## 4.7 Greenhouse Gases

This section describes the environmental and regulatory settings and discusses impacts associated with construction and operation of the South Orange County Reliability Enhancement Project (proposed project) with respect to greenhouse gases (GHGs). During scoping, comments regarding the utilization of sulfur hexafluoride (SF<sub>6</sub>) were received and are addressed in this section.

# 8 **4.7.1 Environmental Setting**

10 According to the U.S. Environmental Protection Agency (EPA), the term *climate change* refers to any significant change in measures of climate (such as temperature, precipitation, or wind) lasting for an 11 extended period, decades or longer (EPA 2014a). The term is often used interchangeably with the term 12 13 global warming. Climate change or global warming represents an average increase in the temperature of 14 the atmosphere near the earth's surface and in the troposphere, which can contribute to changes in global 15 climate patterns. The global distribution of temperature increase is varied, and in some locations average temperatures have actually decreased. Climate change has been attributed to a variety of causes, 16 17 including both natural and human activity (EPA 2014a). Current scientific research indicates that 18 potential effects of climate change include variations in temperature and precipitation, sea-level rise, 19 impacts on biodiversity and habitat, impacts on agriculture and forestry, and human health and social 20 impacts (CNRA 2009).

21

1

2

22 The proposed project would be located within the eastern side of the South Coast Air Basin. Proposed

23 construction, operation, and maintenance activities would occur within unincorporated areas of the

24 County of Orange, the U.S. Marine Corps Camp Pendleton in the County of San Diego, and the cities of

25 San Juan Capistrano and San Clemente in southern California. Climate and meteorological conditions for

26 these areas are described in the setting section of Section 4.3, "Air Quality."

27 28

#### 4.7.1.1 Greenhouse Gases

29

30 GHGs allow solar radiation (heat) to pass through the earth's atmosphere but prevent heat from escaping,

31 resulting in atmospheric warming. Certain GHGs occur naturally and help balance the earth's

32 temperature. However, research indicates that since the advent of the Industrial Revolution, human

- activity has resulted in an elevation of the concentration of some of these gases in the atmosphere. In
- 34 particular, concentrations of carbon dioxide (CO<sub>2</sub>) emitted from the burning of fossil fuels has increased
- 35 significantly. Much of the carbon in the atmosphere is absorbed by natural "carbon sinks," such as forests
- 36 or ocean kelp.  $CO_2$  is then emitted back into the atmosphere through natural processes such as animal and
- 37 plant respiration, and oceanic and geological processes. These natural processes represent "sources."
- 38 When balanced, the amount of  $CO_2$  emitted from sources and absorbed by carbon sinks is roughly equal;
- this process is known as the "carbon cycle." As emission levels rise from human activity, however,
- 40 carbon sinks are becoming overwhelmed and are unable to sequester the increasing amounts of  $CO_2$ .
- 41 Further, other human activity, such as deforestation, can lead to the reduction of sinks. The resulting
- 42 increase in GHGs in the atmosphere is now considered one of the key causes of global climate change.43
- 44 In 1988, the World Meteorological Organization and United Nations formed the Intergovernmental Panel
- 45 on Climate Change (IPCC) as a joint effort to assess the impact of human activity on the global climate.
- 46 In 1990, the IPCC issued its first assessment report, which helped identify climate change as a serious
- 47 issue and laid the groundwork for the formation of the United Nations Framework Convention on
- 48 Climate Change (UNFCCC). The second assessment report, issued by the IPCC in 1995, contributed to
- 49 the drafting of the Kyoto Protocol to the UNFCCC, adopted in 1997. The Kyoto Protocol asked

- 1 signatories to the UNFCCC to commit to reducing emissions of four primary GHGs (CO<sub>2</sub>, methane
- 2 [CH<sub>4</sub>], nitrous oxide [N<sub>2</sub>O], and SF<sub>6</sub>) and two secondary groups of GHGs (hydrofluorocarbons [HFCs]
- and perfluorocarbons [PFCs]) to 5 percent below 1990 emission levels by 2012. At the time of this
- 4 writing, the United States remains the only signatory to the UNFCCC that has not ratified the Kyoto
- 5 Protocol. The IPCC last updated its assessment report in 2013 (IPCC 2013).
- 6
- 7 In 2006, the State of California enacted the California Global Solutions Warming Act of 2006 (Assembly
- 8 Bill [AB] 32), requiring a reduction in GHG emissions in the state to 1990 levels by 2020. AB 32 targets
  9 the same GHGs identified under the Kyoto Protocol. These gases are described further below.
- 10

#### 11 Carbon Dioxide

- 12  $CO_2$  is a colorless, odorless gas generated by both natural and human activity. Natural sources of  $CO_2$
- 13 include respiration by bacteria, fungus, and animals; decomposition of organic matter; evaporation of
- 14 ocean water; and geological processes. The primary human-induced sources of  $CO_2$  are combustion of
- 15 fossil fuels, natural gas, and wood.
- 16

#### 17 Methane

- 18  $CH_4$  is a highly flammable gas that is a primary component of natural gas. Similar to  $CO_2$ ,  $CH_4$  is
- 19 produced both by natural and human activity. Natural sources of CH<sub>4</sub> include anaerobic decay of organic
- 20 matter; geological deposits (e.g., natural gas fields); and cattle. Human-induced sources include
- emissions generated by the decay of organic material in landfills and fermentation of manure and other
- 22 organic material.23

#### 24 Nitrous Oxide

- As with  $CO_2$  and  $CH_4$ ,  $N_2O$  is produced by both natural and human activity. Natural sources include microbial action in soil and water, particularly at tropical latitudes. Human-induced sources include
- 27 emissions from manufacturing facilities, fossil fuel power plants, and motor vehicles.
- 28

## 29 Sulfur Hexafluoride

- 30  $SF_6$  is a colorless, odorless, non-flammable, non-toxic gas used mainly as an insulator (when mixed with 31 other gases, such as argon) in the manufacture of electrical equipment. In particular,  $SF_6$  is commonly
- used in gas-insulated switchgear and circuit breakers installed in electrical substations.

## 34 Hydrofluorocarbons

- 35 HFCs are human-made compounds consisting of carbon, hydrogen, and fluorine atoms. HFCs were
- 36 introduced as replacements for atmospheric ozone-depleting chemicals in various industrial and
- 37 commercial applications. They are used in solvents, refrigerants, firefighting agents, and aerosol sprays.
- 38

## 39 Perfluorocarbons

- 40 PFCs are human-made chemicals consisting of carbon and fluorine atoms. As with HFCs, PFCs were
- introduced as an alternative to atmospheric ozone-depleting chemicals and are used in similar industrialand commercial applications.
- 43

## 44 Global Warming Potential

- 45 The effect of a particular GHG on global climate change depends on its global warming potential (GWP). 46 Table 4.7.1 shows the CWP for the six CUCs described shows. In the IPCC's fourth assessment report
- 46 Table 4.7-1 shows the GWP for the six GHGs described above. In the IPCC's fourth assessment report

- 1 (AR4), the GWPs for several GHGs were updated based on the latest science. Both the EPA and
- 2 California Air Resources Board (CARB) have updated national and statewide GHG inventory and
- 3 reporting guidelines based on the GWPs published in AR4. GWP is determined by a number of factors,
- 4 including the GHG's molecular structure, the GHG's ability to absorb infrared radiation, and the amount
- 5 of time the GHG can exist in the atmosphere before breaking down. These factors help determine the
- amount of warming potential a pound of GHG would have relative to a pound of CO<sub>2</sub>. For example, a
- 7 pound of methane has approximately 25 times the warming potential of a pound of CO<sub>2</sub>.
- 8

#### Table 4.7-1 Global Warming Potential For Greenhouse Gases

|                                   | Global Warming Potential <sup>1</sup> ,  |  |
|-----------------------------------|------------------------------------------|--|
| Greenhouse Gas                    | 100 Years (relative to CO <sub>2</sub> ) |  |
| Carbon Dioxide (CO <sub>2</sub> ) | 1                                        |  |
| Methane                           | 25                                       |  |
| Nitrous Oxide                     | 298                                      |  |
| Perfluorocarbons                  | 7,390-10,300                             |  |
| Hydrofluorocarbons                | 92-14,800                                |  |
| Sulfur Hexafluoride               | 22,800                                   |  |

Notes:

<sup>1</sup> Effective January 1, 2014, the U.S. EPA adopted the IPCC AR4 GWPs in 40 Code of Federal Regulations Part 98.

9

10 CARB reports that CO<sub>2</sub> represents almost 90 percent of the GHG emissions produced in California

11 (CARB 2011). Because  $\dot{CO}_2$  is such a prevalent GHG, and the GWP for other GHGs is calculated

12 relative to CO<sub>2</sub>, GHGs in the atmosphere are reported in terms of CO<sub>2</sub> equivalency (CO<sub>2</sub>e). CO<sub>2</sub>e

13 measures GHGs by multiplying the mass of each GHG emitted by its GWP to determine the equivalent

14 amount of  $CO_2$ . For example, one pound of  $CH_4$  is equivalent to 25 pounds of  $CO_2e$ .

15

#### 16 Greenhouse Gas Inventories

17 The latest GHG inventory from the EPA indicates that the United States emitted 6,702 million metric

tons of carbon dioxide equivalency (MTCO<sub>2</sub>e) in 2011 (EPA 2014a). The State of California makes up a

19 substantial contribution of those GHG emissions: California produced 458.7 million MTCO<sub>2</sub>e in 2012,

20 according to the most recent inventory (CARB 2014a). The state represents the second largest contributor

in the United States and the 15th largest emitter of GHGs in the world (CEC 2006; EPA 2013).

22

Locally, the City of San Clemente Climate Action Plan reports baseline inventory GHG emissions of 620,024 MTCO2e for 2009, with a contribution of 67 percent from transportation sources and 17 percent

- from energy and electricity (City of San Clemente 2014). No other local agencies maintain GHG
   inventories.
- 27

#### 284.7.1.2Potential Effects from Climate Change

29

In 2008, California Governor Arnold Schwarzenegger issued Executive Order S-13-08, directing the
 California Natural Resources Agency (CNRA) to determine how state agencies can respond to the

challenges posed by climate change. As a result, the CNRA worked with several state agencies to draft

the 2009 California Climate Adaptation Strategy. A summary of the potential effects of climate change,

34 as identified in the California Climate Adaptation Strategy, is presented below.

#### **1** Temperature and Precipitation

- 2 GHGs can remain in the atmosphere for decades; thus, the temperature changes over the next 30 to 40
- 3 years will largely be determined by past emissions. By 2050, temperatures could increase by an
- 4 additional 1.8 to 5.4 degrees Fahrenheit (CNRA 2009). California would likely continue to have
- 5 relatively cool, wet winters and dry, hot summers; however, temperature increases could become more
- 6 severe in summer than winter, and inland areas could experience more pronounced warming than coastal
- regions. Heat waves could also increase in frequency and intensity. Precipitation patterns are anticipated
   to change due to increasing temperatures, leading to more rainfall and less snow. This would affect
- to change due to increasing temperatures, leading to more rainfall and less snow. This would affect
  California's drinking water supply, which currently originates mainly as snowmelt runoff. More frequent
- flood events, due to faster runoff, could also increase stress on state and local infrastructure. Finally,
- these changes in precipitation could lead to more periods of drought, which could have a negative effect
- 12 on native ecosystems.
- 13

#### 14 Sea-level Rise

15 Recent studies show that sea levels rose by as much as 7 inches during the 20th century and are

- 16 anticipated to rise up to 55 inches by the end of the century (CNRA 2009). Furthermore, even if
- 17 emissions were substantially lowered, research shows that sea levels will continue to rise; thus,
- 18 adaptation strategies will be an important part of dealing with this impact (CNRA 2009). Sea-level rise
- 19 could have a negative effect on coastal wetlands and marshes through inundation. This would not only
- 20 negatively impact these specially adapted habitats but could also damage agricultural activities by way of
- 21 salt water intrusion into fresh water aquifers. Additionally, loss of these habitats as a storm buffer could
- 22 increase storm-related impacts such as depleted beaches and property damage.

#### 23

#### 24 **Biodiversity and Habitat**

- 25 As temperatures and precipitation patterns change, plant and animal species adapted to specific
- 26 conditions could become threatened. These species may have to shift their geographic range to adapt to
- 27 the changes; however, if the species are unable to adapt, they may face extinction. As the climate shifts,
- 28 changes in wildfire patterns may also emerge. While many species in California are adapted to regular
- 29 fire events, higher temperatures may also result in an increase in the frequency and intensity of fires,
- 30 which could harm the ability of native plant species to re-germinate between events (CNRA 2009).
- 31 Overall, climate change could result in very harmful effects on biodiversity. Shifts in species ranges
- 32 could increase the likelihood of habitat fragmentation, and changes in participation could lead to
- 33 increased periods of drought, making ecosystems vulnerable to colonization by invasive species.
- 34

#### 35 Agriculture and Forestry

- 36 The State of California has some of the most productive agricultural regions in the world. Shifts in
- 37 climate may impact the ability of certain crops (e.g., grapes, other fruits, and nuts) to produce substantial,
- high-quality yields. Sea-level rise, changes in growing season length, variation in precipitation, and
- changes in water supply could affect agricultural productivity, which could have an impact on food
- 40 supplies.
- 41
- 42 The range of forest lands in the state will also likely shift in response to climate change. Temperature rise
- 43 has the potential to make current forest ranges inhospitable, expand insect populations that impact tree
- 44 mortality, and allow for the colonization of invasive, non-native species.

#### 1 Human Health and Social Impacts

Climate change could also result in increased public health risks, including an increase in mortality and morbidity due to heat-related illness and a rise in respiratory illness due to poor air quality caused by higher temperatures. Plant species habitat that shifts due to climate change may also lead to variations in the timing and duration of allergies and the colonization of new habitat by disease vectors such as nonnative animals and insects. The elderly, chronically and mentally ill, infants, and the economically disadvantaged will be the most at risk of the negative effects of climate-related illness.

#### 9 4.7.2 Regulatory Setting

#### 11 4.7.2.1 Federal

According to the EPA, the United States government has established a comprehensive policy to address climate change that includes slowing the growth of emissions; strengthening science, technology, and

15 institutions; and enhancing international cooperation. To implement this policy, the federal government

16 uses voluntary and incentive-based programs to reduce emissions and has established programs to

17 promote climate technology and science (EPA 2014c).

