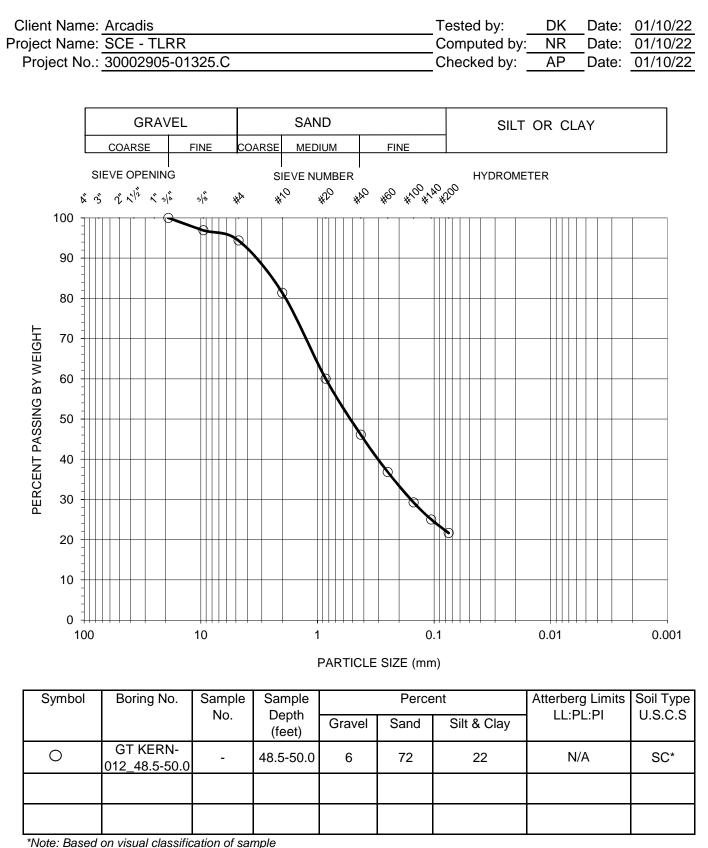


PARTICLE SIZE (mm)


Symbol	Boring No.	Sample	Sample Sample No. Depth - (feet)		Perce	nt	Atterberg Limits	Soil Type
		INO.		Gravel	Sand	Silt & Clay	LL:PL:PI	U.S.C.S
0	GT KERN- 008a_10.0- 10.85	-	10.0-10.85	3	79	18	N/A	SM


Symbol	Boring No.	Sample	Sample		Perce	nt	Atterberg Limits LL:PL:PI	Soil Type
		No.	Depth (feet)	Gravel	Sand	Silt & Clay		U.S.C.S
0	GT KERN- 009_7.5-8.5	-	7.5-8.5	11	53	36	N/A	SM
	GT KERN- 009_20.0- 20.7	-	20.0-20.7	25	37	38	N/A	SM


Symbol	Boring No.	Sample	Sample	Percent			Atterberg Limits		
		No.	Depth (feet)	Gravel	Sand	Silt & Clay	LL:PL:PI	U.S.C.S	
0	GT KERN- 011_15.0-16.5	-	15.0-16.5	5	67	28	24:17:7	SC-SM	
	GT KERN- 011_25.0-26.1	-	25.0-26.1	28	66	6	N/A	SW-SM	


0	GT KERN- 012_10.0-11.3	-	10.0-11.3	7	73	20	N/A	SC*
	GT KERN- 012_20.0-21.5	-	20.0-21.5	1	74	25	31:19:12	SC
\bigtriangleup	GT KERN- 012_30.0-31.5	-	30.0-31.5	2	76	22	N/A	SC*
*Note: Based on visual classification of sample								

*Note: Based on visual classification of sample

Client Name:	Arcadis	A	AP Job No.:	21-1215	
Project Name:	SCE - TLRR	C	Date:	01/06/22	
Project No.:	30002905-01325.C				

Boring No.	Sample No.	Depth (feet)	Soil Description	Minimum Resistivity (ohm-cm)	рН	Sulfate Content (ppm)	Chloride Content (ppm)
1-005_2.0-3.0	-	2.0-3.0	Silty Sand w/gravel	3,219	7.9	79	26

NOTES: Resistivity Test and pH: California Test Method 643

Sulfate Content : California Test Method 417

Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

Client Name:	Arcadis	AP	Job No.:	21-1215	
Project Name:	SCE - TLRR	Date	e:	01/06/22	
Project No.:	30002905-01325.C				

Boring	Sample	-	Soil	Minimum	рН	Sulfate Content	
No.	No.	(feet)	Description	Resistivity (ohm-cm)		(ppm)	(ppm)
	ľ	[[· · · · · · · · · · · · · · · · · · ·			
3-005_2.0-3.0	-	2.0-3.0	Silty Sand w/gravel	11,459	7.3	28	21
	, <u> </u>						
NOTES:	Resistivit	y Test and	l pH: California T	est Method 643			
	Sulfate Content : California Test Method 417						

Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

Client Name:	Arcadis	AP Job No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/06/22
Project No.:	30002905-01325.C		

Danian	0	Darath	0 - 11	N 41-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
Boring	Sample	Depth	Soil	Minimum	рΗ	Sulfate Content	
No.	No.	(feet)	Description	Resistivity		(ppm)	(ppm)
				(ohm-cm)			
			Silty Sand	0.044			
5-005_2.0-2.5	-	2.0-2.5	w/gravel	9,214	8.2	32	22
					1	1	I
NOTES:	Resistivit	v Test and	pH: California T	est Method 643			
	Sulfate C	ontent :	California T	est Method 417			
	Chloride	Content :	California T	est Method 422			

ND = Not Detectable

NA = Not Sufficient Sample

Client Name:	Arcadis	AP Job No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/06/22
Project No.:	30002905-01325.C		

Boring No.	Sample No.	Depth (feet)	Soil Description	Minimum Resistivity (ohm-cm)	pН	Sulfate Content (ppm)	Chloride Content (ppm)
KERN-NEW01 _2.0-3.0	-	2.0-3.0	Silty Sand w/gravel	2,698	8.2	68	40

NOTES:Resistivity Test and pH: California Test Method 643Sulfate Content :California Test Method 417Chloride Content :California Test Method 422ND = Not DetectableNA = Not Sufficient SampleNR = Not Requested

Client Name:	Arcadis	AP Job No.:	21-1215
Project Name:	SCE - TLRR	Date:	12/14/21
Project No.:	30002905-01325.C		

