Appendix I

Noise Modeling Calculation Data

CPUC General Construction

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	401	65.0	Jackhammer	85	0.2
PG&E 230 kV Transmission Line	80	79.0	Dump Truck	84	0.4
PG&E Lockeford Substation	440	64.2	Backhoe	80	0.4
PG&E Thurman Switching Station	600	61.5			
PG&E Brighton	1000	57.1			
PG&E Bellota	1050	56.6			
PG&E Rio Oso	4150	44.7			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level	L _{eq} dBA at 50 feet ³
Jackhammer	78.0
Dump Truck	80.0
Backhoe	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

83.1

Sources:

 $^{\rm 1}$ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Mobilization

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	468	65.0	Grader	85	0.4
PG&E 230 kV Transmiss	80	80.4	Dump Truck	84	0.4
PG&E Thurman Switching Station	600	62.8	Crane	85	0.16

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Grader	81.0
Dump Truck	80.0
Crane	77.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

84.4

Sources: $^1\mbox{Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	6	100.0	Dump Truck	84	0.4
PG&E 230 kV Transmiss	80	77.4	Pickup Truck	55	0.4
PG&E Thurman Switchir	600	59.9	Backhoe	80	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Dump Truck	80.0
Pickup Truck	51.0
Backhoe	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 81.5

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 3 Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Leq(cquip) = 2.2.110 log (0.1.1) 20 log (

Where: E.L. = Emission Level;

U.F.= Usage Factor;

CPUC Clearing

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Guard Structures

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	5	100.0	Auger Drill Rig	85	0.2
PG&E 230 kV Transmiss	80	76.1	Backhoe	80	0.4
			Pickup Truck	55	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Auger Drill Rig	78.0
Backhoe	76.0
Pickup Truck	51.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

80.1

Sources: $^1\mbox{Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Assembly

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	4	100.0	Pickup Truck	55	0.4
PG&E 230 kV Transmiss	80	74.4	Compactor (ground)	80	0.2
			Crane	85	0.16

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Pickup Truck	51.0
Compactor (ground)	73.0
Crane	77.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

78.5

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Installation

Location	Distance to Nearest Receptor in feet	Combined Predicted	Faujoment	Reference Emission Noise Levels (L _{max}) at 50 feet ¹	Usage Factor ¹
threshold	12	100.0	Paver	85	0.5
PG&E 230 kV Transmiss	80	83.3	Concrete Saw	90	0.2
PG&E Thurman Switchir	600	65.8	Roller	85	0.2
LEU Guild Substation	600	65.8	Grader	85	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Paver	82.0
Concrete Saw	83.0
Roller	78.0
Grader	81.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

87.4

Sources: $^1\mbox{Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Restoration

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	8	100.0	Grader	85	0.4
PG&E 230 kV Transmiss	80	80.2	Flat Bed Truck	84	0.4
LEU Guild Substation	600	62.7	Backhoe	80	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Grader	81.0
Flat Bed Truck	80.0
Backhoe	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 84.3

Sources:

 $^{\rm 1}$ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 3 Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

 $L_{eq}(cquip) = L.L.10 \log(0.1.) 20 \log t$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Site Prep

l	Distance to Nearest	Combined Predicted	Freedoment	Reference Emission Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet	Factor
threshold	9	100.0	Dozer	85	0.4
PG&E Lockeford Substa	440	65.7	Dump Truck	84	0.4
PG&E Thurman Switchir	600	63.0	Roller	85	0.2
LEU Guild Substation	600	63.0			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Dozer	81.0
Dump Truck	80.0
Roller	78.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 84.6

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Grading and Paving

Location	Distance to Nearest Receptor in feet	Combined Predicted Noise Level (L _{eq} dBA)	Equipment	Reference Emission Noise Levels (L _{max}) at 50 feet ¹	Usage Factor ¹
threshold	11	100.0	Concrete Mixer Truck	85	0.4
PG&E Lockeford Substa	440	67.6	Dozer	85	0.4
PG&E Thurman Switchir	600	64.9	Roller	85	0.2
			Grader	85	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Concrete Mixer Truck	81.0
Dozer	81.0
Roller	78.0
Grader	81.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 86.5

Sources:

 $^{\rm 1}$ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Foundation and Excavation

Location	Distance to Nearest Receptor in feet	Combined Predicted Noise Level (L _{en} dBA)	Equipment	Reference Emission Noise Levels (L _{max}) at 50 feet ¹	Usage Factor ¹
threshold	7	100.0	Crane	85	0.16
PG&E 230 kV Transmiss	80	79.2	Dump Truck	84	0.4
PG&E Lockeford Substa	440	64.4	Auger Drill Rig	85	0.2
PG&E Thurman Switchir	600	61.7			
LEU Guild Substation	600	61.7			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Crane	77.0
Dump Truck	80.0
Auger Drill Rig	78.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 83.3