18

8

10

12

#### 19 Endangerment Finding and Cause or Contribute Finding for Greenhouse Gas

20 In December 2009, the EPA issued two separate findings regarding GHGs under Section 202(a) of the

21 Clean Air Act. The Endangerment Finding states that the current and projected concentrations of the six

22 key GHGs (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs, and SF<sub>6</sub>) in the atmosphere threaten public health and welfare.

The Cause or Contribute Finding states that the combined emissions of GHGs from new motor vehicles and new motor vehicle engines contribute to GHG pollution.

24 25

#### 26 Mandatory Reporting of Greenhouse Gases Rule

27 In 2009, the EPA issued the Final Mandatory Reporting of Greenhouse Gases Rule, which requires

reporting of GHG emissions from large sources and suppliers in the United States. This rule requires

29 suppliers of fossil fuels and industrial GHGs, manufacturers of vehicles and engines outside of the light-

30 duty sector, and facilities that emit 25,000 metric tons (MT) or more of GHGs per year to submit annual

31 reports to the EPA. The rule is intended to collect accurate and timely emissions data to guide future

- 32 policy decisions on climate change.
- 33

#### 34 **Final Greenhouse Gas Tailoring Rule**

35 The Final GHG Tailoring Rule, established in May 2010, sets thresholds for GHG emissions that define

36 when permits under the New Source Review Prevention of Significant Deterioration and Title V

37 Operating Permit programs are required for new and existing industrial facilities. This final rule tailors

38 the requirements of these Clean Air Act permitting programs to limit which facilities are required to

39 obtain Prevention of Significant Deterioration and Title V permits.

40

#### 41 **4.7.2.2 State**

42

43 In 2005, Governor Schwarzenegger issued Executive Order S-3-05, establishing a statewide GHG

emission reduction target of 2000 levels by 2010, 1990 levels by 2020, and 80 percent below 1990 levels

45 by 2050. In 2006, Governor Schwarzenegger signed AB 32, the Global Warming Solutions Act, which

46 capped the state's GHG emissions at 1990 levels by 2020. It established the framework for a program of

- 47 regulatory and market mechanisms designed to achieve quantifiable, cost-effective reductions in GHG
- 48 emissions (CalEPA 2009). The Climate Change Scoping Plan, approved by CARB in 2008 and updated

- 1 in 2014 to fulfill AB 32, is California's roadmap for reaching its GHG reduction goals (CARB 2008,
- 2 2014b). The plan outlines a number of key strategies to reduce GHG emissions. A summary of relevant
- 3 GHG legislation in California is presented below.
- 4

#### 5 Assembly Bill 32 and Executive Order S-3-05

6 Executive Order S-3-05, issued in 2005, established statewide GHG emission reduction targets of 2000

7 levels by 2010, 1990 levels by 2020, and 80 percent below 1990 levels by 2050. In 2006, the Global

8 Warming Solutions Act, AB 32, was enacted with the requirement of reducing the state's GHG emissions

- 9 to 1990 levels by 2020. Based on 1990 to 2004 inventories of GHG emissions in California, CARB
- 10 designated a total of 427 million MTCO<sub>2</sub>e as the statewide GHG 1990 emissions level and 2020
- 11 emissions limit. This limit is an aggregated statewide limit, rather than sector- or facility-specific. Taking
- into account expected growth in population and energy use, the emissions reduction target is estimated to be equivalent to approximately 30 percent below business emissions as usual by the year 2020. AB 32
- be equivalent to approximately 30 percent below business emissions as usual by the year 2020. AB 32
   requires that CARB prepare and approve a scoping plan (see below) for achieving the maximum
- 15 technologically feasible and cost-effective reductions in GHG emissions from sources or categories of
- 15 technologically leasible and cost-effective reductions in GHG emissions from sources of categories of 16 sources of GHGs by 2020.
- 17

18 The 2020 estimates of California's GHG emissions were recently updated to account for future fuel and

19 energy demand, as well as other factors, such as the recent economic recession and anticipated reductions

20 from implemented regulations and the Renewable Portfolio Standard. This updates provided a baseline

21 for the proposed Cap-and-Trade regulation, and 2020 emissions are currently forecast as 507 million

22 MTCO<sub>2</sub>e (CARB 2013).23

## 24 Senate Bill 97

25 The California Senate passed Senate Bill 97 in 2007, requiring the Governor's Office of Planning and

- 26 Research to prepare, develop, and transmit guidelines for the feasible mitigation of GHG emissions or
- their effects, including, but not limited to, effects associated with transportation and energy consumption.
- 28

#### 29 Executive Order S-13-08

30 As further discussed in Section 4.7.1.2, Executive Order S-13-08, signed in 2008, directs California to

31 develop methods for adapting to climate change impacts through preparation of a statewide plan. In

32 response to this order, the CNRA developed the California Climate Adaptation Strategy, which was

- 33 adopted in September 2009.
- 34

## 35 Climate Change Scoping Plan

36 The Climate Change Scoping Plan, developed by CARB in conjunction with the California Climate

37 Action Team, outlines strategies and measures to reduce GHG emissions in California (CARB 2008,

2014). Some of the measures, such as California's Low Carbon Fuel Standard, have become regulations.

39

#### 40 **CEQA Guideline Amendments**

41 In December 2009, pursuant to Senate Bill 97, the CNRA adopted California Environmental Quality Act

42 (CEQA) Guidelines Amendments with new language for addressing the quantification and mitigation of
 43 GHG emissions. These amendments became effective in March 2010.

44

#### 45 Regulation for Reducing Sulfur Hexafluoride Emissions from Gas-Insulated Equipment

46 California Code of Regulations (CCR) Title 17, Sections 95350 to 95359, establish requirements for

47 reducing  $SF_6$  emissions from gas-insulated equipment. The provisions of this regulation apply to owners

- 1 of active switchgear equipment. Maximum allowable annual SF<sub>6</sub> emission rates, SF<sub>6</sub> inventory
- 2 measurement procedures, recordkeeping requirements, and annual SF<sub>6</sub> reporting requirements are
- 3 specified. Because  $SF_6$  is the most potent GHG (about 24,000 times the GWP of  $CO_2$ ), even small gas-
- 4 insulated devices could be responsible for significant GHG emissions. The maximum allowable annual
- 5  $SF_6$  emission rate specified is 1.0 percent of the total gas contained in gas-insulated equipment. This rate
- must be achieved by 2020 and each calendar year thereafter.

# 8 **4.7.2.3 Regional and Local** 9

#### 10 South Coast Air Quality Management District

11 The South Coast Air Quality Management District (SCAQMD) is the regional agency with primary

12 responsibility for air quality management in Orange County. To address GHG regulatory developments

13 within the South Coast Air Basin, the SCAQMD issued the Draft Guidance Document: Interim CEQA

14 *Greenhouse Gas Significance Threshold* (SCAQMD 2008) and adopted a 10,000 MTCO<sub>2</sub>e per year

15 threshold for industrial projects with construction emissions amortized over 30 years and added to

16 operational GHG emissions (SCAQMD 2011).

17

#### 18 Southern California Association of Governments

19 Orange County is part of the six-county Southern California Association of Governments (SCAG)

20 region. SCAG's 2008 Regional Comprehensive Plan is an advisory document for local agencies that

21 includes goals, outcomes, and policies to address regional compliance with AB 32 and other federal and

state regulations. GHG topics addressed in this plan include traffic and transportation, water, air quality,

23 solid waste, and energy (SCAG 2008). In addition to the Regional Comprehensive Plan, SCAG also

adopted the 2012-2035 Regional Transportation Plan/Sustainable Communities Strategies, which
 provides a plan for meeting regional emissions reduction targets set forth by CARB: 9 percent per capita

reduction target by 2020 and 16 percent by 2035, as required by California Government Code Section

65080 (b)(2)(J)(ii). These targets for SCAG were accepted by CARB in Executive Order G-12-039

28 (CARB 2012). SCAG Regional GHG goals applicable to the proposed project include the following:

29 30

31

32

33

• *Reverse current trends in greenhouse gas emissions to support sustainability goals for energy, water supply, agriculture, and other resource areas.* 

- *Reduce the region's greenhouse gas emissions to 1990 levels by 2020.* 
  - Expand green building practices to reduce energy-related emissions from developments to increase economic benefits to business and residents.
- 34 35

## 36 City of San Juan Capistrano

The City of San Juan Capistrano has not yet adopted a local Climate Action Plan, GHG reduction targets,
or specific policies on GHG emissions; however, the City implements the environmental services
initiative "Go Green SJC" that focuses on preserving San Juan Capistrano's environment through waste

40 reduction and pollution prevention programs that contribute to GHG emissions reductions, such as solid

41 waste and recycling, air quality, green building, and energy conservation (City of San Juan Capistrano

42 2014).

#### 43

#### 44 City of San Clemente

- 45 The City of San Clemente Climate Action Plan identifies a comprehensive set of targets and related
- 46 measures that the City will use to reduce GHG emissions, such as alternative transportation, energy
- 47 efficiency, and waste reduction. The City's goals are to achieve a 15 percent reduction below 2009 levels

- 1 by 2020 (93,004 MTCO<sub>2</sub>e per year) and 38 percent reduction below 2009 levels by 2030 (235,609
- MTCO2e per year) (City of San Clemente 2014). This plan includes the following local and state GHG 2
- 3 emissions reduction strategies that apply to the proposed project:
- 4 • Implementation of Federal Alternative Fuels Strategies;
- 5 • Implementation of Executive Order S-1-07 (Low Carbon Fuel Standard): reduction of at least 10 6 percent in the carbon intensity of California's transportation fuels by 2020;
- 7 Implementation of CARB Heavy Duty Vehicle Regulations; and •
  - Compliance with the City Ordinance to achieve a 75 percent waste diversion rate by 2020 and 90 • percent diversion rate by 2030.
- 9 10

8

#### 11 **County of San Diego Climate Action Plan**

12 The County of San Diego has developed a Climate Action Plan (CAP) to address the issues of growth

13 and climate change within the unincorporated areas of San Diego County. The CAP establishes a GHG

14 emissions-reduction target of 15 percent below 2005 levels by 2020, which aligns with the

15 recommendation by CARB and the GHG emissions reduction targets set by other local governments. In

16 addition, the County recognizes the goal established by Executive Order S-3-05, which calls for emissions reductions of 80 percent below 1990 levels by 2050. To achieve GHG reduction goals set for 17

18

2020, the CAP recommends implementation of a range of feasible reduction measures on water 19 conservation, energy-efficiency, land use development, transportation, agriculture, and landscaping and

20 open space (County of San Diego 2012). The GHG reduction measures included in the County of San

21 Diego CAP that would apply to the proposed project are those related to transportation, such as:

22 23

24

- Increase Ridesharing: 3 percent reduction in vehicle miles traveled (VMT) by using transportation-demand management.
- Increase Use of Alternative-Fuel Vehicles: 3 percent reduction in VMT by increasing use of 25 • 26 electric vehicles.
- 27 Comply with Pavley Passenger Auto and Light Truck Fuel Efficiency requirements (28.4 percent reduction). 28
- 29 Comply with the Low Carbon Fuel Standard (12.0 percent reduction) •
- 30 • Comply with the Tire Pressure Program (0.6 percent reduction)
- 31 Comply with Heavy –Duty Vehicle Aerodynamics requirements (0.7 percent reduction). •
- 32

#### 33 County of San Diego Guidelines for Determining Significance on Climate Change

34 On November 2013, the County of San Diego Land Use and Environment Group adopted the Guidelines 35 for Determining Significance and Report Format and Content Requirements for Climate Change. These 36 guidelines establish implementing thresholds for new projects to ensure consistency with the County's

37 CAP and GHG emission reduction targets (County of San Diego 2013). The implementing thresholds are

38 for net new emissions, or net increases in GHG emissions attributable to a specific project relative to an

39 existing baseline. The guidelines include screening criteria for projects that would only increase GHG

40 emissions during construction, such as the proposed modifications in Talega Substation and replacement

along transmission line segment relocations for the proposed project within San Diego County. (County 41

42 of San Diego 2013)

- 1 Projects are considered with respect to their contribution to the total or cumulative GHG emissions
- 2 within the County. Projects involving the following construction activities would generally have less-
- than-cumulative considerable impacts under the San Diego County guidelines:
  - Grading and clearing of land involving no more than 1,285 acres of land per year with no soil hauling, and no other aspect of construction or site preparation; and
  - Grading and clearing of land involving no more than 100 acres per year, assuming up to 3,100 cubic yards per day of soil hauling.

In the event that the proposed project exceeds the screening criteria, it should incorporate all applicable
 CAP measures and estimate emissions applicable to one of the quantified implementing thresholds
 established in the guidelines. If the projected construction would exceed the criteria, the following
 threshold to evaluate GHG impacts from the proposed project would apply(County of San Diego 2013):

Bright Line Threshold: A proposed project would have a cumulatively considerable contribution to climate change impacts if it would result in a net increase of operational greenhouse gas emissions, either directly or indirectly, at a level exceeding 2,500 metric tons of  $CO_2e$  per year.

# 19 **4.7.3 Impact Analysis** 20

#### 21 4.7.3.1 Methodology and Significance Criteria

To evaluate the potential effects of the GHG emissions generated by the proposed project, emissions were estimated for both construction and operations. The primary sources of long-term direct emissions potential leakage of high GWP gas (SF<sub>6</sub>) would be gas-insulated electrical equipment that would be installed and operated at San Juan Capistrano Substation and routine maintenance and use of vehicles. Indirect emissions would be associated with the incremental increases in electricity usage, water and wastewater transport, and solid waste disposal associated with operational-related activities.