Boring No.	Sample No.	Depth (feet)	Soil Description	Minimum Resistivity (ohm-cm)	рН	Sulfate Content (ppm)	Chloride Content (ppm)
	<u> </u>	l	I				
	<u> </u>						
GT KERN- 008a_2.0-3.0	-	2.0-3.0	Silty Sand	7,379	7.7	28	20
NOTEO	Decistivit	. Toot on d					
NOTES:	Resistivit	v Lest and	l pH: California T	est Method 643			

OTES: Resistivity Test and pH: California Test Method 643

Sulfate Content : California Test Method 417

Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/05/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Description
No.	No.	(feet)	
1-002_30.0-30.55	-		Lean Clay w/sand (CL), about 20% fine to medium grained, subangular sand; 80% fines with medium plasticity, high dry strength, slow dilatency, medium toughness; no gravel, olive, no odor, moist

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/05/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Description
No.	No.	(feet)	
1-004_35.0-36.5	-		Clayey Sand (SC), about 70% fine to coarse grained, subangular sand; 30% fines with medium plasticity, high dry strength, slow dilatency, medium toughness; no gravel, brown, no odor, moist

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/05/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Description
No.	No.	(feet)	
1-005_20.0-21.15	-	20.0-21.15	Silty Sand (SM), about 65% fine to coarse grained, subangular sand; 30% fines with no plasticity; 5% subangular gravel with max size~1/4", olive, no odor, moist

VISUAL SOIL CLASSIFICATION ASTM D 2488

21-1215

01/05/22

Client Name:	Arcadis	AP Lab No.:
Project Name:	SCE - TLRR	Date:
Project Number:	30002905-01325.C	

Boring	Sample	Depth	Description
No.	No.	(feet)	
1-006a_40.0-41.5	-	40.0-41.5	Silty Sand (SM), about 60% fine to coarse grained, subangular sand; 30% fines with no plasticity; 10% subangular gravel with max size~1/2", olive, no odor, moist

VISUAL SOIL CLASSIFICATION ASTM D 2488

Boring No.	Sample No.	Depth (feet)	Description
Project Number:	30002905	5-01325.C	
Project Name:	SCE - TL	RR	Date: 01/05/22
Client Name:	Arcadis		AP Lab No.: 21-1215

No.	No.	(feet)	
1-008_25.0-26.5	-	25.0-26.5	Silt (ML), about 10% fine to medium grained, subangular sand; 90% fines with very low plasticity, low dry strength, rapid dilatancy, low toughness; no gravel, olive brown, no odor, moist
1-008_48.5-50.0	-	48.5-50.0	Well-Graded Sand w/silt (SW-SM), about 85% fine to coarse grained, subangular sand; 5% fines with no plasticity; 10% subangular gravel with max size~3/8", light brown, no odor, dry

VISUAL SOIL CLASSIFICATION ASTM D 2488

AP Lab No.:

Date:

21-1215

01/05/22

Client Name:ArcadisProject Name:SCE - TLRRProject Number:30002905-01325.C

Boring	Sample	Depth	Description
No.	No.	(feet)	
3-002_4.5-5.0	-	4.5-5.0	Silty Sand (SM), about 65% fine to coarse grained, subangular sand; 30% fines with no plasticity; 5% subrounded gravel with max size~3/8", brown, no odor, dry
3-002_35.0-36.5	-	35.0-36.5	Clayey Sand (SC), about 70% fine to coarse grained, subangular sand; 20% fines with low plasticity, high dry strength, slow dilatency, low toughness; 10% angular gravel with max size~1/2", strong brown, no odor, moist
3-002_45.0-46.4	-	45.0-46.4	Sandy Lean Clay (CL), about 45% fine to coarse grained, subangular sand; 50% fines with medium plasticity, high dry strength, slow dilatency, low toughness; 5% subrounded gravel with max size~3/4", yellowish brown, no odor, moist
I [

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	12/13/21
Project Number:	30002905-01325.C		

Boring No.	Sample No.	Depth (feet)	Description
3-004_4.5-5.0	-	4.5-5.0	Silty Sand (SM), about 75% fine to coarse grained, subangular sand; 20% fines with no plasticity; 5% fine gravel with max size~3/8", brown, no odor, dry
3-004_40.0-40.9	-	40.0-40.9	Silty Sand w/gravel (SM), about 50% fine to coarse grained, subangular sand; 30% fines with no plasticity; 20% fine gravel with max size~3/8", brown, no odor, moist

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/05/22
Project Number:	30002905-01325.C		

Boring	Sample	Depth	Description
No.	No.	(feet)	
3-005_35.0-35.85	-	35.0-35.85	Silty Sand (SM), about 50% fine to coarse grained, subangular sand; 40% fines with no plasticity; 10% subangular gravel with max size~3/8", olive, no odor, moist
[۱ا

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	01/05/22
Project Number:	30002905-01325.C		

Boring No.	Sample No.	Depth (feet)	Description
5-002_25.0-25.6	-	25.0-25.6	Silty Sand (SM), about 80% fine to coarse grained, subangular sand; 20% fines with no plasticity; no gravel, white, no odor, moist

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	12/13/21
Project Number:	30002905-01325.C		

Boring	Sample	_	Description
No.	No.	(feet)	
5-005_4.5-5.0	-	4.5-5.0	Silty Sand (SM), about 73% fine to coarse grained, subangular sand; 17% fines with no plasticity; 10% fine gravel with max size~3/8", brown, no odor, moist
5-005_25.0-25.6	-	25.0-25.6	Silty Sand (SM), about 70% fine to coarse grained, subrounded sand; 20% fines with no plasticity; 10% fine gravel with max size~3/8", grey, no odor, moist
	I		<u> </u>

			ASTM D 2488
Client Name:	Arcadis		AP Lab No.: 21-1215
Project Name:	SCE - TL	.RR	Date: 01/05/22
Project Number:	3000290	5-01325.C	
Boring	Sample	-	Description
No.	No.	(feet)	
KERN-NEW01_30.0-30.6	-	30.0-30.6	Silty Sand (SM), about 60% fine to coarse grained, subangular sand; 40% fines with no plasticity; no gravel, white, no odor, moist

Client Name:	Arcadis	AP Lab No.: 21-1	215
Project Name:	SCE - TLRR	Date: 01/0	5/22
Project Number:	30002905-01325.C		
		Desce to the	1

Boring	Sample	Depth	Description
No.	No.	(feet)	
KERN-NEW02_25.0-26.5	-	25.0-26.5	Silty Sand (SM), about 65% fine to coarse grained, subangular sand; 30% fines with very low plasticity; 5% subrounded gravel with max size~3/8", brown, no odor, dry
KERN-NEW02_45.0-46.5	-	45.0-46.5	Silty Sand (SM), about 80% fine to coarse grained, subangular sand; 15% fines with no plasticity; 5% subangular gravel with max size~3/8", light brown, no odor, dry
<u> </u>			