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Equipment Installation

	Dictance to Nearest	Combined Dredicted		Reference Emission Noise Levels (Lange) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	7	100.0	Compactor (ground)	80	0.2
PG&E Lockeford Substa	440	63.4	Dump Truck	84	0.4
PG&E Thurman Switchir	600	60.7	Crane	85	0.16

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Compactor (ground)	73.0
Dump Truck	80.0
Crane	77.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 82.3

Sources:

 $^{\rm 1}$ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 3 Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Leq(cquip) = 2.2.10 log (0.1.) 20 log

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Clearing and Landscaping

	Distance to Nearest	Combined Predicted		Reference Emission Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet	Factor
threshold	6	100.0	Pickup Truck	55	0.4
PG&E Lockeford Substa	140	72.5	Backhoe	80	0.4
PG&E Thurman Switchir	800	57.4	Dump Truck	84	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Pickup Truck	51.0
Backhoe	76.0
Dump Truck	80.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 81.5

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 3 Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Leq(cquip) = 2.2.110 log (0.1.1) 20 log (

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

CPUC Rebuilding Substation

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	7	100.0	Man Lift	85	0.2
PG&E Lockeford Substa	440	64.2	Dump Truck	84	0.4
			Compressor (air)	80	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Man Lift	78.0
Dump Truck	80.0
Compressor (air)	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

83.1

Sources: $^1\mbox{Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Nighttime Concrete Pouring

	Distance to Nearest	Combined Predicted		Reference Emission Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	4,236	45.0	Flat Bed Truck	84	0.4
PG&E Lockeford Substa	440	64.7	Concrete Mixer Truck	85	0.4
PG&E Thurman Switchir	2230	50.6			
LEU industrial and Guild	2230	50.6			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Flat Bed Truck	80.0
Concrete Mixer Truck	81.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 83.6

Sources:

 $^{\rm 1}\,{\rm Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Nighttime Commissioning

location	Distance to Nearest	Combined Predicted	Equipment	Reference Emission Noise Levels (L _{max}) at 50	Usage Eactor ¹
Location	Receptor in feet	Noise Level (L _{eq} dbA)	Equipment	leet	Factor
threshold	2,238	45.0	Man Lift	85	0.2
PG&E Lockeford Substa	440	59.1	Pickup Truck	55	0.4
PG&E Thurman Switchir	2230	45.0			
LEU industrial and Guild	2230	45.0			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Man Lift	78.0
Pickup Truck	51.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