29

5

6

7

8

9

15

16

17

18

22

30 Direct GHG emissions from equipment and vehicle usage during construction and operation of the

- 31 proposed project were estimated based on the equipment and vehicle/equipment lists and published
- 32 emission factors developed by the San Diego Gas & Electric Company (SDG&E, or "the applicant").
- 33 Direct GHG emissions of  $SF_6$  from gas-insulated electrical equipment were estimated based on the
- 34 proposed SF<sub>6</sub> storage capacities of the proposed San Juan Capistrano Substation and conservative
- 35 leakage rates per year assumptions. Indirect GHG emissions associated with the proposed project
- 36 operations were estimated to be minimal, since the proposed San Juan Capistrano and Talega substations
- 37 would be unstaffed, and the proposed transmission and distribution segments would only involve
- 38 potential solid waste disposal during maintenance and repair activities an annual or as needed basis.
- 39
- 40 GHG emission estimates do not account for unforeseeable repairs due to emergency or other causes. In
- 41 addition, estimates do not include emissions from indirect sources that would be accounted for in a life-
- 42 cycle analysis. Life-cycle analyses include emissions associated with all stages of development,
- 43 including, for example, materials manufacturing and distribution.

- 1 Potential impacts from GHG emissions were evaluated according to the following significance criteria.
- 2 The criteria were defined based on the checklist items presented in Appendix G of the CEQA Guidelines.
- The proposed project would cause a significant impact from GHG emissions if it would:
  - a) Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment; or
  - b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs.
- According to each County's guidelines, to calculate a project's GHG emissions, the proposed project's construction emissions are amortized over the life of the project (defined by SCAQMD as 30 years) and added to its annual operational emissions. The sum is the value compared to the applicable significance thresholds of 10,000 MTCO<sub>2</sub>e per year for stationary/industrial projects in the SCAQMD and 2,500 MTCO<sub>2</sub>e per year for projects that exceed the screening criteria in San Diego County (SCAQMD 2008, 2011; County of San Diego 2013). Because the quantitative thresholds developed by SCAQMD and San Diego County noted above are based on AB 32 and the California Climate Change Scoping Plan
- 17 statewide reduction targets, any project that exceeded these thresholds would be in conflict with an
- 18 applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions.
- 19 20

21

26

27 28

29

30

31 32

33 34

36

37

5

6

7

8

9

#### 4.7.3.2 Applicant Proposed Measures

The applicant has committed to the following measures as part of the design of the proposed project. See
Section 2.6, "Applicant Procedures, Plans, Standards, and Proposed Measures," for a complete
description of each applicant proposed measure (APM).

- **APM GHG-1: Operations Emissions Controls.** SDG&E developed this APM to ensure that sulfur hexafluoride is properly managed. SDG&E would implement its existing sulfur hexafluoride mitigation strategies during the operation and maintenance of sulfur hexafluoride-containing equipment installed as part of the proposed project. These strategies include:
- Recording company-wide sulfur hexafluoride purchases, use, and emissions rates to comply with the USEPA's requirements for Electrical Transmission and Distribution Equipment Use (Mandatory Reporting of Greenhouse Gases, 40 CFR Part 98, Subpart DD) and the CARB's Regulation for Reducing Sulfur Hexafluoride Emissions from gas-insulated switchgear (Code Regs. Tit. 17, § 95350-95359);
- Implementing a sulfur hexafluoride recycling program;
  - Training employees on the safety and proper handling of sulfur hexafluoride;
  - Continuing to report GHG emissions with the Climate Registry; and
- 38 Implementing SDG&E's sulfur hexafluoride leak detection and repair program. This • 39 program includes monthly visual inspections of each GCB, which includes checking 40 pressure levels within the breaker and recording these readings in SDG&E's Substation 41 Management System. During the installation or major overhaul of any GCB, the unit is 42 tested over a 24-hour period to ensure no leaks are present. Minor overhauls of each GCB are conducted every 36 to 40 months to check overall equipment health. This process 43 44 includes checking gas pressure, moisture ingress, and sulfur hexafluoride decomposition. If the GCB fails any of these checks, the unit is checked for leaks and repaired. In addition, 45 46 all GCBs are equipped with a gas-monitoring device and alarm that automatically alerts SDG&E's Grid Operations Center. If gas pressure approaches minimum operating levels, 47

| 1<br>2<br>3          | an alarm is immediately reported to SDG&E's Substation Construction and Maintenance<br>Department. The GCB is usually inspected for leaks within 24 hours of such an alarm.<br>SDG&E's leak detection practice includes the following three methodologies: |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5               | <ul> <li>Spraying a leak-detection agent onto common leak points—including O rings,<br/>gaskets, and fittings;</li> </ul>                                                                                                                                  |
| 6<br>7               | • Using a field-monitoring device (sniffer) to detect the presence of sulfur hexafluoride gas; and                                                                                                                                                         |
| 8<br>9<br>10         | • Using a laser-detection camera to detect the presence of sulfur hexafluoride gas when the above two methods are unsuccessful in finding a leak.                                                                                                          |
| 10<br>11<br>12       | 4.7.3.3 Environmental Impacts                                                                                                                                                                                                                              |
| 13                   | Impact GG-1: Generate GHG emissions, either directly or indirectly, that may have a                                                                                                                                                                        |
| 14                   | significant impact on the environment                                                                                                                                                                                                                      |
| 15                   | LESS THAN SIGNIFICANT                                                                                                                                                                                                                                      |
| 16                   |                                                                                                                                                                                                                                                            |
| 17                   | During the construction of the proposed project, GHGs, primarily CO <sub>2</sub> , would be emitted from engine                                                                                                                                            |
| 18                   | exhaust of diesel- and gasoline-fueled construction equipment and on-road vehicles (e.g., delivery trucks                                                                                                                                                  |
| 19                   | light-duty vehicles, off-road construction equipment, and heavy duty diesel vehicles, and worker                                                                                                                                                           |
| 20                   | vehicles). The majority of direct project-related GHG emissions would be $CO_2$ , with minor amounts of CIL and N O approximated with the combination of function making equipment.                                                                        |
| 21<br>22             | $CH_4$ and $N_2O$ associated with the combustion of fuel in mobile equipment.                                                                                                                                                                              |
| 22                   | In total, approximately 18,115 MTCO <sub>2</sub> e emissions would be generated from construction of the proposed                                                                                                                                          |
| 23<br>24             | project (see Table 4.7-2). Approximately half of the total construction emissions would be associated                                                                                                                                                      |
| 2 <del>4</del><br>25 | with the construction of San Juan Capistrano Substation, while the remaining sources of emissions would                                                                                                                                                    |
| 26                   | be associated with transmission and distribution lines construction., including roadwork, retaining walls,                                                                                                                                                 |
| 27                   | underground installation, and helicopter use. As detailed in Section 4.3, "Air Quality," the applicant                                                                                                                                                     |
| 28                   | would implement APM AQ-2 to reduce emissions from fossil-fueled construction equipment, which                                                                                                                                                              |
| 29                   | would also reduce GHGs from combustion. Therefore, the actual total GHG emissions from construction                                                                                                                                                        |
| 30                   | would be below the levels presented in Table 4.7-2. Nonetheless, the unmitigated emissions scenario was                                                                                                                                                    |
| 31                   | used in order to estimate the maximum contribution of MTCO <sub>2</sub> e emissions from the construction of the                                                                                                                                           |
| 32                   | proposed project. Detailed emissions calculations and assumptions are presented in Appendix K.                                                                                                                                                             |
| 22                   |                                                                                                                                                                                                                                                            |

33

#### Table 4. 7-2 Total Greenhouse Gas Emissions from Construction of the Proposed Project

|                                | Total Unmitigated Greenhouse Gas Construction<br>Emissions (MTCO <sub>2</sub> e) |                  |        |
|--------------------------------|----------------------------------------------------------------------------------|------------------|--------|
| Proposed Project Component     | South Coast AQMD                                                                 | San Diego County | Total  |
| Substation Construction        | 9,460                                                                            | 62               | 9,522  |
| Transmission Line Construction | 7,445                                                                            | 886              | 8,331  |
| Distribution Line Construction | 262                                                                              | 0                | 262    |
| Total emissions                | 17,167                                                                           | 948              | 18,115 |

Source: SDG&E 2012

Key:

AQMD = Air Quality Management District

MTCO<sub>2</sub>e = metric tons of carbon dioxide equivalent

Note:

Emissions are based on the unmitigated emissions scenario for project construction.

As discussed in Section 4.7.3.1, to assess the potential impacts of GHG emissions for a project, it is 1 2 necessary to consider both construction and operational emissions. During operations, the primary source 3 of GHG emissions would be the potential leak of SF<sub>6</sub> from gas-insulated electrical equipment at the 4 proposed San Juan Capistrano.  $SF_6$  would be used to insulate the main electrical substation equipment, 5 such as the 230-kilovolt and 138-kilovolt switchgear. SF<sub>6</sub> is a high GWP gas; one pound of SF<sub>6</sub> has a 6 GWP equivalent of 22,800 pounds of CO<sub>2</sub>. The applicant estimates that approximately 21,640 pounds of 7  $SF_6$  gas would be contained at the proposed San Juan Capistrano Substation. As described in Section 8 2.5.1.1, "Gas-Insulated Equipment," the applicant would monitor the gas-insulated equipment at the 9 proposed San Juan Capistrano Substation for variations in pressure and conduct routine inventory 10 inspections to keep track of onsite inventories and usage rates. The applicant would be required to report 11  $SF_{6}$  inventories and emissions from the use of gas-insulated equipment electrical at San Juan Capistrano 12 substation pursuant the EPA's requirements for Electrical Transmission and Distribution Equipment Use 13 (40 CFR Part 98, Subpart DD) and the CARB's Regulation for Reducing Sulfur Hexafluoride Emissions 14 from Gas Insulated Switchgear (17 CCR Sections 95350 to 95359). The applicant would install new gas-15 insulated equipment certified by the manufacturer to have a  $SF_6$  leak rate of less than 0.5 percent per 16 year, resulting in annual emissions of 108.2 pounds of SF<sub>6</sub> or 1,119 MTCO2e on an annual basis. The applicant would comply with the maximum annual  $SF_6$  emission rates established by 17 CCR 95352, 17 which, by 2020, would be 1 percent per year for all active gas-insulated equipment. To further reduce 18 19 impacts, the applicant would implement APM GHG-1, which includes implementing a SF<sub>6</sub> gas recycling 20 program, training employees on the safety and proper handling of  $SF_6$  gas, continuing to report GHG 21 emissions with The Climate Registry, and implementing a  $SF_6$  leak detection and repair program. 22

Additionally, the use of equipment and vehicles during routine maintenance and inspection activities would emit  $CO_2$  and  $CH_4$  from engine exhaust of diesel- and gasoline-fueled vehicles. The applicant anticipates that since maintenance and inspection activities would be similar to existing operations, GHG

emissions associated with equipment and vehicle use during routine maintenance and inspection

activities would not significantly differ from baseline conditions and estimated 2 MTCO<sub>2</sub>e per year.

28

29 The total construction emissions of the proposed project, 18,115 MTCO<sub>2</sub>e, amortized over 30 years,

- 30 would be equivalent to  $604 \text{ MTCO}_2 \text{e}$  per year.
- 31

32 As noted in Section 4.7.2.3, the SCAQMD adopted a 10,000 MTCO<sub>2</sub>e per year threshold, with

33 construction emissions amortized over 30 years and added to operational GHG emissions for industrial

34 projects (SCAQMD 2011). San Diego County adopted a 2,500 MTCO<sub>2</sub>e per year threshold, with

35 construction emissions amortized over 30 years and added to operational GHG emissions for all projects

that meet the construction screening criteria (see Section 4.7.2.3). Table 4.7-3 compares the annual GHG

37 emission to SCAQMD and San Diego County GHG thresholds. As shown in Table 2-8, "Temporary and

38 Permanent Land Disturbance Estimates," the estimated temporary disturbance acreage during

39 construction of the proposed project would be significantly below San Diego County's construction

40 screening criteria, and therefore, San Diego County's 2,500 MTCO<sub>2</sub>e per year threshold is not applicable

- 41 to the project even though it is included in Table 4.7-3.
- 42

| Emission Source                                                                                                                                                                                                                                                                                                                                                                 | Annual GHG Emissions<br>(MT of CO <sub>2</sub> e/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor Vehicle Use <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SF <sub>6</sub> Leakage <sup>2</sup>                                                                                                                                                                                                                                                                                                                                            | 1,119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Amortized Construction Emissions (30-year perio                                                                                                                                                                                                                                                                                                                                 | 604 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual GHG Operational Emissions                                                                                                                                                                                                                                                                                                                                                | 1,725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exceeds SCAQMD GHG Threshold of 10,000                                                                                                                                                                                                                                                                                                                                          | O <sub>2</sub> e/year? No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Exceeds San Diego County GHG Threshold o                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Assumptions: 65 VMT per day for transmission line<br>day for substation maintenance.<br><sup>2</sup> Direct emissions of SF <sub>6</sub> estimated by assuming 0.5<br><sup>3</sup> 18,115 MTCO <sub>2</sub> e over 30 years = 604 MTCO <sub>2</sub> e/year                                                                                                                      | es traveled (VMT) per day and 1.1 pounds of CO <sub>2</sub> per mile.<br>ection, 62 VMT per day for distribution line inspection, and 60 VMT per<br>ent leak rate from equipment storing 21,640 pounds of SF <sub>6</sub> .<br>ne proposed project as the proposed project does not exceed the                                                                                                                                                                                                                                                                                                                                                                  |
| e                                                                                                                                                                                                                                                                                                                                                                               | ns associated with the proposed project would not exceed t<br>er this criterion would be less than significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mpact GG-2: Conflict with an                                                                                                                                                                                                                                                                                                                                                    | er this criterion would be less than significant.<br>pplicable plan, policy or regulation adopted for the<br>g the emission of GHGs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mpact GG-2:Conflict with an<br>purpose of redu<br>LESS THAN SIGBecause the proposed project's GHG emis<br>omply with AB 32 and the California Cl<br>proposed project would not conflict with<br>of reducing GHG emissions. Further, pro-<br>he policies or GHG emission reduction r<br>or the City of San Clemente Climate Acti<br>with federal, state, and local regulations a | er this criterion would be less than significant.<br><b>pplicable plan, policy or regulation adopted for the</b><br><b>g the emission of GHGs.</b><br><i>FICANT</i><br>ons would not exceed quantitative thresholds developed to<br>the Change Scoping Plan statewide reduction targets, the<br>applicable plan, policy, or regulation adopted for the purpor<br>construction and operation would not conflict with any of<br>sures outlined in the SCAG Regional Comprehensive Plan<br>Plan, as the project proponent would be required to comply<br>pted to achieve GHG reduction goals, such as<br>bon fuel standards for project vehicles, and compliance w |

\_ . . . \_ . \_ . .. .. . \_ \_ \_

The City of San Clemente establishes the goal to adopt a Waste Diversion Ordinance that would require waste diversion of 75 percent by 2020 and 90 percent by 2030.