Client Name:	Arcadis	AP Lab No.:	21-1215
Project Name:	SCE - TLRR	Date:	12/13/21
Project Number:	30002905-01325.C		

Boring No.	Sample No.	Depth (feet)	Description
GT KERN-008a_2.0-3.0	-	2.0-3.0	Silty Sand (SM), about 80% fine to coarse grained, subangular sand; 20% fines with very low plasticity; no gravel with max size~1/4", brown, no odor, moist
GT KERN-008a_15.0-15.9	-	15.0-15.9	Silty Sand (SM), about 80% fine to coarse grained, subrounded sand; 15% fines with no plasticity; 5% fine gravel with max size~3/8", greyish brown, no odor, moist

VISUAL SOIL CLASSIFICATION ASTM D 2488

21-1215 12/13/21

Client Name:	Arcadis	AP Lab No.:
Project Name:	SCE - TLRR	Date:
Project Number:	30002905-01325.C	

Boring	Sample		Description
No.	No.	(feet)	
GT KERN-009_1.3-2.3	-	1.3-2.3	Silty Sand (SM), about 80% fine to coarse grained, angular sand; 15% fines with very low plasticity; 5% fine gravel with max size~3/4", brown, no odor, moist

VISUAL SOIL CLASSIFICATION ASTM D 2488

AP Lab No.:

Date:

21-1215 01/05/22

Client Name:	Arcadis
Project Name:	SCE - TLRR
Project Number:	30002905-01325.C

Boring	Sample	Depth	Description
No.	No.	(feet)	· · · · · · · · · · · · · · · · · · ·
GT KERN-011_4.5-5.0	-	4.5-5.0	Sandy Lean Clay (CL), about 45% fine to coarse grained, subangular sand; 50% fines with medium plasticity, medium dry strength, slow dilatency, medium toughness; 5% subangular gravel with max size~1/4", brown, no odor, dry
GT KERN-011_35.0-36.5	-	35.0-36.5	size~3/4", brown, no odor, wet
GT KERN-011_45.0-46.5		45.0-46.5	Silty Sand w/gravel (SM), about 45% fine to coarse grained, subangular sand; 40% fines with no plasticity; 15% subangular gravel with max size~1/2", brown, no odor, moist
<u>[</u>			۱۱

2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN (ASTM D7012 Method C)

Project Name:	SCE - TLRR		Prepared by	ST	Date	12/15/21
Project No.	30002905-01325.0	;	Tested by	ST	Date	12/15/21
Boring No	KERN-NEW03_6.3	3-11.0	Calculated by	JP	Date	12/15/21
Sample No	-		Checked by	AP	Date	12/16/21
Depth:	6.3-11.0		-		_	
Lithologic Descrip	otion of the Rock	Granodiorite				

INITIAL CONDITION OF SPECIMEN

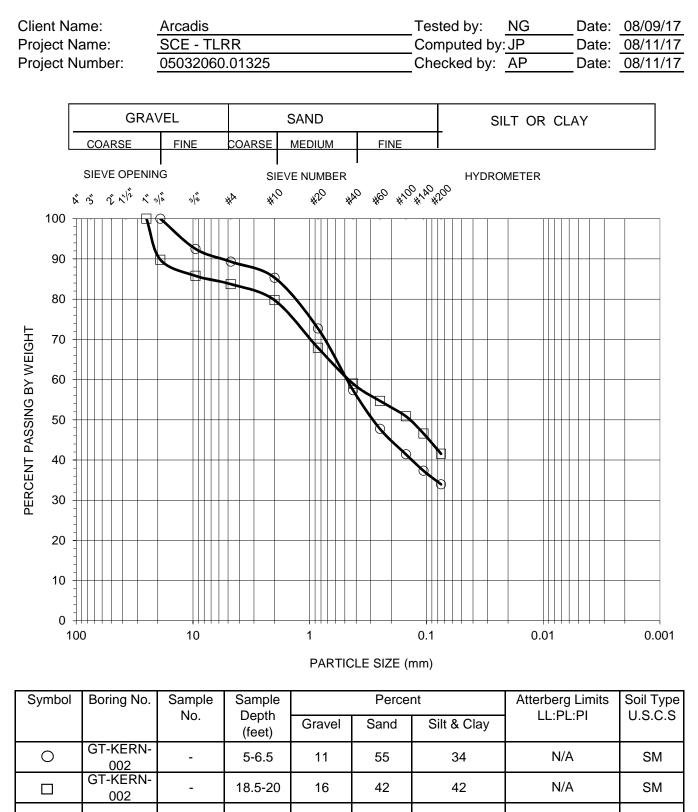
Diameter	2.405	in
Height	5.185	in
Weight Before	1108.29	g
Area	4.54	in ²
Volume	23.6	in ³
Total Unit Weight	179.2	_ pcf
h/d Ratio	2.2	

Container No.Wt. Wet Soil+Container (g)329.28Wt. Dry Soil+Container (g)329.09Wt. Container (g)50.48Moisture, (%)0.07

