

PUBLIC UTILITIES COMMISSION

505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3298

May 21, 2020

Ms. Lori Charpentier
Licensing/Regulatory Affairs
Southern California Edison
2244 Walnut Grove Ave.
Rosemead, CA 91770

Re: Data Request #4 for the SCE Ivanpah-Control (I-C) Project (A.19-07-015)

Dear Ms. Charpentier:

Southern California Edison Company (SCE) submitted its Amended Permit to Construct (PTC) application and Proponent's Environmental Assessment (PEA) on April 13, 2020. The California Public Utilities Commission's (CPUC) Energy Division provided a PEA deficiency letter on this amended application to SCE on May 4, 2020 and SCE is currently preparing responses.

Our May 4, 2020 completeness letter included several items that we would like addressed as a priority over the other completeness items. Please see the attachment to this letter for a list of these priority items. We request that responses to the items in the attachment be provided within 2 weeks, by June 4, 2020. Please provide a copy of the response to me and one to Susan Lee at Aspen Environmental Group in San Francisco, in electronic format only.

Additional data requests may be necessary to address other issues as we move forward with scoping and EIR preparation. Any questions on this data request should be directed to me at (415) 703-2837 or by email at billie.blanchard@cpuc.ca.gov.

Sincerely,

Billie Blanchard
Project Manager for I-C Project
Energy Division CEQA Unit

Attachment: Priority Data Requests

cc: Rosalie Barcenas, Southern California Edison
Justin Regnier, Advisor to Commissioner Shiroma
Mary Jo Borak, CPUC Energy Division, CEQA Group Supervisor
Joan Patrovsky, Project Manager, BLM
Susan Lee and Sandra Alarcón-Lopez, Aspen Environmental Group
Susanne Heim, Panorama Environmental

Grace Ellis, Peter Rocco, Galileo
Jace Fahnestock and Kelly Green, Northwind
Paul Callahan, Burns and McDonnell

Attachment: Priority Data Requests

Section 1.1, Project Components

■ **Project Components:** The July 2019 PEA described the “Derate and Remediate” alternative in Segment 4 (Section 5.2.2.5.5) as including a new Baker 115/33/12 kV Ring-Bus Substation. This alternative defined in the July 2019 PEA is now the proposed project, but the Baker Substation upgrade is no longer part of the proposed project. Footnote 13 on 2020 PEA page 3-15 explains that SCE is currently in the process of modifying and modernizing the Baker Substation as described in SCE’s Distribution Substation Plan.

- (1) Define what project components have changed (especially those that have been removed from the I-C Project) since the original Draft EPA (2018) and the July 2019 PEA, as compared with the April 2020 PEA?
- (2) Specifically, please explain the change from the inclusion of the Baker Substation in the 2019 PEA to its elimination from the 2020 PEA.
- (3) Please provide a schedule for the Baker Substation improvements.
- (4) If project components are being implemented under other CPUC proceedings, please identify the proceedings and cost recover contemplated.
- (5) Please define the approximate cost of the Baker Substation modification/modernization effort. Are these costs included in ratepayer costs?

Section 2.1 Overview

Project Overview: Section 2.1 presents some background on the 7 circuits that are proposed to be remediated through the I-C Project. Given the age of these lines, there is interest in their history and original purpose. In order that the EIR can present a complete history of these circuits, please provide the following information:

- (1) Explain the history and context of the 115 kV system that would be affected by the I-C upgrades, with the following specifics:
 - What was the original purpose of each circuit? If they were to carry hydropower to the Los Angeles basin, please clarify which generating facilities were served, and whether they are still operational.
 - Why is there a separate segment 3N and 3S? What different purposes did they originally serve? Do they currently serve any other purposes?
 - What is the approximate capacity of each circuit now (pre-project), both during normal loading at 80 C, and in short-term loading? SCE’s response to comments on Section 5.3 (Growth Inducement) and text in Section 3.2 provide some information (in amps); please also provide information in MW of transfer capacity.
- (2) What is the approximate percentage of capacity used to serve local load vs. deliver power to the L.A. basin for each circuit under typical loading conditions? Does the percentage change under peak loading conditions?
- (3) Please provide a transmission system map that includes these 7 115 kV circuits, and shows where the electricity carried by them comes from and where it goes (beyond the project substations).

Sections 3.4.3 and 3.5.1.3 (Segment 3N) and Sections 3.4.4 and 3.5.1.4 (Section 3S)

■ The descriptions of these segments state that the TLRR Program identified 241 and 230 spans (Segments 3N and 3S, respectively) with discrepancies in each segment, but only about 40 structures are proposed for replacement as part of the I-C Project. Also, the data labels in the GIS files are unclear. Questions are as follows:

- (1) The 2019 PEA defined that the replacements of hundreds of structures in Segments 3N and 3S were part of the proposed project. Please explain the rationale for moving those structure replacements outside of the I-C Project and into the Deteriorated Pole program.
- (2) Please define the schedule for the Deteriorated Pole replacement program that SCE is implementing for Segments 3S and 3N. What percentage of the work has been completed to date?
- (3) Is the Deteriorated Pole program (which SCE has said will result in nearly 400 replacement structures being installed in 2019-2020) the reason that there are many more existing deficiencies than replacement structures?
- (4) Would the Deteriorated Pole program be different (i.e., would more or fewer poles be replaced) if the ACCC conductor is ultimately not approved for Segment 3?
- (5) Define the CPUC decision and proceeding under which the Deteriorated Pole replacement work was or will be permitted.
- (6) What mechanism is being used for cost recovery?
- (7) Define the approximate cost of this component of the Deteriorated Pole replacement project. Please also explain whether these costs are included in ratepayer costs or if they are paid through other processes (e.g., wildfire funding).

Section 3.5.1.2, Project Components, Segment 2

■ The description of Segment 2 states that 342 double-circuited TSPs will be installed to replace the existing single-circuit structures. PEA Footnote 10 explains that only a single circuit will be installed. Questions:

- (1) Would the proposed double-circuit TSPs in Segment 2 be able to support a 220 kV conductor on the initially vacant position?
- (2) What would be the additional capacity provided by 115 kV conductors, and if applicable, 220 kV conductors?
- (3) What is the approximate differential in footprint and cost between a single-circuit TSP and a double-circuit TSP?

Section 3.5.2, Telecommunications Description and Section 3.5.4.3, Telecommunications Poles/Towers

■ Define SCE's need for the telco improvements. Is all of the communications capacity required to operate the new subtransmission lines? If there is excess capacity available, what is the amount of excess bandwidth available? Are there plans for SCE to sell that capacity?