- 1 Construction, operation, and maintenance of each component of the proposed project would comply with
- 2 all applicable regulations for the reduction of GHG emissions, including federal and state requirements
- 3 for vehicle emissions and fuel use, waste management, and  $SF_6$  emissions from gas-insulated equipment.
- 4 Construction, operation, and maintenance of the proposed project would not conflict with a federal, state,
- 5 regional, or local plan, policy, or regulation for reducing GHG emissions; therefore, impacts under this
- 6 criterion would be less than significant.

## 4.8 Hazards and Hazardous Materials

2 3 This section describes the environmental and regulatory settings and discusses impacts associated with 4 construction and operation of the South Orange County Reliability Enhancement Project (proposed 5 project) with respect to hazards and hazardous materials. During scoping, the following issues were raised 6 and are addressed in this section: the proposed project's potential to impact gas, oil, and geothermal wells; 7 potential impacts from the soils and materials found within Marine Corps Base (MCB) Camp Pendleton; 8 fire hazards from the overhead transmission line; electromagnetic fields (EMF); and the need to identify 9 potential locations of hazardous materials prior to and during construction. Impacts related to the gas 10 insulated transformers and sulfur hexafluoride ( $SF_6$ ) are discussed in Section 4.7, "Greenhouse Gases," Section 4.15, "Transportation and Traffic," further discusses transportation hazards, and Section 4.13, 11 12 "Public Services and Utilities," further discusses impacts on government facilities, including those related 13 to fire and police protection.

#### 15 **4.8.1 Environmental Setting**

Materials and wastes may be considered hazardous if they are poisonous (toxicity), can be ignited by
open flame (ignitability), corrode other materials (corrosivity), or react violently, explode or generate
vapors when mixed with water (reactivity). The term *hazardous material* is defined as any material that,
because of quantity, concentration, or physical or chemical characteristics, poses a significant present or
potential hazard to human health and safety or to the environment (California Health and Safety Code
[HSC] Chapter 6.95, Section 25501(o)). Hazardous materials have the potential to leach into soils, surface
water, and groundwater when spilled or released if not properly contained.

#### 24 25

14

1

#### 4.8.1.1 Hazardous Materials/Wastes Sites

26

27 To determine the location of hazardous materials/wastes sites in within 1 mile of the proposed project,

28 San Diego Gas & Electric Company (SDG&E, or the applicant) employed Environmental Data

29 Resources, Inc. (EDR) to conduct a database analysis. This analysis involved database searches from

30 local, state, and federal agencies with varying levels of enforcement related to the generation, storage and

handling, transportation, and treatment of wastes, as well as emergency response activities and

32 remediation of contaminated soil and groundwater sites. EDR's report is provided in Appendix J. This

report did not identify any hazardous materials sites within 1,000 feet of the proposed double-circuit 230-

34 kilovolt (kV) transmission line or the substations with a confirmed contamination or release of hazardous

35 substances (EDR 2012).

36

In addition to EDR's search, the California Public Utilities Commission (CPUC) searched the State Water
 Resource Control Board's Geotracker database, Cease and Desist Orders and Cleanup and Abatement

39 Orders list; California Environmental Protection Agency's highly hazardous solid waste sites; and the

40 California Department of Toxic Substance Control's (DTSC's) EnviroStor database and hazardous waste

41 sites. These sources are often collectively referred to as the "Cortese List," and are listed in Government

42 Code Section 65962.5. A search of the Cortese List databases found no active Cortese List sites within

43 1,000 feet of the proposed project (DTSC 2014a,b; CalEPA 2014; SWRCB 2014a,b).

- 1 Although search results from hazardous waste databases did not identify any hazardous waste sites on or
- 2 near the proposed project site, hazardous waste investigations performed by the applicant have identified
- 3 hazardous waste on the project site. The applicant performed the following hazardous waste
- 4 investigations at the proposed Capistrano Substation:
- 5 6

7

- In 2002, an asbestos and lead-based paint survey of the existing abandoned concrete building located in the lower yard portion of the substation site was conducted.
- In 2008, an asbestos inspection survey conducted by a Certified Asbestos Consultant for
   Capistrano Substation, with emphasis on the abandoned concrete building located in the lower
   yard.
- In 2009, a soil sample investigation conducted in the lower yard of the Capistrano Substation site
   and around the perimeter of the upper yard (see Figure 2-3). (SDG&E 2012)
- 13
- 14 The 2002 lead-based paint survey identified lead-based paint on building materials found within the
- abandoned concrete building located on the lower yard of the existing Capistrano Substation (SDG&E
- 16 2012). Table 4.8-1 details the finding of the lead-based paint survey.
- 17

#### Table 4.8-1 Lead-based Paint Survey Results

| Building Location and<br>Type of Material        | Concentration of Lead<br>(mg/kg) | Condition of Material<br>Containing Lead <sup>1</sup> |
|--------------------------------------------------|----------------------------------|-------------------------------------------------------|
| Interior Window                                  | 5,323–11,280                     | Poor                                                  |
| Exterior door and window frames (green<br>paint) | 13,920–59,600                    | Poor                                                  |
| Exterior Stucco (beige paint)                    | 8,468–43,050                     | Fair to Good                                          |

Source: SDG&E 2012

Key:

mg/kg = milligrams per kilogram

Note:

<sup>1</sup> The relative hazard potential from lead-based paint is a function of the condition of the material containing the lead. The worse the condition of the material, the higher the hazard potential.

18

19 The 2002 asbestos survey did not locate any asbestos-containing materials. However, the 2008 asbestos

20 survey identified asbestos-containing materials in building materials found within the abandoned concrete

building located on the lower yard of the existing Capistrano Substation site (SDG&E 2012). Table 4.8-2

- 22 details the findings of the 2008 asbestos survey.
- 23

## Table 4.8-2 Asbestos Containing Material Survey Results

| Building Location and<br>Type of Material             | Type and Concentration<br>of Asbestos | Approximate Amount of<br>Asbestos Containing<br>Material | Condition of Material<br>Containing Asbestos <sup>1</sup> |
|-------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Roof (gray mastic)                                    | Chrystoline (7%)                      | 10 square feet                                           | Fair                                                      |
| Roof (felts)                                          | Chrystoline (65%)                     | 5,680 square feet                                        | Fair                                                      |
| 2 <sup>nd</sup> Floor (Electric Conduit/<br>Transite) | Presumed (not samples taken)          | 2 linear feet                                            | Good                                                      |

Source: SDG&E 2012

Note:

The relative hazard potential from asbestos containing materials is a function of the condition of the material containing the asbestos. The worse the condition of the material, the higher the hazard potential. Intact or sealed asbestos is not harmful unless it becomes damaged and friable. Friable means the material can be easily crushed or pulverized to a powder by hand pressure. Friable materials have a higher potential to release fibers. Asbestos fibers that are released into the air and inhaled can accumulate in the lungs and pose a health risk (CalEPA 2005).

1 The 2009 soil sampling effort found one sample with elevated levels of petroleum hydrocarbons, one

sample with a moderately elevated level of lead, and one sample with an elevated level of chromium
 (SDG&E 2012). Table 4.8-3 details the results of the soil sampling at the existing Capistrano Substation

4 5

site.

#### Table 4.8-3 Soil Sampling Results

| Contaminant                                       | Sample Location<br>and Depth                                         | Concentration                                     | Waste Classification and Other Restrictions                                                                                                                                                                                       |
|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total<br>recoverable<br>petroleum<br>hydrocarbons | Former transformer<br>area (lower yard) at<br>0.5 fbs                | 3,700 mg/kg                                       | <ul> <li>Hazardous Waste</li> <li>Concentration exceeds CHHSL solid of 117 mg/kg</li> <li>Concentration exceeds EPA Region IX RSLs for TPH of 420 mg/kg</li> </ul>                                                                |
| Lead                                              | Former transformer<br>area (lower yard) at<br>0.5 fbs                | 200 mg/kg total<br>lead / 33 mg/l<br>soluble lead | <ul> <li>Hazardous Waste</li> <li>Concentration is below CHHSL within commercial and<br/>industrial soils of 320 mg/kg</li> <li>Concentration is below USEPA Region IX RSLs for lead<br/>content of 400 mg/kg.</li> </ul>         |
| Chromium                                          | Existing Capistrano<br>Substation perimeter<br>(upper yard) at 8 fbs | 450 mg/kg total<br>chromium(III) <sup>1</sup>     | <ul> <li>Not Hazardous Waste:</li> <li>Concentration is below CHHSL within commercial and industrial soils of 100,000 mg/kg</li> <li>Concentration is below USEPA Region IX RSLs for chromium (III) of 1,800,000 mg/kg</li> </ul> |

Source: SDG&E 2012; OEHHA 2014; EPA 2014

Key:

CHHSL = California Human Health Screening Level

EPA Region IX RSL = United States Environmental Protection Agency Region 9 Regional Screening Levels

fbs = feet below surface

mg/kg = milligrams per kilogram

mg/l = milligrams per liter

TPH = Total petroleum hydrocarbons Note:

<sup>1</sup> Total Chromium detection (450 mg/kg) is assumed to be Chromium III because follow-up tests for the more toxic Chromium VI was detected below the detection limit of 1 mg/kg. Therefore, the screening levels for Chromium III were used to assess potential risk.

6

7 Talega Substation is located on land owned by the United States Marine Corps (Marine Corps) within its

8 Camp Pendleton base. The Navy's Installation Restoration (IR) Program identifies, assesses,

9 characterizes, and cleans up or controls contamination from past hazardous waste-disposal operations and
 10 hazardous materials spills at United States Navy and Marine Corps installations.

11

12 There are currently 16 active IR sites in MCB Camp Pendleton's IR Program, all in different phases of the

12 There are currently to active it sites in MCB Camp Fendleton's it Program, an in different phases of the 13 cleanup process (USMC 2014a). The two closest IR sites to the proposed project are over 3 miles from

- 14 Talega Substation (USMC 2014b).
- 14

#### 16 **4.8.1.2** Schools

17

18 Schools are considered potentially vulnerable to hazardous materials releases under the California

Environmental Quality Act (CEQA). Seven schools are located within 0.25 miles of the proposed project,
 listed in Table 4.8-4. Section 4.8.3 evaluates potential risks to schools located near hazardous materials

21 associated with the proposed project.

| School                                                        | Address                                           | Approximate Distance                                |
|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
| Harold Ambuehl Elementary<br>School                           | 28001 San Juan Creek Road, San Juan Capistrano    | 0.10 mile south of the 12-kV distribution line      |
| Jserra Catholic High School                                   | 26351 Junipero Serra Road, San Juan<br>Capistrano | 0.21 mile north of Capistrano Substation            |
| Saddleback Valley Christian                                   | 26333 Oso Road, San Juan Capistrano               | 0.25 mile northwest of Capistrano<br>Substation     |
| Junipero Serra High School                                    | 31422 Camino Capistrano, San Juan<br>Capistrano   | 0.25 mile south of Capistrano Substation            |
| Marbella Montessori                                           | 31113 Rancho Viejo Road, San Juan<br>Capistrano   | 0.18 mile southwest of Transmission Line Segment 1b |
| St. Margaret's Episcopal School                               | 31641 La Novia Avenue, San Juan<br>Capistrano     | 0.00 mile southeast of the 12-kV distribution line  |
| San Juan Hills High School                                    | 29211 Vista Montana, San Juan<br>Capistrano       | 0.00 mile north of Transmission Line<br>Segment 2   |
| Vista Del Mar <u>Elementary and</u><br>Middle School <u>s</u> | 1130 Avenida Talega, San Clemente                 | 0.25 mile south of Transmission Line<br>Segment 3   |
| Heritage Christian                                            | 190 Avenida La Pata, San Clemente                 | 0.25 mile west of Transmission Line<br>Segment 3    |
| Talega KinderCare                                             | 1141 Puerta del Sol, San Clemente                 | 0.02 mile east of Transmission Line Segment 3       |

Table 4.8-4 Schools within 0.25 Miles of the Proposed Project

Key:

kV = kilovolt

#### 4.8.1.3 Airports and Airstrips

#### 2 3 4

5

6

7

8

9

10

11

1

No airports, public or private, are located within 2 miles of the proposed project. There is an airstrip located within MCB Camp Pendleton property, approximately 2.5 miles southeast of Talega Substation. Additionally, there is an airport located within the MCB Camp Pendleton property, approximately 16 miles southeast of Talega Substation. The closest public airport to the proposed project is the John Wayne Airport, which is located approximately 15 miles north of the proposed San Juan Capistrano Substation site.

#### 4.8.1.4 Oil, Gas, and Geothermal Wells

1213 The applicant conducted a search of the Division of Oil, Gas, and Geothermal Resources (DOGGR) Well

Finder Database to identify oil, gas, and geothermal wells within 1,000 feet of the proposed project. The results of this search are provided in Table 4.8-5.

16

#### Table 4.8-5 Oil, Gas, and Geothermal Wells within 1,000 feet of the Proposed Project

| Well Operator                        |                             |                                        |
|--------------------------------------|-----------------------------|----------------------------------------|
| "Lease Name" (API No. <sup>1</sup> ) | Well Type and Status (Year) | Approximate Distance                   |
| Conley & Associates, Inc.            | OG Plugged (1983)           | 300 feet west of Laydown area on Calle |
| "Conley-Estrella" (059-21186)        |                             | Saluda, San Clemente                   |
| George L. Guthrie                    | OG Plugged (1978)           | 730 feet west of Transmission Pole 28  |
| "M&J Forster" (059-20690)            |                             |                                        |
| Source: DOGGR 2014                   |                             |                                        |

Key:

API = American Petroleum Institute Well Number

OG = Oil and gas production

<sup>1</sup> An API Number is a unique, permanent, numeric identifier assigned to each oil and gas well in the United States.