78.0

Sources: $^1\,\rm Obtained$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

		Spec	Actual	No. of					
	Acoustical	721.560	Measured	Actual	Spec	Spec		Actual	Actual
	Usage	Lmax @	Lmax @	Data	721.560	721.560	Distance	Measured	Measured
Equipmont	Factor (%)	50ft (dBA	50ft	Samples	LmaxCalc	Leq		LmaxCalc	Leq
Description		slow)	(dBA slow)	(count)					
Description									
Augor Drill Pig	20	95	9.4	26	70.0	72.0	100	79.0	71.0
Ruger Drin Rig	20	00 00	70	272	79.0	72.0	100	78.0	71.0 68.0
Dackille Dar Dandar	40	00	70	572	74.0	70.0	100	72.0	08.0
Placting	20	04	na	0	74.0	67.0	100		
Didstillig	11d E0	94	00	1	88.U 74.0	71.0	100	77.0	74.0
Chain Cau	30	00 05	05	1	74.0	71.0	100	77.0	74.0
Chain Saw	20	85 02	84 07	40	79.0	72.0	100	78.0	71.0
Clam Shover (dropping)	20	93	87	4	87.0	80.0	100	81.0	74.0
Compactor (ground)	20	80	83 70	57 10	74.0	07.0	100	77.0	70.0
Compressor (air)	40	80	78	18	74.0	70.0	100	72.0	68.0
	15	83	114	0	77.0	08.7	100	72.0	60.0
Concrete Mixer Truck	40	85	79	40	79.0	/5.0	100	73.0	69.0
Concrete Pump Truck	20	82	81	30	76.0	69.0	100	/5.0	68.0 77.0
Concrete Saw	20	90	90	55	84.0	77.0	100	84.0	//.0
Crane	10	85	81	405	79.0	71.0	100	75.0	67.0
Dozer	40	85	82	55	79.0	75.0	100	76.0	72.0
Drill Rig Truck	20	84	79	22	78.0	/1.0	100	/3.0	66.0
	50	80	80	1	74.0	/1.0	100	/4.0	/1.0
Dump Truck	40	84	76	31	78.0	74.0	100	70.0	66.0
Excavator	40	85	81	170	79.0	75.0	100	75.0	71.0
Flat Bed Truck	40	84	74	4	78.0	74.0	100	68.0	64.0
Front End Loader	40	80	79	96	74.0	70.0	100	73.0	69.0
Generator	50	82	81	19	76.0	73.0	100	75.0	72.0
Generator (<25KVA, VMS	50	70	73	74	64.0	61.0	100	67.0	64.0
Gradall	40	85	83	70	79.0	75.0	100	77.0	73.0
Grader	40	85	na	0	79.0	75.0	100		
Grapple (on Backhoe)	40	85	87	1	79.0	75.0	100	81.0	77.0
Horizontal Boring Hydr. Ja	25	80	82	6	74.0	68.0	100	76.0	70.0
Hydra Break Ram	10	90	na	0	84.0	74.0	100		
Impact Pile Driver	20	95	101	11	89.0	82.0	100	95.0	88.0
Jackhammer	20	85	89	133	79.0	72.0	100	83.0	76.0
Man Lift	20	85	75	23	79.0	72.0	100	69.0	62.0
Mounted Impact Hammer	20	90	90	212	84.0	77.0	100	84.0	77.0
Pavement Scarafier	20	85	90	2	79.0	72.0	100	84.0	77.0
Paver	50	85	77	9	79.0	76.0	100	71.0	68.0
Pickup Truck	40	55	75	1	49.0	45.0	100	69.0	65.0
Pneumatic Tools	50	85	85	90	79.0	76.0	100	79.0	76.0
Pumps	50	77	81	17	71.0	68.0	100	75.0	72.0
Refrigerator Unit	100	82	73	3	76.0	76.0	100	67.0	67.0
Rivit Buster/chipping gun	20	85	79	19	79.0	72.0	100	73.0	66.0
Rock Drill	20	85	81	3	79.0	72.0	100	75.0	68.0
Roller	20	85	80	16	79.0	72.0	100	74.0	67.0
Sand Blasting (Single Nozz	20	85	96	9	79.0	72.0	100	90.0	83.0
Scraper	40	85	84	12	79.0	75.0	100	78.0	74.0
Shears (on backhoe)	40	85	96	5	79.0	75.0	100	90.0	86.0
Slurry Plant	100	78	78	1	72.0	72.0	100	72.0	72.0
Slurry Trenching Machine	50	82	80	75	76.0	73.0	100	74.0	71.0
Soil Mix Drill Rig	50	80	na	0	74.0	71.0	100		
Tractor	40	84	na	0	78.0	74.0	100		
Vacuum Excavator (Vac-tr	40	85	85	149	79.0	75.0	100	79.0	75.0
Vacuum Street Sweeper	10	80	82	19	74.0	64.0	100	76.0	66.0
Ventilation Fan	100	85	79	13	79.0	79.0	100	73.0	73.0
Vibrating Hopper	50	85	87	1	79.0	76.0	100	81.0	78.0
Vibratory Concrete Mixer	20	80	80	1	74.0	67.0	100	74.0	67.0
Vibratory Pile Driver	20	95	101	44	89.0	82.0	100	95.0	88.0
Warning Horn	5	85	83	12	79.0	66.0	100	77.0	64.0
Welder / Torch	40	73	74	5	67.0	63.0	100	68.0	64.0

Source: FHWA Roadway Construction Noise Model, January 2006. Table 9.1 U.S. Department of Transportation CA/T Construction Spec. 721.560

Increase in Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site: PG&E Lockeford Control Enclosure

Measurement Date: Operational Noise

Project Name: PG&E CPUC

Hour of Day (military	Sound Level Lea	Sound Power =10*Log(dBA	Perio (1=i	d of 24-Hou ncluded, 0=	ur Day =not)	Sound P I	Power Breakdo Period of Day	wn by	
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night	
0:00	35.5	3,548	0	0	1	0	0	3,548	;
1:00	35.5	3,548	0	0	1	0	0	3,548	5
2:00	35.5	3,548	0	0	1	0	0	3,548	5
3:00	35.5	3,548	0	0	1	0	0	3,548	5
4:00	35.5	3,548	0	0	1	0	0	3 <i>,</i> 548	1
5:00	35.5	3,548	0	0	1	0	0	3 <i>,</i> 548	1
6:00	35.5	3,548	0	0	1	0	0	3 <i>,</i> 548	1
7:00	35.5	3,548	1	0	0	3,548	0	0	1
8:00	35.5	3,548	1	0	0	3,548	0	0	1
9:00	35.5	3,548	1	0	0	3,548	0	0	1
10:00	35.5	3,548	1	0	0	3,548	0	0	1
11:00	35.5	3,548	1	0	0	3,548	0	0	1
12:00	35.5	3,548	1	0	0	3,548	0	0	1
13:00	35.5	3,548	1	0	0	3,548	0	0	1
14:00	35.5	3,548	1	0	0	3,548	0	0	1
15:00	35.5	3,548	1	0	0	3,548	0	0	1
16:00	35.5	3,548	1	0	0	3,548	0	0	1
17:00	35.5	3,548	1	0	0	3,548	0	0	1
18:00	35.5	3,548	1	0	0	3,548	0	0	1
19:00	35.5	3,548	0	1	0	0	3,548	0	1
20:00	35.5	3,548	0	1	0	0	3,548	0	1
21:00	35.5	3,548	0	1	0	0	3,548	0	1
22:00	35.5	3,548	0	0	1	0	0	3,548	
23:00	35.5	3,548	0	0	1	0	0	3,548	,
	Sur	n of Sound Pow	er durina	g Period wo	/penaltv	42.578	10.644	31.933	
	2011	Log Factor for (CNEL Per	nalty (i.e., 1	0*log(x))	1	3	10	
		Sound Powe	r during	Period with	n penalty	42,578	31,933	319,332	
			0		-				
			Total D	aily Sound I	Power, wit	h penalties	393,843		
					Ηοι	urs per Day	24		Ldn co
		Ave	rage Hou	urly Sound I	Power, wit	h penalties	16,410		tatior
						CNEL	42.2		page.