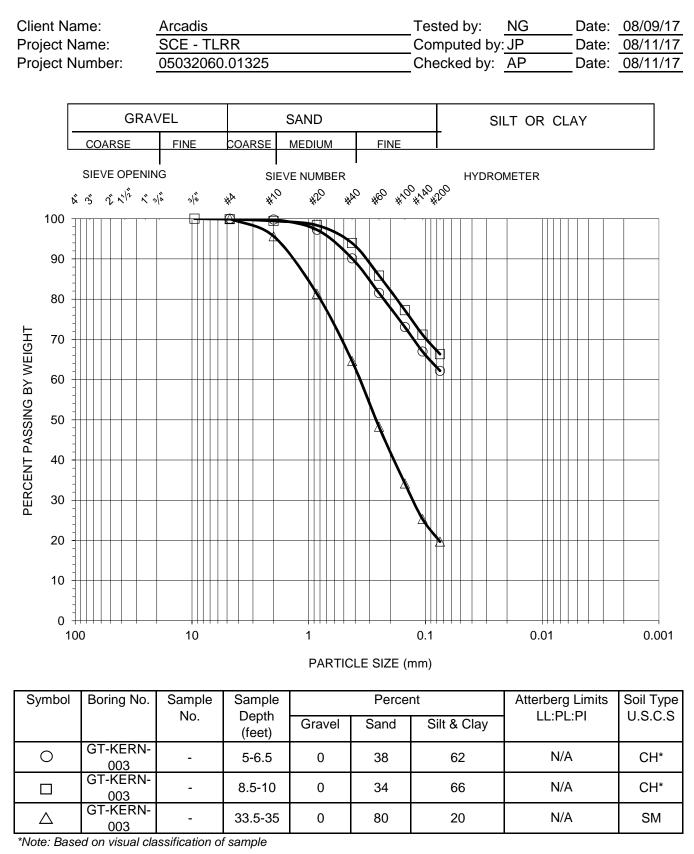
SHEARING DATA

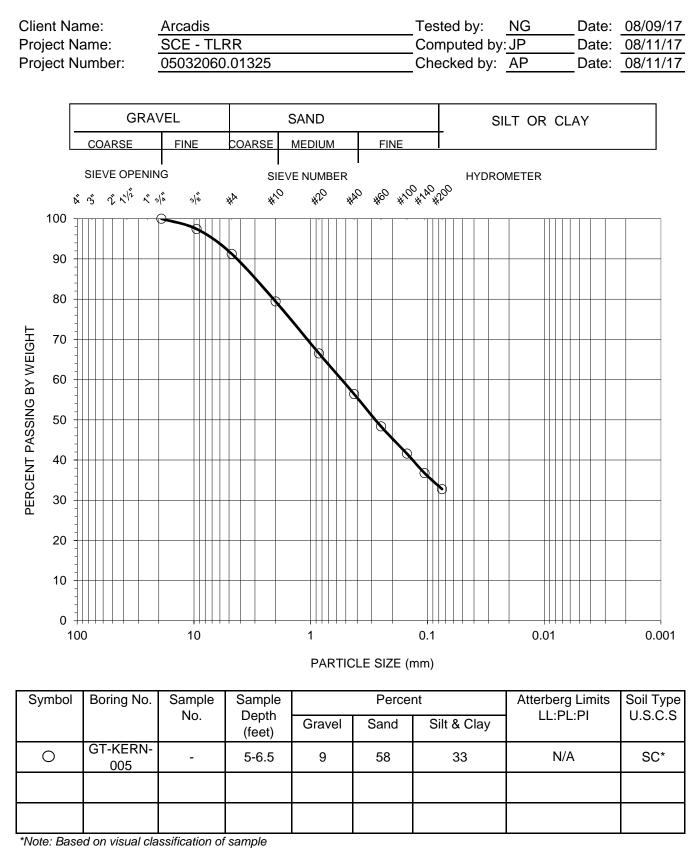
Axial Load	Compressive
(lbs)	Strength (psi)
45020	9910

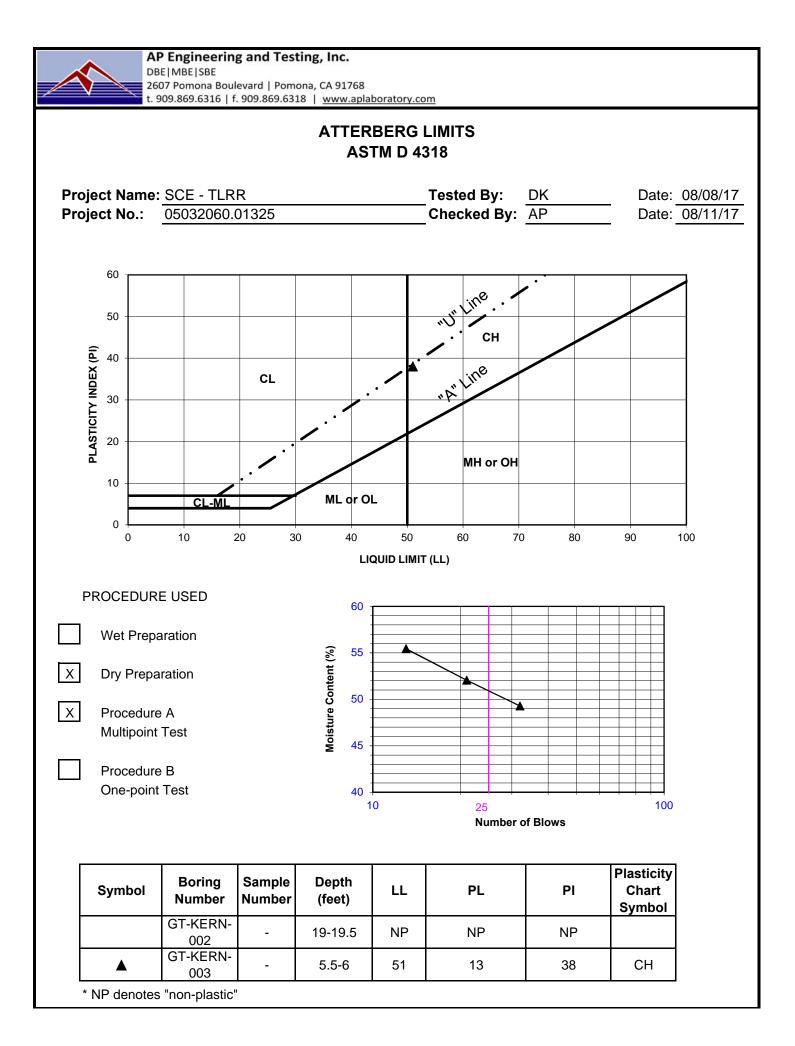
		1	Cone
.: S	Х	2	Cone and Split
ypes:		3	Columnar Vertical Cracking
re T		4	Shear
*Failure		5	Side Fracture (Top or Bottom)
*		6	Side Fracture (Pointed)
		7	Other



Moisture After Test







MOISTURE AND DENSITY TEST RESULTS

Client: Arcadis

AP Lab No.: 17-0812

Project Name: SCE - TLRR

Date: 08/08/17

Project No.: 05032060.01325

Boring No.	Sample No.	Sample Depth (ft.)	Moisture Content (%)	Dry Density (pcf)
GT-KERN-002	-	5.5-6	1.4	103.2
GT-KERN-002	-	19-19.5	2.4	113.1
GT-KERN-003	-	5.5-6	15.5	101.3
GT-KERN-003	-	9-9.5	19.0	96.3
GT-KERN-003	-	34-34.5	3.3	105.8
GT-KERN-005	-	5.5-6	6.6	105.1
GT-KERN-013	-	9-9.5	11.8	123.2
GT-KERN-013	-	19-19.5	9.8	124.2