Note:

#### 4.8.1.5 Emergency Response

2 3 Orange County and the cities of San Juan Capistrano and San Clemente have developed and implemented 4 emergency response plans to help the communities prepare for and organize responses to natural and 5 human-caused disasters. Emergency response and evacuation plans that apply to the proposed project area 6 include Orange County's Hazard Mitigation Plan (n.d.), the City of San Juan Capistrano's Emergency 7 Operation Plan (2007), and the City of San Clemente's Multi-Hazard Emergency Plan (2003). The 8 content of these plans is discussed further in Section 4.8.2.3. Daily administration of the disaster 9 preparedness and response programs for these areas is handled by the Orange County Fire Authority, 10 Orange County Sheriff's Department, and trained city and county staff in the respective jurisdictions. 11 4.8.1.6 **Fire Hazards** 

#### 12 13

1

The California Department of Forestry and Fire Protection (CAL FIRE) is the state agency responsible for fire protection in State Responsibility Areas (SRAs) of California and also identifies and maps fire risks in SRA's, Federal Responsibility Areas (FRAs), and Local Responsibility Areas (LRAs). CAL FIRE designates areas as having very high, high, or moderate fire hazards. Fire Hazard Severity Zone designations are based on fuels, terrain, fire history, and weather of the area (CAL FIRE 2009). Figure 4.8-1 shows areas designated as Very High Fire Hazard Severity Zones along the proposed project route.

#### 20 21 22

#### 4.8.1.7 Electromagnetic Fields

EMFs occur both naturally and as a result of human activity across a broad electrical spectrum. Naturally
 occurring EMFs are caused by the weather and the earth's geomagnetic field. The fields caused by human
 activity result from technological application of the electromagnetic spectrum for uses such as
 communications, appliances, and the generation, transmission, and local distribution of electricity.

27

After several decades of study regarding potential public health and safety risks associated with EMFs from power lines, research results remain inconclusive. In 1993, the CPUC implemented decision D.93 11-013, which requires utilities to use "low-cost or no-cost" EMF reduction measures for EMFs associated with electrical facilities requiring certification under CPUC General Order (GO) 131-D. The

31 associated with electrical facilities requiring certification under CPUC General Order (GO) 131-D. The 32 decision directed utilities to use a 4 percent benchmark for low-cost measures. The applicant included a

Field Management Plan as part of its applications for the proposed project that describes the EMF

reduction measures that would be part of the proposed project (Appendix H). This decision also

implemented a number of EMF measurement, research, and education programs. The CPUC did not

adopt any specific numerical limits or regulation of EMF levels related to electric power facilities.

37

The CPUC's January 27, 2006, decision (D.06-01-042) affirmed the 1993 decision on the low-cost/no-

cost policy to mitigate EMF exposure for new utility transmission and substation projects. Additionally,

40 the 2006 decision directs the CPUC's Energy Division to pursue and review all available studies

regarding EMFs and to review scientific information and report on new findings. The CPUC has been unable to determine whether there is a significant scientifically verifiable relationship between EMF

unable to determine whether there is a significant scientifically verifiable relationship between EMF
 exposure and negative health consequences, and no change to the CPUC EMF policy has been made to

43 exposure and negative nearth consequences, and no change to the CPUC EMF policy has been made to 44 date. The CPUC will reconsider its EMF policies and open a new rulemaking, as necessary, if new

- 45 findings indicate negative EMF health impacts.
- 46

47 At present, the CPUC does not consider EMFs, in the context of CEQA, to be an environmental impact

48 because there is no agreement among scientists that EMFs create a potential health risk and because

- 49 CEQA does not define or adopt standards for defining any potential risk from EMFs. Therefore, EMFs
- 50 are not addressed in the Environmental Impacts and Mitigation Measures section of this resource section.

- 1 For further information about EMFs and CPUC guidelines, refer to
- 2 <u>http://www.cpuc.ca.gov/Environment/emf/emfopen.htm.</u>
- 3 <u>http://www.cpuc.ca.gov/PUC/energy/Environment/ElectroMagnetic+Fields</u>.

#### 4.8.2 Regulatory Setting

#### 4.8.2.1 Federal

#### 9 Comprehensive Environmental Response, Compensation, and Liability Act

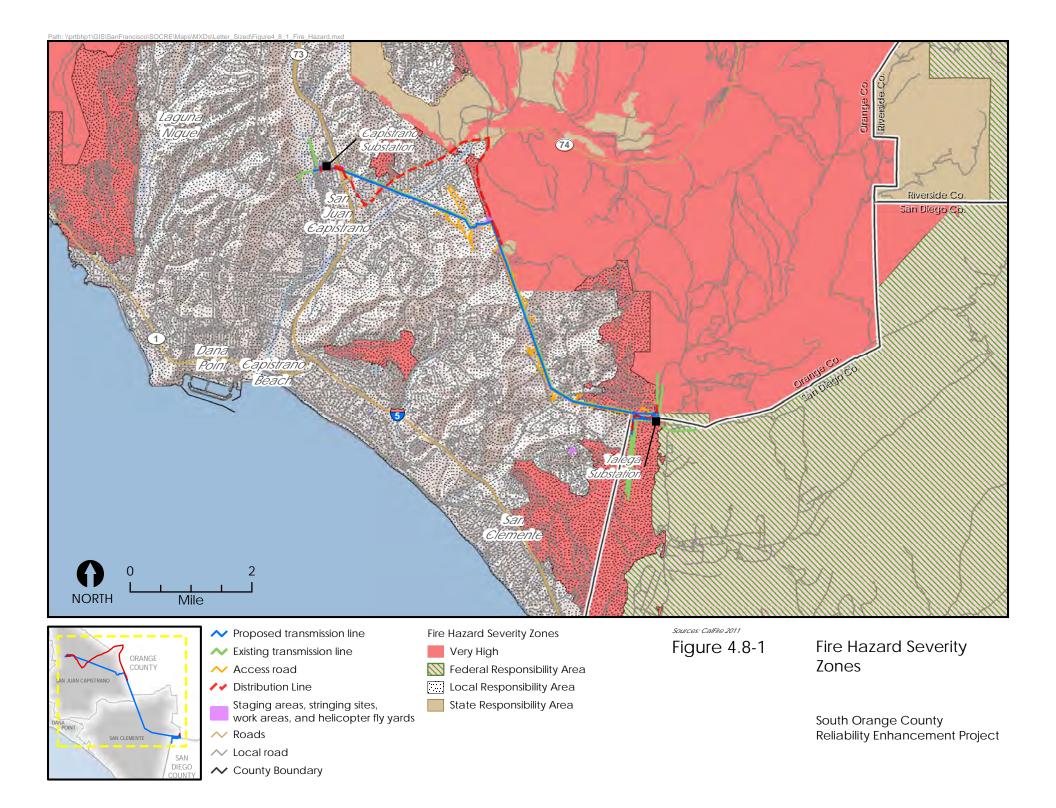
10 The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund, outlines regulations for the cleanup of toxic waste sites nationwide. In 1986, Superfund was 11 12 amended by the Superfund Amendment and Reauthorization Act (SARA) Title III, also known as the 13 Emergency Planning and Community Right-to-Know Act. SARA Title III, along with the Clean Air Act 14 of 1990, established a nationwide emergency planning and response program and imposed reporting 15 requirements for businesses that store, handle, or produce significant quantities of extremely hazardous materials. These acts require states to implement a comprehensive system to inform local agencies and the 16 17 public when a significant quantity of such material is stored or handled at a facility. There are no known 18 CERCLA sites in the immediate vicinity of the proposed project area.

#### 19

5

6 7

8


#### 20 **Resource Conservation and Recovery Act**

21 The Resource Conservation and Recovery Act (RCRA) regulates hazardous waste from the time that

- 22 waste is generated through to its management, storage, transport, treatment, and final disposal. The
- 23 United States Environmental Protection Agency (EPA) has authorized the California DTSC to administer
- 24 the State's RCRA programs. A RCRA hazardous waste exhibits at least one of four characteristics:
- 25 ignitability, corrosivity, reactivity, or toxicity. To keep track of hazardous waste activities, treatment,
- storage, and disposal facility owners and operators must keep certain records and submit reports to the
- 27 EPA at regular intervals. All facilities that generate, transport, recycle, treat, store, or dispose of
- hazardous waste are required to notify the EPA (or its state agency) of their hazardous waste activities.
- An EPA Identification Number must be obtained unless the waste has been excluded from regulation or
- exempted. National Biennial RCRA Hazardous Waste Reports Sections 3002 and 3004 of RCRA require
   that the EPA collect information pertaining to hazardous waste management from hazardous waste
- that the EPA collect information pertaining to hazardous waste management from hazardous waste generators and hazardous waste treatment, storage, and disposal facilities every two years. Used
- 33 hazardous waste from construction and operation of the proposed project are regulated under this act.
   34

## 35 Hazardous Materials Transportation Act

- 36 The primary objective of the Hazardous Materials Transportation Act is to provide adequate protection
- against risks to life and property inherent in the transportation of hazardous materials in commerce. This
- 38 act empowers the United States Department of Transportation to regulate the transportation of hazardous
- 39 materials, including explosives, by rail, aircraft, vessel, or public highway. Hazardous materials
- 40 regulations are subdivided by function into the following four areas within 49 Code of Federal
- 41 Regulations (CFR) Parts 101, 106, 107, 171 to 177, and 178 to 180: Procedures and/or Policies; Material
- 42 Designations; Packaging Requirements; and Operational Rules. The transportation of all hazardous
- materials to and from the proposed project area during construction and operation would be regulated bythis act.
- 45
- 46



This page intentionally left blank.

#### 1 **Oil Pollution Prevention**

- 2 The objective of the oil pollution prevention regulation stated in 40 CFR Part 112 is to prevent oil
- 3 discharges from reaching navigable waters of the United States or adjoining shorelines. This regulation
- 4 was also written to ensure effective response to oil discharge. The regulation further requires that
- 5 proactive measures be used to respond to oil discharge. It contains two major types of requirements:
- 6 prevention requirements (the Spill Prevention, Control, and Countermeasure [SPCC] rule) and Facility
- 7 Response Plan requirements.
- 8

9 SPCC plans are required for facilities that are non-transportation-related, have an aggregate aboveground

- 10 storage capacity greater than 1,320 gallons or a completely buried storage capacity greater than 42,000
- 11 gallons, and have a reasonable expectation of a discharge into or upon navigable waters of the United
- 12 States. An SPCC plan would be required for the operation of the proposed San Juan Capistrano
- 13 Substation and Talega Substation because these facilities would store more than 1,320 gallons of
- 14 transformer oil in the transformers, which could reasonably discharge into navigable waters (40 CFR
- 15 Parts 112.1–112.7). Twelve drainages were identified that may be subject to the jurisdiction of the United
- States Army Corps of Engineers, California Department of Fish and Wildlife, and San Diego Regional
   Water Ouality Control Board during wetland delineation surveys (SDG&E 2012). Jurisdictional waters
- Water Quality Control Board during wetland delineation surveys (SDG&E 2012). Jurisdictional waters and regulatory requirements are further discussed in Section 4.4, "Biological Resources." The Orange
- 18 and regulatory requirements are further discussed in Section 4.4, Biological Resources. The Orange 19 County Environmental Health Division is responsible for administering SPCC plans in Orange County.
- 20 The applicant has existing SPCC plans for Capistrano and Talega substations.
- 20 The applicant has existing SPCC plans for Capistrano and Tale 21

#### 22 Transformer Oil Transport and Recycling

- 23 Title 49 CFR Part 130 applies to the transport of transformer oil (mineral oil) when shipped in containers
- of 3,500 gallons or more. Mineral oil would be transported in volumes over 3,500 gallons for the
- 25 proposed project. According to 49 CFR Part 130, containers used for the transportation of oil subject to
- this regulation must be designed, constructed, maintained, closed, and loaded such that under conditions
- 27 normally incident to transportation, there will be no release of oil to the environment. In addition, a
- response plan must be developed pursuant to 49 CFR Part 130 requirements. Standards for the recycling
- of used transformer oil are established in 40 CFR Part 279.
- 30

#### **Occupational Safety and Health Administration**

- 32 The Occupational Safety and Health Administration (OSHA) administers Occupational Safety and Health
- 33 Standards (CFR Title 29) that establish regulations for safety in the workplace and construction safety,
- 34 including safety regarding the use of helicopters for construction.
- 35
- OSHA standards require implementation of a Hazard Communication Plan to identify and inventory all hazardous materials and material safety data sheets. OSHA's standards also require employee training in safe handling of hazardous materials. OSHA standards are relevant to the proposed project because its
- 39 construction and operation would involve the use of heavy-duty equipment, helicopters, and heavy-duty
- 40 and lighter vehicles that may pose health and safety risks to workers. In addition, workers would handle
- 41 and use chemical substances.
- 42

## 43 **4.8.2.2 State**

#### 44 45 **Horo**r

## 45 Hazardous Materials and Waste

- 46 California Health and Safety Code (HSC) Section 25501 defines the term hazardous material as any
- 47 material that, because of quantity, concentration, or physical or chemical characteristics, poses a
- 48 significant present or potential hazard to human health and safety or to the environment. Hazardous
- 49 materials include, but are not limited to, hazardous substances, hazardous waste, and any material that a

- 1 handler or the administering agency has a reasonable basis for believing would be injurious to the health
- 2 and safety of persons or harmful to the environment if released into the workplace or the environment.
- 3 Title 8, Section 339 of the California Code of Regulations (CCR) lists substances identified as *hazardous*
- 4 *substances* for which employers must provide material safety data sheets to employees.
- 5

6 CCR Title 22, Section 66261.1 identifies those wastes which are subject to regulation as hazardous wastes
7 and that are subject to the notification requirements pursuant to the California HSC. The HSC defines a
8 waste as hazardous if it has any of the following characteristics: ignitability, corrosivity, reactivity, and
9 toxicity. It also provides lists of hazardous wastes listed pursuant to RCRA, non-RCRA hazardous wastes,

- hazardous wastes from specific sources, extremely hazardous wastes, hazardous wastes of concern, and
- 11 special wastes. The EPA has authorized the California DTSC to administer the RCRA program in
- 12 California.
- 13

14 Under federal regulations, transformer oil, under most intended uses, would become used oil, the

- recycling of which is regulated by 40 CFR 279. Use resulting in chemical or physical change or
- 16 contamination may also subject it to regulation as hazardous waste, which is also managed under 40 CFR
- 17 279. In California, however, all used oil is managed as hazardous waste until tests have shown that it is
- 18 not hazardous (HSC Section 25250.4). Requirements for the transport of hazardous waste, including
- 19 driver training, are established in CCR Title 26.