Computation of CNEL

	Period o	f 24-Hour	Sound Power	Breakdown
	Day (1=included,		by	,
	0=	not)	Period o	of Day
	Day	Night	Day	Night
	0	1	0	3,548
	0	1	0	3,548
	0	1	0	3,548
	0	1	0	3,548
	0	1	0	3,548
	0	1	0	3,548
	0	1	0	3,548
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	1	0	3,548	0
	0	1	0	3,548
	0	1	0	3,548
Sum of Sound Power during	Period w	o/penalty	53,222	31,933
Log Factor for Pen	alty (i.e., :	10*log(x))	1	10
Sound Power during	Period wit	h penalty	53,222	319,332
Total Da	aily Sound	Power, wi	ith penalties	372,554
		Ho	ours per Day	24
Average Hou	rly Sound	Power, wi	th penalties	15,523
			Ldn	41.9

Computation of Ldn

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement . Sacramento, CA. Available: <http://www.dot.ca.gov/hq/env/noise/>. Accessed September 24, 2010.

Increase in Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site: PG&E Lockeford Battery Enclosure

Measurement Date: Operational Noise

Project Name: PG&E CPUC

Hour of Day (military	Sound	Sound Power =10*Log(dBA	Perio (1=i	d of 24-Hou ncluded, 0=	ur Day =not)	Sound P	Power Breakdo Period of Day	wn by
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night
0:00	25.5	355	0	0	1	0	0	355
1:00	25.5	355	0	0	1	0	0	355
2:00	25.5	355	0	0	1	0	0	355
3:00	25.5	355	0	0	1	0	0	355
4:00	25.5	355	0	0	1	0	0	355
5:00	25.5	355	0	0	1	0	0	355
6:00	25.5	355	0	0	1	0	0	355
7:00	25.5	355	1	0	0	355	0	0
8:00	25.5	355	1	0	0	355	0	0
9:00	25.5	355	1	0	0	355	0	0
10:00	25.5	355	1	0	0	355	0	0
11:00	25.5	355	1	0	0	355	0	0
12:00	25.5	355	1	0	0	355	0	0
13:00	25.5	355	1	0	0	355	0	0
14:00	25.5	355	1	0	0	355	0	0
15:00	25.5	355	1	0	0	355	0	0
16:00	25.5	355	1	0	0	355	0	0
17:00	25.5	355	1	0	0	355	0	0
18:00	25.5	355	1	0	0	355	0	0
19:00	25.5	355	0	1	0	0	355	0
20:00	25.5	355	0	1	0	0	355	0
21:00	25.5	355	0	1	0	0	355	0
22:00	25.5	355	0	0	1	0	0	355
23:00	25.5	355	0	0	1	0	0	355
	c	n of Sound Down	or during	Dorioduce	Inonalty	1 250	1 064	2 102
	Sur	Log Eactor for				4,238	1,004	3,193
		1 250	3 2 102	21 022				
		Sound Powe	uuring	Feriod with	i penalty	4,200	3,193	51,933
			Total Da	aily Sound I	Power, wit	h penalties	39,384	
					Но	urs per Day	24	
		Ave	rage Hou	urly Sound I	Power, wit	h penalties	1,641	
						CNEL	32.2	

Computation of CNEL

	Period of 24-Hour S		Sound Power Breakdown				
	Day (1=ir	ncluded,	by				
	0=n	ot)	Period o	f Day			
	Day	Night	Day	Night			
	0	1	0	355			
	0	1	0	355			
	0	1	0	355			
	0	1	0	355			
	0	1	0	355			
	0	1	0	355			
	0	1	0	355			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	1	0	355	0			
	0	1	0	355			
	0	1	0	355			
	.		F 222	2 4 9 2			
um of Sound Power during	g Perioa Wo	/penalty	5,322	3,193			
Log Factor for Per	naity (i.e., 1	U"IOg(X))	1	10			
Sound Power during	Period with	i penalty	5,322	31,933			
Total D	aily Sound I	Power, wi	th penalties	37,255			
	-	·	ours per Day	24			
Average Hou	urly Sound F	Power, wi	th penalties	1,552			
			Ldn	31.9			

Computation of Ldn

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement . Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/. Accessed September 24, 2010.