VISUAL SOIL CLASSIFICATION ASTM D 2488

Client Name: Arcadis

AP Lab No.: Date: 17-0812 08/09/17

Project Name: SCE - TLRR Project Number: 05032060.01325

Boring	Sample	Depth	Description
No.	No.	(feet)	
GT-KERN-002	-	5.5-6	Silty Sand (SM), about 50% sand, 40% fines, 10% gravel, fine-grained sand, yellowish brown, non plastic, subangular, no odor, moist
GT-KERN-002	-	19-19.5	Silty Sand (SM), about 65% sand, 20% fines, 15% gravel, light yellowish brown, medium to coarse grained sand, max. size~3/8", subangular, no odor, moist Fat Clay (CH), dark brown, about 5% sand, 95% fines, no gravel, fine-grained
GT-KERN-003	-	5.5-6	sand, high plasticity, slow dilatancy, no odor, high toughness, moist, hard consistency
GT-KERN-003	-	9-9.5	Fat Clay (CH), dark brown, about 10% sand, 90% fines, no gravel, fine-grained sand, high plasticity, slow dilatancy, no odor, high toughness, moist, hard consistency
GT-KERN-003	-	34-34.5	Silty Sand (SM), olive gray, about 85% sand, 15% fines, no gravel, medium to coarse grained sand, max. size~1/4", non plastic, subangular, no odor, moist Clayey Sand (SC), brown, about 60% sand, 40% fines, no gravel, fine to
GT-KERN-005	-	5.5-6	medium grained sand, medium plasticity, subrounded, no odor, low toughness, moist
GT-KERN-013	-	9-9.5	Silty Sand (SM), dark greenish gray, about 80% sand, 15% fines, 5% gravel, fine to coarse grained sand, subangular, no odor, moist
GT-KERN-013	-	19-19.5	Silty Sand (SM), olive yellow, about 80% sand, 20% fines, no gravel, fine to medium grained sand, non plastic, subrounded, no odor,moist

Liquefaction Triggering Calculation Summary

Subject:Date:Arcadis U.S., Inc.Liquefaction Triggering Calculation Summary
Preliminary Geotechnical Investigation ReportJanuary 2022445 South Figueroa StreetSouthern California Edison
TLRR Program
Gorman-Kern River ProjectLos AngelesCalifornia 90071Fax 213 486 9894Fax 213 486 9894

Arcadis U.S., Inc. performed a detailed liquefaction triggering evaluation using standard penetration testing (SPT) data collected during the field exploration. Liquefaction triggering was evaluated for soils below the groundwater table in the four soil borings where groundwater was observed during drilling. Liquefaction triggering was evaluated using the SPT-based methods developed by Boulanger and Idriss (2014). This memorandum briefly summarizes the methods, assumptions, and values used in the evaluation.

The Boulanger and Idriss (2014) approach for evaluating liquefaction triggering is an updated version of the simplified procedure originally developed by Seed and Idriss (1967), which calculates and compares the in-situ soil liquefaction resistance to the soil stresses that may develop during an earthquake. The result of the calculations is a factor of safety, where a value of less than one indicates the soil is potentially susceptible to liquefaction.

Susceptibility Screening

It is generally accepted that high plasticity soils are not susceptible to liquefaction and non-plastic soils are susceptible to liquefaction. Liquefaction susceptibility of low to medium plasticity soils is an area of ongoing research and requires detailed analysis. Due to the prevalence of non-plastic material along the project alignment, the low plasticity of the few clayey soils encountered, and the preliminary screening-level of this analysis, low plasticity clayey soils were conservatively included in the liquefaction triggering evaluation.

Soil liquefaction is more common in recently deposited geologic formations (Holocene age) than in older deposits (Pleistocene age and older). Age effects are not completely understood and are difficult to account for (National Academies of Sciences, Engineering, and Medicine 2016). Shallow soil in the project alignment is Holocene to Pleistocene in age. Due to the prevalence of younger soil deposits and shallow depth of soil borings along the project alignment, and the preliminary screening-level of this analysis, all SPT results were included in the liquefaction evaluation.

Soil Resistance

Soil resistance to liquefaction, termed the cyclic resistance ratio (CRR), is derived from the SPT N-value, sample depth, and fines content. The SPT N-values were corrected for overburden, hammer efficiency, and clean sand to $(N_1)_{60,cs}$ values. The CRR is then standardized to an M_w of 7.5 and an effective vertical stress of 1. The SPT N-value correction calculations and the standardized CRR calculations are summarized in the attached summary tables.

Ground Motions

The site modified peak ground acceleration (PGA_M) and earthquake moment magnitude (M_w) are the earthquake ground motion parameters used in the Boulanger and Idriss (2014) simplified procedure. The PGA_M is used as the ground acceleration and M_w is used as a proxy for the duration of shaking. The PGA_M was determined using the United States Geological Survey (USGS) Unified Hazard Tool for site class D. We determined ground motions for a seismic event with a 2 percent chance of exceedance in 50 years, which equates to a return period of 2,475 years and for a seismic event with a 10 percent chance of exceedance in 50 years, which equates to a return period of 475 years. The M_w used in the liquefaction calculations is the mean M_w for deaggregated earthquake data for a given return period. The M_w was determined with the USGS Unified Hazard Tool using the dynamic conterminous U.S. 2014 updated edition (USGS 2019).

The PGA_M and M_w were determined at two locations along the project alignment, as summarized in the table below. Ground motions were relatively strong at each of the locations evaluated. Borings KERN-011 and KERN-012 were evaluated using the ground motions determined for the Grapevine Canyon, and borings 3-002 and 3-005 were evaluated using ground motions determined at the Gorman Substation. The Gorman Substation is located adjacent to the San Andreas fault. A more detailed structure-by-structure or segment-based analysis could be performed during final design in critical areas.

Location	475 year Return Period PGA _M (g)	475 year Return Period M _w	2,475 year Retun Period PGA _M (g)	2,475 year Return Period M _w
Grapevine Canyon	0.54	7.5	0.99	7.9
Gorman Substation	0.64	7.7	1.19	7.7

 PGA_M - site modified peak ground acceleration M_w - moment magnitude

Liquefaction Triggering

The driving force behind liquefaction triggering, termed the cyclic stress ratio (CSR), is derived from the PGA_M and the calculated in-situ soil stresses. The CSR is then standardized to an M_w of 7.5 a vertical effective stress of one.

The CSR is then divided by the CRR to produce a result. A value of less than one indicates a potentially liquefiable soil.