#### 20 21 Extremely Hazardous Substances

22 The CEQA Guidelines identify "extremely hazardous substances" as those defined by Section

23 25532(2)(g) of the California HSC. These include the substances listed in Appendix A of Part 355

24 (commencing with Section 355.10) of 40 CFR Chapter I, Subchapter J that provides a list of extremely

25 hazardous substances and their threshold planning quantities. The CEQA Guidelines define "hazardous

- air emissions" as emissions of air contaminants identified as toxic by the California Air Resources Board
- 27 (CARB) or the designated air pollution control officer. These include substances identified in Section
- 44321(a to f) of the California HSC.

## 30 Treated Wood Waste

31 Section 25150.7 of the California HSC outlines procedures and regulations for the management and

32 disposal of treated wood waste. Wood waste, including the type of wood utility poles that would be

disposed of as part of the proposed project, may be treated with pesticides and other chemicals to protect

34 the wood. Because the chemical treatments could leach into water supplies when disposed of, Section

35 25150.7 was developed to restrict how and where treated wood waste can be disposed of.

36

## 37 Certified Unified Program Agency and Hazardous Materials Plans

38 Administration of the Certified Unified Program Agency (CUPA) is authorized by the California HSC

39 (Chapter 6.11, Sections 25404-25404.8) and CCR Title 27, Division 1, Subdivision 4, Chapter 1, Sections

40 15100–15620. This program is implemented at the local level by government agencies certified by the
 41 secretary of the California Environmental Protection Agency. The Orange County Environmental Health

41 secretary of the California Environmental Protection Agency. The Orange County Environmental Health 42 Division is the CUPA for Orange County. The CUPA coordinates the regulation of hazardous materials

and hazardous wastes in Orange County through the following six programs:

- 44 45
- Hazardous Materials Disclosure,
- Business Emergency Plan,
- Hazardous Waste,
- 48 Underground Storage Tank,

- Aboveground Petroleum Storage Tank, and •
  - California Accidental Release Prevention. •

The Office of the State Fire Marshal is responsible for ensuring implementation of the Hazardous 4 5 Materials Management Plans and Hazardous Materials Inventory Statement Programs (California HSC 6 Section 25404 and CCR Sections 15100, 15160, and 15330), which are overseen by the CUPA.

7

1

2

3

#### 8 Hazardous Materials Release Response Plans and Inventory Act of 1985

9 The Hazardous Materials Release Response Plans and Inventory Act, also known as the Business Plan

10 Act, requires businesses using hazardous materials to prepare a plan that describes their facilities,

inventories, emergency response plans, and training programs. Hazardous materials are defined under the 11

12 Business Plan Act as raw or unused materials that are part of a process or manufacturing step. Health

13 concerns pertaining to the release of hazardous materials are similar to those relating to hazardous waste.

- 14
- 15 California HSC Section 25503.5 requires a business plan for emergency response for facilities that store
- 16 hazardous materials in excess of 55 gallons (liquid), 500 pounds (solid), or 200 cubic feet (gas). Facilities 17
- that handle more than these indicated quantities of hazardous materials must submit a Hazardous
- 18 Materials Business Plan (HMBP) to the CUPA, prior to project construction. The existing Talega
- 19 Substation and the proposed San Juan Capistrano Substation would store 85,200 and 65,400 gallons of 20 transformer oil, respectively, would be required to implement anupdate the facilities' existing HMBPs for
- 21 construction and operations. In California, all used oil is managed as hazardous waste until tests have
- 22 shown it is not hazardous (HSC Section 25250.4). The applicant would be required to submit an updated
- 23 HMBPs to the CUPA for project <del>construction and</del> operation. In general, HMBPs describe and identify
- 24 storage areas for hazardous materials and waste; describe appropriate handling, storage, and disposal
- 25 techniques; and include measures for avoiding and addressing spills pursuant to California HSC Section
- 26 25504.

27

34

#### 28 **Hazardous Waste Control Act**

- 29 The Hazardous Waste Control Act established the state hazardous waste management program, which is
- 30 similar to, but more stringent than, RCRA program requirements. CCR Title 26 describes the
- 31 requirements for the proper management of hazardous waste under the Hazardous Waste Control Act, 32 including the following:
- 33
  - Identification and classification;
- 35 Generation and transportation; •
- 36 Design and permitting of recycling, treatment, storage and disposal facilities; •
- 37 Treatment standards; •
- 38 Operation of facilities and staff training; and •
- 39 Closure of facilities and liability requirements. •
- 40
- 41 These regulations list more than 800 materials that may be hazardous and establish criteria for the
- 42 identification, packaging, and disposal of such waste. Under the Hazardous Waste Control Act, and Title
- 43 26, the generator of hazardous waste must document waste from generation to transporter to disposal.
- 44 Copies of this documentation must be filed with the California DTSC.

The California DTSC operates programs to protect California from exposure to hazardous wastes through
 the following practices and procedures:

- Handling of the aftermath of improper hazardous waste management by overseeing site clean-up;
- Prevention of the release of hazardous waste by ensuring that those who generate, handle, transport, store, and dispose of wastes do so properly;
- Enforcement against those who fail to appropriately management hazardous wastes;
- 8 Exploration and promotion of measure to prevent pollution and encourage reuse and recycling;
- Evaluation of site-specific soil, water, and air samples and development of new analytical methods;
- Practice in other environmental sciences, including toxicology, risk assessment, and technology development; and
  - Involvement of the public in the California DTSC's decision-making.

#### 13 14

17

4

5

6

Hazardous wastes that may be encountered or generated during the construction and operation of the proposed project would be subject to the requirements of the Hazardous Waste Control Act.

#### 18 Emergency Services Act

19 Under the Emergency Services Act, the State of California developed an emergency response plan to 20 coordinate emergency services provided by federal, state, and local agencies. Rapid response to incidents

- involving hazardous material or hazardous waste is an important segment of the plan administered by the
- 22 California Emergency Management Agency. The California Emergency Management Agency coordinates
- the response of agencies, including the California Environmental Protection Agency, California
- 24 Department of Transportation, California Highway Patrol, Regional Water Quality Control Boards, air
- 25 quality management districts, and county disaster response offices.
- 26

#### 27 Government Code Section 65962.5: Cortese List

28 The Cortese List includes all hazardous waste facilities subject to corrective action; land designated as

- 29 hazardous waste property or border zone property; information received from the California DTSC about
- 30 hazardous waste disposals on public land; sites listed pursuant to the California HSC Section 25356
- 31 (removal and remedial action sites); and sites included in the Abandoned Site Assessment Program.
- 32 Pursuant to Government Code Section 65962.5, the California DTSC compiles and updates the Cortese
- List as appropriate, but at least annually. Refer to Section 4.8.1.1 for a discussion of the Cortese List
- 34 database search results for the proposed project.
- 35

## 36 California Fire Code and Public Resources Code

37 The California Fire Code is Part 9 of CCR Title 24 (the California Building Standards Code). The

- 38 California Fire Code incorporates, by adoption, the International Code Council's International Fire Code
- 39 with amendments specific to California. All facilities constructed as part of the proposed project must
- 40 comply with the fire codes established by Title 24 and as amended by local jurisdictions. Title 24 is
- 41 further discussed in Section 4.13, "Public Services and Utilities."
- 42

#### 43 California Public Resources Code

- 44 The California Public Resources Code (PRC) includes fire safety regulations that restrict the use of
- 45 equipment that may produce a spark, flame, or fire; require the use of spark arrestors on construction
- 46 equipment that has an internal combustion engine; specify requirements for the safe use of gasoline-

- 1 powered tools in fire hazard areas; and specify fire suppression equipment that must be provided onsite
- 2 for various types of work in fire prone areas. The PRC requirements apply to construction activities in
- 3 areas designated by CAL FIRE as SRAs with substantial wildland fire risk (California PRC Section
- 4 4125). The proposed project would be located on land designated by CAL FIRE as a Very High Fire
- 5 Hazard Severity Zone (Figure 4.8-1).
- 6

7 California PRC Sections 4292 and 4293 address vegetation management in transmission (and

- 8 subtransmission) line corridors. Within mountainous land, forest-covered land, brush-covered land, or
- grass-covered land, owners and managers of electrical transmission lines are required to maintain a
   firebreak consisting of a clearing of not less than 10 feet in each horizontal direction from the outer
- 10 Infedreak consisting of a clearing of not less than 10 feet in each norizontal direction from the outer 11 circumference of structures that support electrical infrastructure that could be a source of ignitions and
- therefore present a fire risk, including switches, fuses, transformers, and lightning arresters. California
- 13 PRC Section 4293 requires the felling, cutting, or trimming of dead, rotten, decayed, diseased, or
- 14 otherwise weakened trees that may affect or fall on an electric line. Sections 4291 through 4299 also
- 15 specify requirements for maintaining clearance around other types of structures and buildings to reduce fire risk that are applicable to the proposed project.
- 16 fire risk that are applicable to the proposed project.17
- 18 California Occupational Health and Safety Administration

19 The California Occupational Health and Safety Administration (CalOSHA) is responsible for the 20 development and enforcement of workplace safety standards and ensuring worker safety in the handling

- and use of hazardous materials. CalOSHA requires businesses to prepare Injury and Illness Prevention
- 22 Plans and Chemical Hygiene Plans. Its Hazards Communication Standard requires that workers be
- 23 informed of the hazards associated with the materials they handle. Manufacturers are required to label
- 24 containers, provide material safety data sheets in the workplace, and provide worker training.
- 25

The employer is required to monitor worker exposure to listed hazardous substances and notify workers of exposure (8 CCR Sections 337-340). The regulations specify requirements for employee training,

- availability of safety equipment, accident-prevention programs, and hazardous substance exposure
- warnings. Similar to the federal OSHA, CalOSHA contains requirements to prevent worker exposure to

30 certain types of hazardous substances in the work place, such as asbestos and lead. Specifically, exposure

of construction workers to lead is controlled by the Lead Standard and the exposure of workers to

- 32 asbestos containing materials is controlled by the asbestos Construction Standard.
- 33

#### 34 Division of Oil, Gas, and Geothermal Resources

- 35 The responsibilities mandated to the Division of Oil, Gas, and Geothermal Resources (DOGGR) are
- detailed in Section 3000 et seq. of the PRC and Title 14, Chapter 4 of the CCR. DOGGR supervises the
- drilling, operation, maintenance, and plugging and abandonment of onshore and offshore oil, gas, and
- 38 geothermal wells, preventing damage to: (1) life, health, property, and natural resources; (2) underground
- 39 and surface waters suitable for irrigation or domestic use; and (3) oil, gas, and geothermal reservoirs.
- 40 Division requirements encourage wise development of California's oil, gas, and geothermal resources
- 41 while protecting the environment. California PRC Section 3208.1 authorizes DOGGR to order the
- 42 reabandonment of any previously plugged and abandoned wells when construction of any structure over
- 43 in the proximity of the well could result in a hazard. Oil, gas, and geothermal wells in the vicinity of the
- 44 proposed project area are identified in Table 4.8-5.
- 45

#### 46 Underground Service Alert (DigAlert)

- 47 California Government Code 4216 et seq. defines mandatory notification procedures for subsurface
- 48 excavations and installations. Pursuant to Section 4216 et seq., the applicant must contact the
- 49 Underground Service Alert of Southern California, also known as DigAlert, at least two working days but

1 no more than 14 days prior to conducting excavation activities for each component of the proposed

2 project (DigAlert 2014).

# 3 4 CPUC General Order 95: Rules for Overhead Electric Line Construction

- 5 GO 95 regulates the design, construction, operation, and maintenance of overhead electric lines in
- 6 California. This order includes safety standards for overhead electric lines, including minimum conductor
- 7 ground clearance, electric line inspection requirements, and vegetation clearance requirements. Rule 35
- 8 (Tree Trimming) defines minimum vegetation clearances around power lines and requires 10 feet of
- 9 radial clearances for any conductor of a line operating at more than 110,000 volts and fewer than 300,000
- 10 volts. This rule also requires that utility providers remove dead, rotten, and diseased trees that overhang or
- 11 lean toward a span of an electric line. Rule 31.2 (Inspection of Lines) requires that lines be inspected
- 12 frequently to ensure that they are in good condition and that lines temporarily out of service be inspected
- 13 and maintained to prevent a hazard. This order applies to the proposed 230-kV transmission line. 14

# CPUC General Order 128: Rules for Construction of Underground Electric Supply and Communication Systems

- 17 GO 128 establishes requirements for the construction, operation, and maintenance of all underground
- electric supply and communications systems under CPUC jurisdiction. Requirements are established to
- ensure safe design and operation of underground electrical facilities, including design and inspection
- criteria, to reduce the risk of fire. GO 128 is applicable to the proposed underground 115-kV and fiber
- 21 optic components.

# CPUC General Order 165: Inspection Requirements for Electric Distribution and Transmission Facilities

- 25 GO 165 establishes requirements for electric distribution and transmission facilities (excluding facilities
- 26 contained in a substation) regarding inspections to ensure safe and high-quality electrical service. This
- order establishes a minimum period between inspections and record-keeping requirements. GO 165
- applies to the proposed 230-kV transmission line.
- 29

22

# 30 CPUC General Order 166: Standards for Operation, Reliability, and Safety during 31 Emergencies and Disasters

- GO 166 applies to all electric utilities subject to the jurisdiction of the CPUC, and addresses electric service reliability and safety. The purpose of the order is to ensure that jurisdictional electric utilities are prepared for emergencies and disasters in order to minimize damage and inconvenience to the public that may occur as a result of electric system failures, major outages, or hazards posed by damage to electric
- 55 may occur as a result of electric system failures, major outages, or hazards posed by damage to electric distribution facilities. Investigations as required by this order are desired failure as a second state of f
- 36 distribution facilities. Investigations as required by this order are conducted following every major
- outage, pursuant to and consistent with Public Utilities Code Section 364(c) and Commission policy. This
   order applies to the proposed 230-kV transmission line.
- 39
- 40 GO 166 was revised to require investor-owned electric utilities in Southern California, such as SDG&E,
- 41 to prepare and submit plans to prevent power-line fires during extreme weather events. SDG&E
- 42 submitted a Fire Management Plan within an Advice Letter to the CPUC that is applicable to operation,
- 43 design, construction, inspection, and maintenance of the applicant's overhead lines and structures
- 44 (SDG&E 2012). The CPUC is anticipated to issue a Phase 3 decision for the Electric Safety Order
- 45 Instituting Rulemaking that will reflect input from CAL FIRE. The third phase of the CPUC proceeding
- 46 will address the establishment of:
- 47
- 48 Standards for wood structures and materials that will allow utilities to reliably obtain prescribed safety factors enforceable by the CPUC;

- Modern materials and practices, with the goal of improving fire safety; and
  - Fire safety standards for the design and construction of electrical infrastructure in areas of high fire threat.