Increase in Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site: PG&E Thurman Control Enclosure

Measurement Date: Operational Noise

Project Name: PG&E CPUC

Hour of Day (military	Sound	Sound Power =10*Log(dBA	Perio (1=i	d of 24-Hou ncluded, 0=	ur Day =not)	Sound P	Sound Power Breakdown Period of Day		
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night	
0:00	23.5	224	0	0	1	0	0	224	
1:00	23.5	224	0	0	1	0	0	224	
2:00	23.5	224	0	0	1	0	0	224	
3:00	23.5	224	0	0	1	0	0	224	
4:00	23.5	224	0	0	1	0	0	224	
5:00	23.5	224	0	0	1	0	0	224	
6:00	23.5	224	0	0	1	0	0	224	
7:00	23.5	224	1	0	0	224	0	0	
8:00	23.5	224	1	0	0	224	0	0	
9:00	23.5	224	1	0	0	224	0	0	
10:00	23.5	224	1	0	0	224	0	0	
11:00	23.5	224	1	0	0	224	0	0	
12:00	23.5	224	1	0	0	224	0	0	
13:00	23.5	224	1	0	0	224	0	0	
14:00	23.5	224	1	0	0	224	0	0	
15:00	23.5	224	1	0	0	224	0	0	
16:00	23.5	224	1	0	0	224	0	0	
17:00	23.5	224	1	0	0	224	0	0	
18:00	23.5	224	1	0	0	224	0	0	
19:00	23.5	224	0	1	0	0	224	0	
20:00	23.5	224	0	1	0	0	224	0	
21:00	23.5	224	0	1	0	0	224	0	
22:00	23.5	224	0	0	1	0	0	224	
23:00	23.5	224	0	0	1	0	0	224	
	Sur	n of Sound Pow	er during	g Period wo	/penalty	2,686	672	2,015	
		Log Factor for	CNEL Per	nalty (i.e., 1	0*log(x))	1	3	10	
		2,686	2,015	20,148					
			8			,	,	.,	
			Total Da	aily Sound I	Power, wit	h penalties	24,850		
					Ho	urs per Day	24		
		Ave	rage Hou	urly Sound I	Power, wit	h penalties	1,035		
						CNEL	30.2		

Computation of CNEL

	Period o	f 24-Hour	Sound Power	ower Breakdown			
	Day (1= i	included,	by	,			
	0=1	not)	Period o	of Day			
	Day	Night	Day	Night			
	0	1	0	224			
	0	1	0	224			
	0	1	0	224			
	0	1	0	224			
	0	1	0	224			
	0	1	0	224			
	0	1	0	224			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	1	0	224	0			
	0	1	0	224			
	0	1	0	224			
oum of Sound Power durin	g Period we	o/penalty	3,358	2,015			
Log Factor for Pe	nalty (i.e., 1	10*log(x))	1	10			
Sound Power during	Period wit	h penalty	3,358	20,148			
Total D	aily Sound	Power, wi	th penalties	23,507			
	•	·	ours per Day	24			
Average Ho	urly Sound	Power, wi	th penalties	979			
			Ldn	29.9			

Computation of Ldn

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement . Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/. Accessed September 24, 2010.

Increase in Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site: PG&E Thurman Battery Enclosure

Measurement Date: Operational Noise

Project Name: PG&E CPUC

Hour of Day (military	Sound	Sound Power =10*Log(dBA	Perio (1=i	d of 24-Hou ncluded, 0=	ur Day not)	Sound F	down by y		
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night	
0:00	18.5	71	0	0	1	0	0	71	
1:00	18.5	71	0	0	1	0	0	71	
2:00	18.5	71	0	0	1	0	0	71	
3:00	18.5	71	0	0	1	0	0	71	
4:00	18.5	71	0	0	1	0	0	71	
5:00	18.5	71	0	0	1	0	0	71	
6:00	18.5	71	0	0	1	0	0	71	
7:00	18.5	71	1	0	0	71	0	0	
8:00	18.5	71	1	0	0	71	0	0	
9:00	18.5	71	1	0	0	71	0	0	
10:00	18.5	71	1	0	0	71	0	0	
11:00	18.5	71	1	0	0	71	0	0	
12:00	18.5	71	1	0	0	71	0	0	
13:00	18.5	71	1	0	0	71	0	0	
14:00	18.5	71	1	0	0	71	0	0	
15:00	18.5	71	1	0	0	71	0	0	
16:00	18.5	71	1	0	0	71	0	0	
17:00	18.5	71	1	0	0	71	0	0	
18:00	18.5	71	1	0	0	71	0	0	
19:00	18.5	71	0	1	0	0	71	0	
20:00	18.5	71	0	1	0	0	71	0	
21:00	18.5	71	0	1	0	0	71	0	
22:00	18.5	71	0	0	1	0	0	71	
23:00	18.5	71	0	0	1	0	0	71	
	_								
	Sur	n of Sound Pow	er during	g Period wo	/penalty	850	212	637	
		Log Factor for (CNEL Per	halty (i.e., 1	0*log(x))	1	3	10	
		Sound Powe	r during	Period with	n penalty	850	637	6,372	
			Total D	ailv Sound F	Power. wit	h penalties	7.858		
					Hoi	urs per Dav	24		1 d = -
		Ave	rage Hou	urly Sound F	Power. wit	h penalties	327		Lun Co
		,				CNFI	25.2		naae
							23.2		page.