References

- Boulanger, R.W. and I.M. Idriss. 2014. CPT and SPT Based Liquefaction Triggering Procedures. Center for Geotechnical Modeling. University of California Davis. Report No. UCD/CGM-14/01. April.
- National Academies of Sciences, Engineering, and Medicine (NASEM). 2016. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences. Washington, DC: the National Academies Press.

Seed, H.B., and I.M. Idriss. 1967. Analysis of liquefaction: Niigata earthquake. Proc., ASCE, 93(SM3), 83-108.

USGS. 2019. Unified Hazard Tool. Accessed in 2022. https://earthquake.usgs.gov/hazards/interactive/

Proj	Southern California Edison TLRR Program - Gorman-Kern River Project	Job No.	30002904 01325.C	Sheet No.	1 of 1
Calc	SPT "Simplified Procedure" Liguifaction Triggering Calculation	Ву	N. Trimble	Checked by	T. Newton
Calc	SFT Simplified Frocedure Elquilaction miggering Calculation	Date	1/26/2022, rev 2/3/2022	Date	2/10/2022

Borehole ID: KERN-011

Earthquake Values

Site Class	D	
PGA _M	0.99	2,475 year return period
Mw	7.7	2,475 year return period
PGA _M	0.54	475 year return period
M _w	7.5	475 year return period

Global Values

Borehole ID	KERN-011	Depth to Water	13.0 ft bgs	Hammer Energy	81.0 %	MSF	2,475 year return period	0.94	
Boring Elevation	3,215	ft Borehole Dia	7.0 in	Liners in sampler?	n (y/n)	MSF	475 year return period	0.99	

																								4	75 year re	eturn per	iod	2,4	75 year re	turn per	riod
No	Samp ID	Sample Depth (ft)	Sample Mid- Depth (ft)	USCS	N	γ (pcf)	C _R	C _s	C _E	C _B	N ₆₀	σ _v (psf)	u (psf)	σ' _v (psf)	C _N	N1	(N ₁) ₆₀	Fines	∆(N₁) ₆₀	(N ₁) _{60,cs}	CRR Μ=7.5 σ'v=1	Consider Lique- faction? *	κ _σ	r _d	CSR _{Μ,σ'ν}	CSR Μ=7.5 σ'v=1	Liq FOS	r _d	CSR _{M,σ'v}	CSR Μ=7.5 σ'v=1	Liq FOS
1	7	7	8	SC-SM	15	113	1	1	1.35	1.05	21	904	0	904	1.30	20	28	15	3.3	31	0.55	no	1.10	0.99	0.35	0.32	NA	0.99	0.64	0.61	NA
2	10	10	11	SC-SM	12	111	1	1	1.35	1.05	17	1,237	0	1,237	1.19	14	20	15	3.3	23	0.26	no	1.06	0.98	0.35	0.33	NA	0.98	0.63	0.63	NA
3	15	15	16	SC-SM	10	115	1	1	1.35	1.05	14	1,812	187	1,625	1.07	11	15	28	5.3	20	0.21	yes	1.02	0.96	0.38	0.37	0.56	0.97	0.69	0.72	0.29
4	20	20	21	SC-SM	27	119	1	1	1.35	1.05	38	2,407	499	1,908	1.00	27	38	15	3.3	41	6.83	yes	1.00	0.95	0.42	0.43	16.04	0.95	0.77	0.82	8.31
5	25	25	26	CL	7	115	1	1	1.35	1.05	10	2,982	811	2,171	0.93	7	9	52	5.6	15	0.15	yes	0.98	0.93	0.45	0.46	0.34	0.94	0.83	0.89	0.17
6	30	30	31	SM	22	116	1	1	1.35	1.05	31	3,562	1,123	2,439	0.92	20	29	18	4.1	33	0.72	yes	0.94	0.91	0.47	0.50	1.43	0.92	0.86	0.97	0.74
7	35	35	36	SM	36	123	1	1	1.35	1.05	51	4,177	1,435	2,742	0.91	33	46	15	3.3	49	>10	yes	0.89	0.88	0.48	0.54	>>2	0.90	0.88	1.05	>>2
8	40	40	41	SM	100	130	1	1	1.35	1.05	142	4,827	1,747	3,080	0.88	<mark>88</mark>	125	15	3.3	128	>10	yes	0.86	0.86	0.48	0.56	>>2	0.88	0.89	1.10	>>2
9	45	45	46	SM	100	130	1	1	1.35	1.05	142	5,477	2,059	3,418	0.86	<mark>86</mark>	121	15	3.3	125	>10	yes	0.82	0.84	0.48	0.58	>>2	0.86	0.88	1.14	>>2
10	48.5	48.5	49.5	SM	100	130	1	1	1.35	1.05	142	5,932	2,278	3,654	0.84	84	119	15	3.3	122	>10	yes	0.81	0.82	0.47	0.59	>>2	0.84	0.88	1.16	>>2

Notes

1 = User input value

1 = Calculated or assumed value

0.90 = Denotes a liquefaction FOS of less than 1

* = Soil liquefaction not considered for soil deposits that classify as CH, MH, OL, or OH and/or for soil layers above the groundwater table as measured on the date of boring installation. Earthquake PGA and Mw taken from the USGS Unified Hazard Tool mapped values.

The SPT "Simplified Procedure" is based on the Boulanger and Idriss (2014) Recommendations

Pa **1,888** psf

Proj Southern California Edison TLRR Program - Gorman-Kern River Project	Job No.	30002904 01325.C	Sheet No.	1 of 1
Calc SPT "Simplified Procedure" Liguifaction Triggering Calculation	Ву	N. Trimble	Checked by	T. Newton
	Date	1/26/2022, rev 2/3/2022	Date	2/10/2022

Borehole ID: KERN-012

Earthquake Values

Site Class	D	
PGA _M	0.99	2,475 year return period
Mw	7.7	2,475 year return period
PGA _M	0.54	475 year return period
M _w	7.5	475 year return period

Global Values

Borehole ID	KERN-012	Depth to Water	23.0 ft bgs	Hammer Energy	81.0 %	MSF	2,475 year return period	0.94
Boring Elevation	3,427	ft Borehole Dia	7.0 in	Liners in sampler?	n (y/n)	MSF	475 year return period	0.99