In addition, the Phase 3 decision will address whether and how proposed fire safety standards should
 apply to existing facilities in high fire threat districts, as well as the development of a plan for reporting to
 the CPUC's Consumer Safety and Protection Division.

#### 9 4.8.2.3 Regional and Local

#### 10

1

2

3

4

#### 11 Regional Water Quality Control Board and Stormwater Pollution Prevention Plans

12 Under the National Pollutant Discharge Elimination System (NPDES), California's Regional Water

13 Quality Control Boards requires a Construction Activities Storm Water General Permit (Order 2009-

14 0009-DWQ) for storm water discharges associated with any construction activity including clearing,

15 grading, excavation reconstruction, and dredge and fill activities that results in the disturbance of at least

16 one acre of total land area. Since the proposed project would disturb more than 1 acre, this permit would

be required, along with a Stormwater Pollution Prevention Plan (SWPPP). SWPPPs require the use of

18 site-specific best management practices during construction to reduce the potential for erosion and

19 sedimentation and for vehicle and equipment fueling and maintenance, material storage, spill prevention,

20 and waste management. In Orange County, permits are administered by the San Diego Regional Water

21 Quality Control Board. The NPDES, federal Clean Water Act, and California Water Quality Act are

further described in Section 4.9, "Hydrology and Water Quality."

#### 24 Orange County General Plan

The Safety Element of the Orange County General Plan identifies goals and objectives to address public safety issues, including hazardous materials, aircraft environment, and fire. The following objectives and policies are applicable to the proposed project:

28 29

30

44

• **Public Safety Component Objective 1.1:** To identify public safety hazards and determine the relative threat to people and property in Orange County.

- Public Safety Component Objective 2.2: To encourage the development and utilization of technologies that minimize the effects of public safety hazards.
- Public Safety Component Objective 3.1: To provide information, training, and assistance to reduce loss of life and injury and to protect private and public property from public safety dangers.
- Fire Component Policy 9: To encourage improvement of fire defense systems in hazardous areas.
- Hazardous Materials Component Policy 5: To encourage improvement of fire defense systems in hazardous areas.
- Natural Hazards Component Policy 1.1: To identify natural hazards and determine the relative
   threat to people and property in Orange County.
- *Natural Hazards Component Policy 2.2:* To support the development and utilization of technologies which minimize the effects of natural hazards. (Orange County 2011)

#### 1 County of Orange and Orange County Fire Authority Hazard Mitigation Plan

2 The Hazard Mitigation Plan provides information to assist Orange County residents, public and private

3 sector organizations, and others interested in participating in planning for natural hazards. The plan

4 includes a risk assessment, which identifies hazards and areas vulnerable to hazards (Orange County n.d.).

5 This plan does not have jurisdiction over the proposed project; however, the proposed project could

6 impact the implementation of this plan, as further discussed in Section 4.8.3.3.7

#### 8 City of San Juan Capistrano General Plan

9 The City of San Juan Capistrano is subject to several types of public safety hazards. The Safety Element 10 of the City of San Juan Capistrano General Plan was prepared to protect existing and planned land uses 11 from public safety hazards. The following policies are applicable to the proposed project:

12 13

14

22

- **Policy 1.3:** Reduce the risk of wildfire hazards by requiring fire retardant landscaping and project design for development located in areas of high wildfire risk.
- Policy 1.4: Reduce the risk of fire to the community by coordinating with the Orange County Fire
   Authority.
- Policy 2.1: Work with responsible federal, state, and county agencies to decrease air pollution
   emissions occurring within the air basin to reduce the risk posed by air pollution
- Policy 2.3: Cooperate with responsible federal, state, and county agencies to minimize the risk to
   the community from the use and transportation of hazardous materials through the City. (City of
   San Juan Capistrano 1999)

#### 23 City of San Juan Capistrano Emergency Operation Plan

The City of San Juan Capistrano's planned response to emergencies associated with natural disasters and technological incidents is addressed in its Emergency Operation Plan (2007). This plan describes operational concepts, lists components of the City's emergency management organization within the Standardized Emergency Management System (SEMS), and outlines the overall responsibilities of the federal, state and county entities. This plan does not have jurisdiction over the proposed project; however, the proposed project could impact the implementation of the City's designated evacuation routes, which are located at northbound Interstate 5 (I-5), westbound State Route 74 and Camino Capistrano (City of

31 San Juan Capistrano 2007), as further discussed in Section 4.8.3.3.

32

#### 33 City of San Clemente General Plan

San Clemente is susceptible to a variety of natural and human-made safety hazards, including contaminated soil hazards and wildfires. The City's General Plan seeks to mitigate these potential threats to life, property, environmental quality, and economic vitality through preventative measures and through careful emergency planning. The following policies from the Safety Element of the City's General Plan are applicable to the proposed project:

- 39
- S-3.01. Fire and Building Codes. We coordinate with Orange County Fire Authority to
   proactively mitigate or minimize the adverse effects of structural fires, wildfires and related
   hazards like erosion, hazardous materials release and structural collapse by implementing
   appropriate fire and building codes.
- *S-6.01. Public Maps.* We publicize areas of known hazardous materials contamination to reduce risk to public health, safety, and welfare.

• S-7.04. Interdepartmental and Interagency Collaboration. We collaborate among City departments and with organizations outside of the City for a comprehensive approach to emergency services and disaster preparedness, response and recovery, including continuity of operations (e.g. information technology and financial services. (City of San Clemente 2014)

#### 6 City San Clemente San Clemente Multi-Hazard Emergency Plan

7 The City of San Clemente Multi-Hazard Emergency Plan provides the framework for responding to major 8 emergencies or disasters. This plan outlines a strategy to prepare for, respond to, and recover from an 9 emergency or disaster that affects the city. This plan does not have jurisdiction over the proposed project; 10 however, the proposed project could impact the implementation of the City's designated evacuation 11 routes, which are located along northbound I-5, Avenida Pico, and Avenue Vista Hermosa (City of San 12 Clemente 2003) as further discussed in Section 4.8.3.3.

#### 14 **4.8.3 Impact Analysis**

#### 15 16

17

25

31

32

1

2

3

4

5

#### 4.8.3.1 Methodology and Significance Criteria

The evaluation of impacts from hazards and hazardous materials during construction and operation of the proposed project was based on the review of relevant federal, state, county, and local laws; regulations; plans (e.g., emergency response and hazard mitigation plans); policy documents and standards; and hazards and hazardous materials that would be associated with construction, operation, and maintenance of the proposed project as described in Chapter 2, "Project Description." State, county, and local maps were reviewed to determine the location of schools, known hazardous materials sites, airports, and fire severity zones as classified by CAL FIRE in proximity to the proposed project area.

Potential impacts from hazards and hazardous materials were evaluated in accordance to the following significance criteria. The criteria were defined based on the checklist items presented in Appendix G of the CEQA Guidelines. The proposed project would cause a significant impact related to hazards and hazardous materials if it would:

- a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials;
- b) Create a significant hazard to the public or the environment through reasonably foreseeable upset
   and accident conditions involving the release of hazardous materials into the environment;
- c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or
   waste within 0.25 miles of an existing or proposed school;
- d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to
   Government Code Section 65962.5 and, as a result, would it create a significant hazard to the
   public or the environment;
- 40 e) Impair implementation of or physically interfere with an adopted emergency response plan or
   41 emergency evacuation plan; or
- f) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires,
   including where wildlands are adjacent to urbanized areas or where residences are intermixed
   with wildlands.

Appendix G of the CEQA Guidelines also includes the following significance criteria under Hazards and
 Hazardous Materials:
 3

- For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
  - For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?
- 8 9

13

19

4

5

6

7

The proposed project would not be located within an airport land use plan area or 2 miles from a public airport or private airstrip. Therefore, the proposed project would have no impact under these criteria, and they are not further addressed in this section.

14 **4.8.3.2** Applicant Proposed Measures

The applicant has committed to the following as part of the design of the proposed project. See Section
2.6, "Applicant Procedures, Plans, Standards, and Proposed Measures," for a complete description of each
Applicant Proposed Measure (APM).

- APM HAZ-1: Conduct Environmental Site Assessment. Prior to the start of earth disturbance
   activities at the upper yard portion of the existing Capistrano Substation site, a Phase II
   Environmental Site Assessment (soil sampling) would be performed and, if any contaminated soil is
   found to be present, contaminated soils would be managed, removed, transported, and disposed of in
   accordance with all applicable laws, ordinances and safety standards. The Environmental Site
   Assessment would be completed pursuant to American Society for Testing and Materials
   International standard requirements.
- 27 **APM HAZ-2: Hazardous Materials and Waste Management Plan.** The applicant would prepare a 28 project-specific Hazardous Materials and Waste Management Plan (HMWMP) following final CPUC 29 project approval and be submitted to the CPUC prior to issuance of any applicable Notice to Proceed 30 for the project. Handling, recycling, and waste transportation, and temporary waste storage procedures would be outlined within the HMWMP. The project-specific HMWMP would include 31 32 site-specific procedures and would be developed based on SDG&E standards and applicable 33 hazardous materials laws, standards, and regulations. Sampling and cleanup levels would be established in the HMWMP as follows: 34
- Confirmation samples would be taken to ensure that site conditions are consistent with current and proposed land uses (i.e., electric substation);
- Confirmation samples would be taken, utilizing industry standard testing methods (e.g. EPA Methods), for appropriate site specific contaminants of concern;
- Final sampling procedures would be included within the project-specific HMWMP; and
- Final cleanup levels would be identified in the HMWMP and be consistent with acceptable levels
   for Commercial Industrial land uses.
- Plans for the unanticipated discovery of contaminated soil and/or groundwater during
   construction would be included in the HMWMP, including:
- 44 Procedures in response to the discovery of contaminated soil or groundwater, including those
   45 for stopping work, securing the contaminated area, preventing the spread of contamination,
   46 and appropriate waste management (testing, profiling, shipping disposal);

- 1 Training requirements for construction workers performing excavation activities: -2 Dewatering procedures; and \_ 3 Procedures for notifying SDG&E and agency personnel in the event of the discovery of \_ 4 contaminated soil and/or groundwater. 5 The applicant's outline of environmental procedures for management of the following would be 6 addressed in the HMWMP: 7 Asbestos Management; 8 Hazardous Materials Transportation Security Plans; \_ 9 Hazardous Materials and Waste Management: \_ 10 Hazardous Material and Waste Shipping; \_ 11 \_ Hazardous Waste Minimization Plans; and 12 Field Guidelines for Emergency Incidents. \_ 13 14 Soil sampling and building materials sampling results from applicable Environmental Site 15 Assessments would be applied to development of the HMWMP. 16 17 **APM HAZ-3: Personal Protection Equipment.** Specialized crews would be utilized to conduct any 18 remediation (safe removal of contaminants) at the Capistrano Substation site prior to actual 19 construction of the proposed project commencing. Proper personal protection equipment would be 20 utilized by all remediation workers that may come into contact with known contaminated soil or hazardous building materials. Personal protection equipment would be determined based upon the 21 22 nature of the contamination present at any given portion of the substation site and would comply with 23 all applicable CalOSHA standards. 24 APM HAZ-4: Dewatering, Discharge, and Contaminated Water. Pumped water that is not 25 potentially contaminated with sediments or other materials would be discharged in accordance with 26 requirements of the Construction General Permit. The water would be discharged near the extraction 27 location and thereby returned to the local groundwater. Potentially contaminated water would be 28 handled and disposed of offsite in accordance with applicable federal and state laws. 29 **APM HAZ-5: Recycling and Reuse.** It is SDG&E's practice to reuse or recycle all old structures/ 30 poles, materials, and components following the retirement of substations, transmission lines, and 31 structures/poles. Whatever cannot be reused or recycled is disposed of at an appropriate facility pursuant to all applicable laws. 32 33 APM-HAZ-6: Fire Control. No work Construction restrictions would occur during times of high fire threat, such as Red Flag Warnings issued by the National Weather Service or other severe fire 34 35 weather conditions as identified by SDG&E. 36 Consistent with SDG&E's Electric Standard Practice 113.1 and the project-specific fire plan, prior to 37 starting construction activities, SDG&E would clear dead and decaying vegetation from proposed 38 project work areas where personnel are active or where equipment is in use or being stored within 39 rights-of-way, staging areas, stringing sites, and access roads. Cleared dead and decaying vegetation 40 would be either removed or chipped and spread on site. 41 The project-specific fire plan would include requirements for equipping diesel and gasoline operated 42 engines with spark arrestors, carrying emergency fire suppression equipment, furnishing a water truck
- 43 on or immediately adjacent to the proposed project work area, restricting smoking and vehicle idling,

construction restrictions during Red Flag Warning periods (as applicable), and conducting preactivity tailgate meetings that include fire safety discussions.

#### 4.8.3.3 **Environmental Impacts**

#### Impact HZ-1: Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials. LESS THAN SIGNIFICANT WITH MITIGATION

10 Vehicles and equipment used during construction could contain or require the temporary, short-term use 11 of potentially hazardous substances, such as fuels, lubricating oils, hydraulic fluid, paints, solvents, 12 adhesives, and cleaning chemicals. Construction vehicles and large equipment would be fueled at existing 13 offsite fuel supply facilities. However, helicopters would be fueled at designated laydown areas (fly 14 yards), and small quantities of fuel (10 to 40 gallons) would be stored onsite for gasoline powered hand tools. The routine use of hazardous materials could result in an accidental spill during construction and 15 16 refueling activities. The proposed project also would generate hazardous wastes during construction, 17 including used motor oils, used hydraulic fluids, discarded batteries, waste solvents and adhesives, and 18 old conductor wire.