Computation of CNEL

	Period o	Sound Power	er Breakdown				
	Day (1=	included,	by				
	0=	not)	Period o	of Day			
	Day	Night	Day	Night			
	0	1	0	71			
	0	1	0	71			
	0	1	0	71			
	0	1	0	71			
	0	1	0	71			
	0	1	0	71			
	0	1	0	71			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	1	0	71	0			
	0	1	0	71			
	0	1	0	71			
Sum of Sound Power during	Period w	o/penaltv	1.062	637			
Log Factor for Pen	alty (i.e	10*log(x))	_,	10			
Sound Power during	Sound Power during Period with penalty 1,062						
T-1-1 D		Deuter er		7 400			
i otal Da	any sound	Power, W	in penalties	7,433			
Average Hou	irly Sound	Power, wi	ith penalties	24 310			
			Ldn	24.9			

Computation of Ldn

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement . Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/. Accessed September 24, 2010.

Increase in Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site:HVAC + 2 TransformersMeasurement Date:Operational NoiseProject Name:PG&E CPUC

Hour of Day (military	Sound Level Leg	Sound Power =10*Log(dBA	Perio (1=i	d of 24-Hou ncluded, 0=	ur Day =not)	Sound P	d Power Breakdown by Period of Day			Sound Power Breakdow Period of Day		
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night				
0:00	30.8	1,202	0	0	1	0	0	1,202				
1:00	30.8	1,202	0	0	1	0	0	1,202				
2:00	30.8	1,202	0	0	1	0	0	1,202				
3:00	30.8	1,202	0	0	1	0	0	1,202				
4:00	30.8	1,202	0	0	1	0	0	1,202				
5:00	30.8	1,202	0	0	1	0	0	1,202				
6:00	30.8	1,202	0	0	1	0	0	1,202				
7:00	30.8	1,202	1	0	0	1,202	0	0				
8:00	30.8	1,202	1	0	0	1,202	0	0				
9:00	30.8	1,202	1	0	0	1,202	0	0				
10:00	30.8	1,202	1	0	0	1,202	0	0				
11:00	30.8	1,202	1	0	0	1,202	0	0				
12:00	30.8	1,202	1	0	0	1,202	0	0				
13:00	30.8	1,202	1	0	0	1,202	0	0				
14:00	30.8	1,202	1	0	0	1,202	0	0				
15:00	30.8	1,202	1	0	0	1,202	0	0				
16:00	30.8	1,202	1	0	0	1,202	0	0				
17:00	30.8	1,202	1	0	0	1,202	0	0				
18:00	30.8	1,202	1	0	0	1,202	0	0				
19:00	30.8	1,202	0	1	0	0	1,202	0				
20:00	30.8	1,202	0	1	0	0	1,202	0				
21:00	30.8	1,202	0	1	0	0	1,202	0				
22:00	30.8	1,202	0	0	1	0	0	1,202				
23:00	30.8	1,202	0	0	1	0	0	1,202				
	Sur	n of Sound Pow	er during	g Period wo	/penalty	14,427	3,607	10,820				
		Log Factor for (CNEL Per	nalty (i.e., 1	0*log(x))	1	3	10				
		14,427	10,820	108,204								
			Tatal D	aile Council r			122 454					
			Total Da	any sound h	-ower, Wi	in penalties	133,451					
		۸		why Council r		h noncluios	24					
		AVe	age HOL	iny sound h	-ower, wit	in penalties	5,500					
						CNEL	37.5					

