

PUBLIC UTILITIES COMMISSION

505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3298

September 19, 2024

Ms. Lori Charpentier
Licensing/Regulatory Affairs
Southern California Edison
2244 Walnut Grove Ave.
Rosemead, CA 91770

Re: Data Request #17 for the SCE Ivanpah-Control (I-C) Project (A.19-07-015)

Dear Ms. Charpentier:

Southern California Edison Company (SCE) submitted its Amended Permit to Construct (PTC) application and Proponent's Environmental Assessment (PEA) on April 13, 2020. The PTC application was deemed complete on May 31, 2023. This data request defines additional information required for completion of the Draft EIR that we are preparing.

17-1: Confirmation of Structure Heights

Based on SCE's GIS data provided to us, we have created a table of structure heights for Segments 1 and 2. Please review the heights shown in Attachment 1 and confirm that we have properly matched the locations of structures to be removed with locations of new structures.

Please also review the calculations for "Height Increase %" (column G) and confirm that this accurately shows the percent of height increase between each pair of structures (showing the increase from existing to proposed structure heights).

17-2: Explanation of Proposed Structure Heights

We anticipate some public concern about the proposed increase in structure heights, so it would be helpful to have SCE explain its design rationale.

1. Please explain how new structure heights were developed in general for Segments 1 and 2. We understand that average span lengths are longer with the Proposed Project, but that does not appear to be the only factor in structure height determination.
2. **Segment 1 vs. Segment 2.** Please explain generally why the structure height increases are substantially greater in Segment 1 than in Segment 2. For example:
 - a. 29% of structures in Segment 1 are increasing by more than 40% in height, compared with 13% of structures in Segment 2 that are increasing by more than 40% in height.
 - b. 25% (224) of the structures in Segment 1 would be over 100' tall, compared with 14% (47) of the structures in Segment 2. Because the average height now in Segment 1 is about 70 feet, this is significant and noticeable increase.
3. **Proposed structures #33 to #38** pass through a group of residences off of Sunland Road south of Bishop. These proposed Project shows a new multi-pole structure of 120 feet in height replacing

an existing lattice structure that is less than 70 feet tall. This structure is located between 2 residences. There are no structures eliminated between #28 and #39, so there are no increased span lengths that would drive the need for taller structures. Two questions:

- a. Please explain the rationale for the proposed tower heights in this location. We note that this location is also defined in the EMF Field Management Plan (page F-105, F-106) and achieves a 98% reduction in magnetic field; if EMF mitigation alone drove the height increase, please explain.
- b. Please explain why multi-pole structures (up to 120 feet in height) rather than monopoles are proposed for structures #35 through 38.

4. The GIS data provided for **Segments 3N and 3S** show simply “New-R-EX” as the structure status (meaning “a new structure replaces an existing structure at this location”). One data point for structure height is included for each location. Because we have not been given height for the existing structure vs the new structure, is it accurate to assume that the replacement structures would be the same height as the existing structures?

17-3: Questions on EMF Field Management Plan

Appendix F to the PTC Application was the EMF Field Management Plan (FMP). We understand that EMF is not evaluated as an impact under CEQA, but we present the FMP as an appendix to the EIR and need to be able to explain it and its context. Please answer the following questions, related to “**Residential Graphs**” which begin on page F-105 of the appendix.

1. **Segment 1** (page F-105) shows a post-construction decrease in magnetic field of 98% at structures #36 and 37. Other residential areas (see items 2 and 3 below) show reductions of from 5% to 75%. What is the target reduction percentage for magnetic field? Could it be achieved with a shorter structure?
2. **Segment 2** (page F-115) is in Randsburg (Structures 121165-121166). The field strength here shows a decrease of magnetic field of between 71-75%. Is this reduction entirely due to the structure height increase (#121165 would go from 70 to 82 feet tall, and #121166 would go from 70 to 92 feet tall)?
3. **Segment 3S** (page F-119) addresses “Section 1, 3192 (Str. NA560118AE_SA560118BE) – 3193 (NA560117AE_SA560117BE)” and shows a 5-7% decrease in magnetic field as a result of the project. However, our GIS data shows that neither of these structures would be replaced. Please explain the stated reduction in field strength. Is it simply the conductor phasing?
4. **Segment 3S** (page F-121) addresses “Section 1, Str. 3217 (NA560194AE_SA560194BE) – 3218 (NA560193AE_SA560193BE).” These structures are located in a residential area of unincorporated Barstow, along Bonanza Road between N Street and O Street, where no structures are proposed to be replaced. The data shows a 5-8% decrease in magnetic field strength at these locations. Please explain the stated reduction in field strength. Is it simply the conductor phasing?

Response

Please respond to this request within 2 weeks with a proposed approach and provide a copy to our CEQA consultant (Susan Lee at Slee@aspeneg.com). Additional data requests may be necessary to address other

issues as we move forward with EIR preparation. Any questions on this data request should be directed to me at (916) 217-5073 or by email at john.forsythe@cpuc.ca.gov.

Sincerely,

John E. Forsythe

Project Manager for the I-C Project
Energy Division CEQA Unit

Attachment 1: Tower Height Tables (Segments 1 and 2; Excel file)

cc: David LeBlond, Southern California Edison (David.leblond@sce.com)
Yvonne Nemeth Southern California Edison (evie.nemeth@sce.com)
Michelle Wilson, Supervisor CEQA & Energy Permitting Group, CPUC
michelle.wilson@cpuc.ca.gov
Joan Patrovsky, Project Manager, BLM jpatrovs@blm.gov
Regan Watt, NEPA Coordinator, BLM rwatt@blm.gov
Susan Lee, Aspen Environmental Group Slee@aspeneg.com
Susanne Heim, Panorama Environmental susanne.heim@panoramaenv.com