																								4	75 year re	eturn pei	riod	2,4	75 year re	turn pe	riod
	Samp	Sample	Sample Mid-			y	~	6	6	6		σ_{v}	()	σ' _v	c		(81.)			(81.)	CRR	Consider Lique-				CSR				CSR	Liq
No	ID	Depth (ft)	Depth	USCS	N	(pcf)	C _R	Cs	C _E	C _B	N ₆₀	(psf)	u (psf)	(psf)	C _N	N ₁	(N ₁) ₆₀	Fines	Δ(N ₁) ₆₀	(N ₁) _{60,cs}	M=7.5	faction?	κ _σ	r _d	CSR _{Μ,σ'ν}	M=7.5	Liq FOS	r _d	$\textbf{CSR}_{M,\sigma'v}$	M=7.5	FOS
		(11)	(ft)																		σ'v=1	*				σ'v=1				σ'v=1	
1	7	7	8	SC	14	112	1	1	1.35	1.05	20	<mark>896</mark>	0	896	1.31	18	26	15	3.3	29	0.44	no	1.10	0.99	0.35	0.32	NA	0.99	0.64	0.61	NA
2	10	10	11	SC	16	113	1	1	1.35	1.05	23	1,235	0	1,235	1.16	19	26	20	4.5	31	0.54	no	1.09	0.98	0.35	0.32	NA	0.98	0.63	0.62	NA
3	15	15	16	SC	14	112	1	1	1.35	1.05	20	1,795	0	1,795	1.02	14	20	15	3.3	23	0.26	no	1.01	0.96	0.34	0.34	NA	0.97	0.62	0.66	NA
4	20	20	21	SC	12	111	1	1	1.35	1.05	17	2,350	0	2,350	0.91	11	15	25	5.1	20	0.21	no	0.97	0.95	0.33	0.35	NA	0.95	0.61	0.67	NA
5	25	25	26	SC	26	118	1	1	1.35	1.05	37	2,940	187	2,753	0.88	23	33	15	3.3	36	1.32	yes	0.89	0.93	0.35	0.39	3.36	0.94	0.64	0.76	1.74
6	30	30	31	SC	22	116	1	1	1.35	1.05	31	3,520	499	3,021	0.84	19	26	22	4.8	31	0.56	yes	0.90	0.91	0.37	0.42	1.34	0.92	0.69	0.81	0.69
7	35	35	36	CL	15	130	1	1	1.35	1.05	21	4,170	811	3,359	0.78	12	17	68	5.6	22	0.24	yes	0.92	0.88	0.39	0.43	0.55	0.90	0.72	0.83	0.28
8	40	40	41	SC	27	119	1	1	1.35	1.05	38	4,765	1,123	3,642	0.80	22	31	15	3.3	34	0.89	yes	0.84	0.86	0.40	0.48	1.85	0.88	0.74	0.94	0.95
9	45	45	46	SC	27	119	1	1	1.35	1.05	38	5,360	1,435	3,925	0.78	21	30	15	3.3	33	0.76	yes	0.83	0.84	0.40	0.49	1.53	0.86	0.75	0.97	0.78
10	48.5	48.5	49.5	SC	19	115	1	1	1.35	1.05	27	5,763	1,654	4,109	0.73	14	20	22	4.8	24	0.27	yes	0.88	0.82	0.41	0.47	0.59	0.84	0.76	0.92	0.30

Notes

1 = User input value

1 = Calculated or assumed value

0.90 = Denotes a liquefaction FOS of less than 1

* = Soil liquefaction not considered for soil deposits that classify as CH, MH, OL, or OH and/or for soil layers above the groundwater table as measured on the date of boring installation. Earthquake PGA and Mw taken from the USGS Unified Hazard Tool mapped values.

The SPT "Simplified Procedure" is based on the Boulanger and Idriss (2014) Recommendations

Pa **1,872** psf

Proj	Southern California Edison TLRR Program - Gorman-Kern River Project	Job No.	30002904 01325.C	Sheet No.	1 of 1
Calc	SPT "Simplified Procedure" Liguifaction Triggering Calculation	Ву	N. Trimble	Checked by	T. Newton
Calc	SPT Simplified Procedure Elquitaction miggening Calculation	Date	1/26/2022, rev 2/3/2022	Date	2/10/2022

Borehole ID: 3-002

Earthquake Values

Site Class	D	
PGA _M	1.19	2,475 year return period
M _w	7.9	2,475 year return period
PGA _M	0.64	475 year return period
Mw	7.7	475 year return period

Global Values

	•	33.0 ft bgs	Hammer Energy	81.0 %	MSF	2,475 year return period	0.90
Boring Elevation 3,570 ft	Borehole Dia	7.0 in	Liners in sampler?	n (y/n)	MSF	475 year return period	0.95

																								4	75 year re	turn pe	riod	2,475 year return period						
	Samn	Sample	Sample Mid-									æ		<i>a</i> '							CRR	Consider				CSR				CSR	Lia			
No	Samp ID	Depth	Depth	USCS	Ν	γ (pcf)	C _R	Cs	CE	CB	N ₆₀	σ _v (nsf)	u (psf)	σ' _v (psf)	\mathbf{C}_{N}	N ₁	(N ₁) ₆₀	Fines	$\Delta(N_1)_{60}$	(N ₁) _{60,cs}	M=7.5	Lique- faction?	\mathbf{K}_{σ}	\mathbf{r}_{d}	$\textbf{CSR}_{M,\sigma'v}$	M=7.5	Liq FOS	r _d	$\textbf{CSR}_{M,\sigma'v}$	M=7.5	Liq FOS			
		(ft)	(ft)			(1901)						(621)		(p31)							σ'v=1	*				σ'v=1				σ'v=1				
1	7	7	8	CL	12	130	1	1	1.35	1.05	17	1,040	0	1,040	1.25	15	21	51	5.6	27	0.34	no	1.10	0.99	0.41	0.39	NA	0.99	0.77	0.78	NA			
2	10	10	11	CL	12	130	1	1	1.35	1.05	17	1,430	0	1,430	1.11	13	19	50	5.6	25	0.28	no	1.04	0.98	0.41	0.41	NA	0.99	0.76	0.81	NA			
3	15	15	16	SW-SM	18	134	1	1	1.35	1.05	26	2,100	0	2,100	0.95	17	24	9	0.5	25	0.29	no	0.98	0.97	0.40	0.43	NA	0.97	0.75	0.85	NA			
4	20	20	21	SW	64	130	1	1	1.35	1.05	91	2,750	0	2,750	0.90	58	<mark>82</mark>	18	4.1	86	>10	no	0.88	0.95	0.40	0.47	NA	0.96	0.74	0.93	NA			
5	25	25	26	SW	53	130	1	1	1.35	1.05	75	3,400	0	3,400	0.85	45	64	3	0.0	64	>10	no	0.82	0.94	0.39	0.50	NA	0.95	0.73	0.99	NA			
6	30	30	31	SW	54	130	1	1	1.35	1.05	77	4,050	0	4,050	0.81	44	<mark>62</mark>	3	0.0	<mark>62</mark>	>10	no	0.77	0.92	0.38	0.52	NA	0.93	0.72	1.04	NA			
7	35	35	36	SW	60	130	1	1	1.35	1.05	85	4,700	187	4,513	0.79	48	67	3	0.0	67	>10	yes	0.74	0.90	0.39	0.55	>>2	0.91	0.74	1.11	>>2			
8	40	40	41	SW	100	130	1	1	1.35	1.05	142	5,350	499	4,851	0.78	78	110	3	0.0	110	>10	yes	0.72	0.88	0.40	0.59	>>2	0.90	0.76	1.18	>>2			
9	45	45	46	SW	100	130	1	1	1.35	1.05	142	6,000	811	5,189	0.76	76	108	3	0.0	108	>10	yes	0.70	0.86	0.41	0.62	>>2	0.88	0.78	1.25	>>2			
10	48.5	48.5	49.5	SW	100	130	1	1	1.35	1.05	142	6,455	1,030	5,425	0.75	75	107	3	0.0	107	>10	yes	0.68	0.84	0.42	0.64	>>2	0.86	0.80	1.29	>>2			