Computation of CNEL

Day (1=included, 0=not) by Period of Day Day Night Day Night 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1		Period o	f 24-Hour	Sound Power	Breakdown
0=not) Period of Day Day Night Day Night 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 <t< th=""><th></th><th>Day (1=</th><th>included,</th><th>by</th><th>/</th></t<>		Day (1=	included,	by	/
Day Night Day Night 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 <		0=	not)	Period	of Day
0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		Day	Night	Day	Night
0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
0 1 0 1,202 0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
0 1 0 1,202 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202		0	1	0	1,202
1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0		0	1	0	1,202
1 0 1,202 0 1		1	0	1,202	0
1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sound Power during Period wo/penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 1 10 Sound Power duri		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sound Power during Period wo/penalty 18,034 10,820 18,034 108,034 108,204 <		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sound Power during Period wo/penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sound Power during Period wo/penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty (i.e., 10*log(x)) 1 10,820 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty 18,034 10,820 Log Factor for Penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty 18,034 10,820 Log Factor for Penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
1 0 1,202 0 0 1 0 1,202 0 1 0 1,202 Sum of Sound Power during Period wo/penalty 18,034 10,820 Log Factor for Penalty (i.e., 10*log(x)) 1 10 Sound Power during Period with penalty 18,034 108,204		1	0	1,202	0
0101,2020101,202Sum of Sound Power during Period wo/penalty Log Factor for Penalty (i.e., 10*log(x))110,820Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238		1	0	1,202	0
0101,202Sum of Sound Power during Period wo/penalty Log Factor for Penalty (i.e., 10*log(x))18,03410,820Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238		0	1	0	1,202
Sum of Sound Power during Period wo/penalty18,03410,820Log Factor for Penalty (i.e., 10*log(x))110Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238		0	1	0	1,202
Sum of Sound Power during Period wo/penalty18,03410,820Log Factor for Penalty (i.e., 10*log(x))110Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238					
Log Factor for Penalty (i.e., 10*log(x))110Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238	Sum of Sound Power during	; Period w	o/penalty	18,034	10,820
Sound Power during Period with penalty18,034108,204Total Daily Sound Power with penalties126,238	Log Factor for Per	alty (i.e., 1	10*log(x))	1	10
Total Daily Sound Power with penalties 126 238	Sound Power during	Period wit	h penalty	18,034	108,204
Total Daily Sound Power with penalties 126,238					
Total Daily Sound Power, with penalties 120,238	Total Da	aily Sound	Power, wi	ith penalties	126,238
Hours per Day 24			Но	ours per Day	24
Average Hourly Sound Power, with penalties 5,260	Average Hou	ırly Sound	Power, wi	th penalties	5,260
Ldn 37.2				Ldn	37.2

Computation of Ldn

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement . Sacramento, CA. Available: <http://www.dot.ca.gov/hq/env/noise/>. Accessed September 24, 2010.

Addition of Noise Levels from Multiple Sources at a Discrete Receptor

OBJECTIVE: This work sheet is designed to estiamte the combined level of noise exposure at a single discrete receptor from multiple point sources.

KEY:	Orange cells are for input.
------	-----------------------------

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Receptor Name: Lodi Memorial Park

STEP 1: Identify the noise sources and enter the reference noise levels (dBA and distance).

Hour of Day (24-HR time)

STEP 3: Select the distance to the receptor and the reduction provided by any intervening barrier.

Step 1.				Step 2.									
Noise Source	Referen	ce N	oise Level	Attenuation Characteristics					Attenuated Noise Level at Receptor				
												Reduction	
	Reference)										Provided	
	Noise		Reference		Source		Ground		Noise		Distance to	by Barrier,	
	Level		Distance	Ground Type	Height	Receiver Height	Factor		Level		Receptor	if any	
	(dBA)	@	(ft)	(soft/hard)	(ft)	(ft)			(dBA)	@	(ft)	(dBA)	
Transformer	70.0	@	3	hard	35	5	0.00		20.5	@	900	0	
Transformer	70.0	@	3	hard	35	5	0.00		20.5	@	900	0	
HVAC Unit	76.0	@	3	hard	35	5	0.00		27.0	@	850	0	
HVAC Unit	76.0	@	3	hard	35	5	0.00		27.0	@	850	0	
				hard	35	5	0.00						

Combined level of noise exposure at receptor from all noise sources (dBA): 30.8

Computation of the attenuated noise level is based on the equation presented on pg. 12-3 and 12-4 of FTA 2006.

Computation of the ground factor is based on the equation presentd in Figure 6-23 on pg. 6-23 of FTA 2006, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Summation of noise levels from different stationary noise sources at the same receptor is based on the equation presented on page 2-3 of FTA 2006.

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf>. Accessed: March 5, 2020.

Addition of Noise Levels from Multiple Sources at a Discrete Receptor

OBJECTIVE: This work sheet is designed to estiamte the combined level of noise exposure at a single discrete receptor from multiple point sources.

KEY:	Orange cells are for input.
------	-----------------------------

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Receptor Name: Lodi Memorial Park

STEP 1: Identify the noise sources and enter the reference noise levels (dBA and distance).

Hour of Day (24-HR time)

STEP 3: Select the distance to the receptor and the reduction provided by any intervening barrier.