Notes

1 = User input value

1 = Calculated or assumed value

0.90 = Denotes a liquefaction FOS of less than 1

* = Soil liquefaction not considered for soil deposits that classify as CH, MH, OL, or OH and/or for soil layers above the groundwater table as measured on the date of boring installation. Earthquake PGA and Mw taken from the USGS Unified Hazard Tool mapped values.

The SPT "Simplified Procedure" is based on the Boulanger and Idriss (2014) Recommendations

Pa **1,861** psf

Proj	Southern California Edison TLRR Program - Gorman-Kern River Project	Job No.	30002904 01325.C	Sheet No.	1 of 1
Calo	SPT "Simplified Procedure" Liguifaction Triggering Calculation	Ву	N. Trimble	Checked by	T. Newton
Calc		Date	1/26/2022, rev 2/3/2022	Date	2/10/2022

Borehole ID: 3-005

Earthquake Values

Site Class	D	
PGA _M	1.19	2,475 year return period
M _w	7.9	2,475 year return period
PGA _M	0.64	475 year return period
Mw	7.7	475 year return period

Global Values

Borehole ID	3-005	Depth to Water	33.0 ft bgs	Hammer Energy	81.0 %	MSF	2,475 year return period	0.90	
Boring Elevation	3,627	ft Borehole Dia	3.5 in	Liners in sampler?	n (y/n)	MSF	475 year return period	0.95	

																								4	75 year re	turn pei	riod	2,475 year return period						
	Sama	Sample	Sample Mid-									~		~ '							CRR	Consider				CSR				CSR	Lia			
No	Samp ID	Depth	Depth	USCS	Ν	γ (pcf)	C _R	Cs	CE	C_{B}	N ₆₀	σ _v (nsf)	u (psf)	σ' _v (psf)	\mathbf{C}_{N}	N_1	(N ₁) ₆₀	Fines	∆(N ₁) ₆₀	(N ₁) _{60,cs}	M=7.5	Lique- faction?	\mathbf{K}_{σ}	\mathbf{r}_{d}	$\textbf{CSR}_{M,\sigma'v}$	M=7.5	Liq FOS	r _d	$\textbf{CSR}_{M,\sigma'v}$	M=7.5	Liq FOS			
		(ft)	(ft)			(1901)						(621)		(1951)							σ'v=1	*				σ' v=1				σ'v=1				
1	7	7	8	SM	24	117	1	1	1.35	1	32	936	0	936	1.21	29	39	15	3.3	43	>10	no	1.10	0.99	0.41	0.39	NA	0.99	0.77	0.78	NA			
2	10	10	11	SM	40	125	1	1	1.35	1	54	1,311	0	1,311	1.10	44	59	15	3.3	<mark>62</mark>	>10	no	1.10	0.98	0.41	0.39	NA	0.99	0.76	0.77	NA			
3	15	15	16	SM	57	130	1	1	1.35	1	77	1,961	0	1,961	0.99	56	76	15	3.3	79	>10	no	0.98	0.97	0.40	0.43	NA	0.97	0.75	0.85	NA			
4	20	20	21	SM	82	130	1	1	1.35	1	111	2,611	0	<mark>2,611</mark>	0.91	75	101	19	4.3	106	>10	no	0.90	0.95	0.40	0.46	NA	0.96	0.74	0.92	NA			
5	25	25	26	SM	61	130	1	1	1.35	1	82	3,261	0	3,261	0.86	53	71	15	3.3	74	>10	no	0.83	0.94	0.39	0.49	NA	0.95	0.73	0.98	NA			
6	30	30	31	SM	40	125	1	1	1.35	1	54	3,886	0	3,886	0.82	33	44	15	3.3	48	>10	no	0.78	0.92	0.38	0.51	NA	0.93	0.72	1.02	NA			
7	35	35	36	SM	48	129	1	1	1.35	1	65	4,531	187	4,344	0.80	38	52	15	3.3	55	>10	yes	0.75	0.90	0.39	0.55	>>2	0.91	0.74	1.09	>>2			
8	40	40	41	SM	100	130	1	1	1.35	1	135	5,181	499	4,682	0.78	78	106	15	3.3	109	>10	yes	0.73	0.88	0.40	0.59	>>2	0.90	0.77	1.17	>>2			
9	45	45	46	SM	71	130	1	1	1.35	1	96	5,831	811	5,020	0.77	55	74	15	3.3	77	>10	yes	0.71	0.86	0.41	0.62	>>2	0.88	0.79	1.24	>>2			
10	48.5	48.5	49.5	SM	100	130	1	1	1.35	1	135	6,286	1,030	5,256	0.76	76	103	15	3.3	106	>10	yes	0.69	0.84	0.42	0.64	>>2	0.86	0.80	1.28	>>2			

Notes

1 = User input value

1 = Calculated or assumed value

0.90 = Denotes a liquefaction FOS of less than 1

* = Soil liquefaction not considered for soil deposits that classify as CH, MH, OL, or OH and/or for soil layers above the groundwater table as measured on the date of boring installation. Earthquake PGA and Mw taken from the USGS Unified Hazard Tool mapped values.

The SPT "Simplified Procedure" is based on the Boulanger and Idriss (2014) Recommendations

Pa **1,857** psf

Arcadis U.S., Inc. 445 South Figueroa Street, Suite 3650 Los Angeles California 90071 Phone: 213 486 9884 Fax: 213 486 9894 www.arcadis.com