Step 1.				Step 2.									
Noise Source	Referen	ce N	oise Level	Attenuation Characteristics					Attenuated Noise Level at Receptor				
												Reduction	
	Reference	2										Provided	
	Noise		Reference		Source		Ground		Noise		Distance to	by Barrier,	
	Level		Distance	Ground Type	Height	Receiver Height	Factor		Level		Receptor	if any	
	(dBA)	@	(ft)	(soft/hard)	(ft)	(ft)			(dBA)	@	(ft)	(dBA)	
Transformer	70.0	@	3	hard	35	5	0.00		70.0	@	3	0	
Transformer	70.0	@	3	hard	35	5	0.00		70.0	@	3	0	
HVAC Unit	76.0	@	3	hard	35	5	0.00		76.0	@	3	0	
HVAC Unit	76.0	@	3	hard	35	5	0.00		76.0	@	3	0	
				hard	35	5	0.00						

Combined level of noise exposure at receptor from all noise sources (dBA): 80.0

Computation of the attenuated noise level is based on the equation presented on pg. 12-3 and 12-4 of FTA 2006.

Computation of the ground factor is based on the equation presentd in Figure 6-23 on pg. 6-23 of FTA 2006, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Summation of noise levels from different stationary noise sources at the same receptor is based on the equation presented on page 2-3 of FTA 2006.

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf>. Accessed: March 5, 2020.

Attenuation Calculations for Stationary Noise Sources

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Identify the noise source and enter the reference noise level (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

STEP 3: Select the distance to the receiver.

Noise Source/ID	Reference Noise Level		Attenuation Characteristics				Attenuated Noise Level at Receptor					
	noise level		distance	Ground Type	Source	Receiver	Ground		noise leve	I	distance	
	(dBA)	@	(ft)	(soft/hard)	Height (ft)	Height (ft)	Factor		(dBA)	@	(ft)	
PG&E Lockeford Control Enclosure	79.0	@	5	hard	8	5	0.00		35.5	@	750	
PG&E Lockeford Battery Enclosure	69.0	@	5	hard	8	5	0.00		25.5	@	750	
PG&E Thurman Control Enclosure	74.0	@	5	hard	8	5	0.00		23.5	@	1680	
PG&E Thurman Battery Enclosure	69.0	@	5	hard	8	5	0.00		18.5	@	1680	
LEU Guild transformers	76.0	@	3	hard	8	5	0.00		26.5	@	900	
HVAC	70.0	@	3	hard	8	5	0.00		21.0	@	850	
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					
				hard	8	5	0.00					

Notes:

Estimates of attenuated noise levels do not account for reductions from intervening barriers, including walls, trees, vegetation, or structures of any type.

Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: http://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf Accessed: March 5, 2020.

Parking lot reference Lmax level obtained by Ascent Environmental in 2014 during preparation of the Village At Squaw Valley Specific Plan EIR (Placer County 2014)

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

STEP 3A: Select the distance to the receiver.

Table A. Propagation of vibration decibels (VdB) with distance

Noise Source/ID	Reference Noise Level				
	vibration level	distance			
	(VdB)	@	(ft)		
Vibratory Roller (to project site)	94	@	25		
Vibratory Roller (at 80 dBA threshold)	94	@	25		
			_		

 Attenuated Noise Level at Receptor

 vibration level
 distance

 (VdB)
 @
 (ft)

 85.0
 @
 50

 80.0
 @
 73

The Lv metric (VdB) is used to assess the likelihood for vibration to result in human annoyance.

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

STEP 3B: Select the distance to the receiver.

Table B. Propagation of peak particle velocity (PPV) with distance Noise Source/ID Reference Noise Level

	vibration level	distance		
	(PPV)	@	(ft)	
Vibratory Roller	0.210	@	25	
Vibratory Roller (at 0.2 PPV threshold)	0.210	@	25	
Vibratory Roller (at 0.088)	0.210	@	25	
Vibratory Roller (at 0.068)	0.210	@	25	

Attenuated Noise Level at Receptor vibration level distance (PPV) @ (ft) 0.016 140 @ 0.198 @ 26 0.0870 @ 45 0.0680 @ 53

The PPV metric (in/sec) is used for assessing the likelihood for the potential of structural damage.

Table C. PPV to Displacement Conversion

Roller PPV	Frequency	pi	Displacement	
0.016	20	3.14	0.000126104	
0.016	36	3.14	7.00576E-05	
0.088	20	3.14	0.0007	Threshold (20 Hz)
0.068	36	3.14	0.0003	Threshold (36 Hz

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 185 of FTA 2018. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment Manual. FTA Report No. 0123. <u>https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf</u>

https://www.linkedin.com/pulse/basic-vibration-theory-acceleration-velocity-franklin-pereny-pmp#:~:text=where%20f%20is%20the%20frequency,(2%20*%20pi%20*%20f)