19

1

2

3 4

5 6

7

8

9

20 All hazardous materials and wastes would have to be stored, transported, and disposed of in accordance 21 with applicable laws and regulations. The release of hazardous materials or wastes has the potential to 22 significantly impact the public and the environment if they are not properly contained and removed. 23 Implementation of the required Hazardous Material Business Plan (California HSC Section 25503.5 24 through 25504) and SWPPP (required under NPDES) would reduce potential impacts from the routine 25 use of hazardous materials. In addition, the Applicant would implement APM HAZ-2, which would 26 provide hazardous materials transportation security plans, hazardous materials and waste management 27 procedures, hazardous materials and waste shipping procedures, hazardous waste minimization plans, and 28 a field guide for emergency incidents. In this plan, the applicant would also detail the site-specific 29 hazardous waste handling, recycling, transportation, and storage procedures. Implementation of these 30 procedures should prevent significant hazardous from occurring during routine construction and 31 operations; however, the exact contents of these plans are not available at this time and therefore, their 32 comprehensiveness cannot be assessed and impacts could remain significant. Mitigation Measure (MM) 33 HAZ-1, described in Section 4.8.4, is designed to add specificity to APM HAZ-2 or supplement it to 34 ensure that specific measures and procedures are established. The applicant would be required to develop 35 a Hazardous Material Substances Contamination Prevention Plan or would have to supplement its 36 proposed plans with the elements of MM HAZ-1. Through compliance with the regulatory requirements 37 and implementation of APM HAZ-2 and MM HAZ-1, potential impacts associated with hazardous waste 38 management would be less than significant.

39

40 The proposed project would remove 208 wood poles from the project area, which are considered treated

41 wood waste as defined by Section 25150.7 of the California HSC. As detailed in APM HAZ-5, the

42 applicant would reuse or recycle all old wood poles and components to the greatest extent possible. Any

43 remaining treated wood waste would be disposed of at a Class I hazardous landfill or in a composite-lined

44 portion of a solid waste landfill unit. As a result, impacts from the disposal of treated wood waste would 45 be less than significant.

46

47 As identified from past asbestos and lead-based paint surveys (see Tables 4.8-1 and 4.8-2), construction

48 of the proposed San Juan Capistrano Substation would require removal abatement or stabilization of

- 49 contaminated materials and site remediation prior to demolition. As detailed in APM HAZ-3, the
- 50 applicant would use specialized crews to conduct removal and remediationstabilization activities. The
- 51 specialized crews would be qualified to handle asbestos, lead-based paint, and other hazardous

- materials/wastes in accordance with OSHA and CalOSHA standards. As a result, impacts from the
   disposal of hazardous waste during construction would be less than significant.
- 3 4

A scoping comment received from MCB Camp Pendleton noted that the soil, wood, metal, or other

- 5 construction debris removed from the project area within the MCB Camp Pendleton property may be
- 6 contaminated from the activities and materials associated with the Marine base, such as lead
- 7 contamination from discharged bullets. Improper disposal of this debris could result in a significant
- 8 impact. MM HAZ-2 would require the applicant to test any materials that would be removed from within
- 9 MCB Camp Pendleton boundaries in accordance with EPA Best Management Practices for Outdoor
- 10 Shooting Ranges (EPA-902-B-01-001). Additionally, the mitigation would also require any solid lead or
- 11 copper removed from the base to be recycled in accordance with the base Qualified Recycling Program
- 12 regulations. Implementation of MM HAZ-1 and MM HAZ-2 would reduce the risk of improperly
- 13 disposing of materials and contaminated soils from MCB Camp Pendleton to a less than significant level.
- 14
- 15 Removal of the existing transformers at the substation would result in the transportation of approximately
- 16 40,800 gallons of mineral oil from the project site to an appropriate recycling facility. New transformer
- 17 equipment would require approximately 55,800 gallons of mineral oil to be transported to the project site
- 18 for use at the substations. Federal and state laws regulate transport vehicle specifications, driver
- 19 qualifications, and load container specifications for the transportation of the proposed volume of mineral
- 20 oil. Compliance with applicable laws and implementation of APM HAZ-2, which requires the
- 21 development of plans associated with transportation of hazardous materials and waste, would reduce
- 22 potential impacts associated with the routine transportation of new and waste mineral oil to less than 23 significant.
- 23 24

25 Similar to the existing operations, mineral oil would be present in sealed electrical equipment (such as 26 transformers) at both substations during operation. The amount of mineral oil at the proposed San Juan 27 Capistrano Substation would be substantially more than is present at the existing Capistrano Substation. 28 The mineral oil would continue to be contained in equipment with secondary containment and secured 29 from public access. The applicant would prepare new SPCC plans for both substations to address the 30 increased amount of mineral oil stored onsite. Therefore, although there is an increase volume of mineral 31 oil at the substations during operation, the increased mineral oil would not cause any substantial change 32 as compared to current conditions. Operation and maintenance activities would be similar to those 33 associated with the existing facilities and, therefore, would have a less than significant impact on the 34 public or the environment through the routine transport, use, or disposal of hazardous materials. 35

# Impact HZ-2: Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment. *LESS THAN SIGNIFICANT WITH MITIGATION*

40

41 As described under Impact HZ-1, the applicant would transport, use, or dispose of hazardous materials

42 and petroleum products in accordance with all applicable federal, state, and local regulations. However,

43 accidental releases or spills could still occur, representing a potential hazard to the public and

- 44 environment during construction and operations. Compliance with applicable regulations and
- 45 implementation of a SWPPP, HMBP, SPCC plan, APM HAZ-2, and APM HAZ-5 would reduce this risk
- 46 but not prevent significant impacts that may still occur from upset and accident conditions involving the
- 47 release of hazardous materials and wastes. MM HAZ-1 would require the implementation of a Hazardous
- 48 <u>Materials and Waste Management Plan and Substances</u> Contamination Prevention Plan, and MM HAZ-2
- 49 would require the applicant to test any materials within MCB Camp Pendleton boundaries in accordance
- 50 with EPA Best Management Practices for Outdoor Shooting Ranges (EPA-902-B-01-001).
- 51 Implementation of MM HAZ-1 and MM HAZ-2 would further reduce impacts from reasonably

1 foreseeable accidental conditions from the transport, use, or dispose of hazardous materials to a less than 2 significant level.

3

4 Damage to an inadequately plugged and abandoned well could create a significant hazard to public health,

5 underground and surface waters, or oil or gas reservoirs. Table 4.8-5 identifies the oil, gas, and

6 geothermal wells within 1,000 feet of the proposed project. Based on the dates of the final abandonment

7 letters filed with DOGGR (1978 and 1983), the wells listed in Table 4.8-5 were capped to relatively

8 recent standards. DOGGR considers the potential risk to damage of the wells listed in Table 4.8-5 to be

9 low based on their capping history and distance from the proposed project (Andrews pers. comm. 2014).

10 In the event that an unanticipated well is discovered during construction, damage to the well could result

11 in significant impact to life, health, and property. Implementation of MM HAZ-5 would reduce potential

- 12 impacts to less than significant by requiring construction workers to cease work within 50 feet of an
- 13 unanticipated well until approval to resume work is provided by DOGGR; therefore, the potential for the
- 14 proposed project to damage a well is less than significant.
- 15

16 As further discussed in Section 4.10, "Land Use and Planning," Talega Substation is located on land

17 owned by the United States Marine Corps within its Camp Pendleton base, which is an active military

18 base. Military training activities with live ammunition occurs regularly at MCB Camp Pendleton.

19 Therefore, the potential for construction or operations workers at Talega Substation to come into contact

20 with live ammunition exists, although the potential would be low because the construction would occur

21 within the same footprint as the existing substation. Implementation of MM HAZ-3 would require worker

training for all construction and operation workers prior to the start of work at Talega Substation to

23 inform the workers of the potential hazards associated with working within MCB Camp Pendleton and to

train workers how to identify an unexploded ordinance and what to do if a potential unexploded ordinance

is discovered. Significant impacts from worker exposure to unexploded ordinance would be reduced to

26 less than significant with the implementation of MM HZ-3.

27

Accidental contact with existing underground utility lines or private utilities line such as leach lines associated with a septic system could result in a release of waste materials or could pose a safety risk for the public and workers. Compliance with California Government Code 4216.1 (DigAlert) would reduce

31 potential impacts to public utility lines because underground utilities would be identified and marked

32 prior to construction so that they could be avoided. The potential for the proposed project to damage

33 existing underground infrastructure is less than significant.

34

35 Similar to the existing operations, mineral oil would be present in sealed electrical equipment (such as

transformers) at both substations during operation. The amount of mineral oil at San Juan Capistrano

- 37 Substation would be substantially more than is present at the existing Capistrano Substation. The
- 38 applicant would prepare new SPCC plans for both substations to address the increased amount of mineral

39 oil stored onsite. The implementation of the SPCC plan would ensure that the substation is designed with

40 sufficient containment around the stored mineral oil to capture all of the stored oil. Operation and

41 maintenance activities would be similar to those associated with the existing facilities and, therefore,

42 would have a less than significant impact on the public or the environment through the reasonably

43 foreseeable upset and accident conditions involving the release of hazardous materials into the

- 44 environment.
- 45

# 1Impact HZ-3:Emit hazardous emissions or handle hazardous or acutely hazardous2materials, substances, or waste within 0.25 miles of an existing or proposed3school.4LESS THAN SIGNIFICANT WITH MITIGATION

5

6 Under CEOA, emission of toxic air contaminants (TACs) needs to be considered with respect to schools. 7 As discussed in Section 4.3, "Air Quality," TACs are air pollutants suspected or known to cause cancer, 8 birth defects, neurological damage, or death. With the exception of lead, no ambient air quality standards 9 have been established for TACs. Instead, the compounds are managed on a case-by-case basis, depending 10 on the quantity and type of emissions and proximity of potential receptors. Statewide and local programs 11 identify industrial and commercial emitters of TACs and require reductions of these emissions. Federal 12 programs also require control of certain categories of TACs. CARB also recently identified diesel particulate matter (PM) as a TAC. Diesel engines emit a complex mix of pollutants, the most visible of 13 14 which are very small carbon particles or "soot," known as diesel PM.

15

16 Seven schools are located within 0.25 miles of the proposed project: (Harold Ambuehl Elementary

17 School, St. Margaret's Episcopal School, San Juan Hills High School, Vista Del Mar <u>Elementary and</u>

18 Middle School<u>s</u>, Jserra Catholic High School, Saddleback Valley Christian, and Junipero Serra High

19 School) (Table 4.8-4). Because of their proximity, these schools could be exposed to emissions of TACs

20 during construction. The main TAC emission during construction would be diesel PM from construction

equipment and heavy-duty vehicles traveling to construction areas. As further discussed in Section 4.3,

"Air Quality," other TAC emissions from such sources as gasoline-powered worker vehicles andconstruction equipment would be negligible.

23 24

4 5 As forther discussed in Section 4.2 "Air Orality" the CADD

As further discussed in Section 4.3, "Air Quality," the CARB and Office of Environmental Health Hazard
 Assessment have identified diesel PM as a carcinogenic. According to the Office of Environmental

Health Hazard Assessment, human exposures greater than eight years are considered chronic exposures.

Given that the construction of the proposed project would be short term, impacts on students and staff at

nearby schools would not result in substantial exposure to TACs. Impacts from hazardous emissions

- 30 would be less than significant.
- 31

Construction and operation could include the handling of acutely hazardous materials, substances, or waste within 0.25 miles of the seven schools noted above and in Table 4.8-4. As discussed under Impact HZ-1 and Impact HZ-2, compliance with applicable regulations and implementation of a SWPPP, SPCC plan, HMBP, APM HAZ-1, APM HAZ-2, and APM HAZ-5 would reduce the risk of releases but not prevent significant impacts that may still occur from upset and accident conditions involving the release of hazardous materials. Implementation of MM HAZ-1 would further prevent the potential to release

38 hazardous materials and would reduce impacts from the handling of hazardous materials to less than

39 significant levels.

### 40

# 41Impact HZ-4:Be located on a site which is included on a list of hazardous materials sites42compiled pursuant to Government Code Section 65962.5 and, as a result,43would it create a significant hazard to the public or the environment.44LESS THAN SIGNIFICANT

44 45

46 The proposed project would not be located within 1,000 feet of an open Cortese List site. Therefore,

47 construction and operation of the proposed project would not result in any significant hazard to the public

48 or environment due to affecting operations at Cortese List sites. However, MCB Camp Pendleton's IR

49 Program currently has 16 active IR sites that are in different phases of cleanup (USMC 2014b). The two

- 50 closest IR sites to the proposed project are over 3 miles from Talega Substation (USMC 2014b).
- 51 Therefore, construction and operation of the proposed project would not unearth contamination or

adversely affect activities at these sites, and, as a result, there would be no significant hazard to the public
 or environment relating to IR sites.

3

4 Construction of the proposed San Juan Capistrano Substation would require significant soil disturbance 5 throughout the existing Capistrano Substation. As discussed in Section 4.8.1.1, soil sampling in 2009 and 6 building surveys found lead, asbestos, and contaminated soil at the lower yard and around the perimeter 7 of the upper yard. The complete extent of contaminated soils in the upper yard of the Capistrano 8 Substation is unknown because the entire upper yard of the existing substation was not sampled. With the 9 implementation of APM HAZ-1, the applicant would conduct a Phase II Environmental Site Assessment 10 soil sampling within the upper yard of the existing Capistrano Substation prior to the start of earth 11 disturbance activities at the upper yard. APM HAZ-2 specifically addresses the unanticipated discovery of 12 contaminated soil or groundwater during construction with procedures, training, and notification 13 requirements. As detailed in APM HAZ-3, the applicant would use specialized crews to conduct removal 14 and remediation activities. The specialized crews would be qualified to handle asbestos, lead-based paint, 15 and other hazardous wastes in accordance with OSHA and CalOSHA standards. All hazardous wastes 16 would be handled and disposed of in accordance with federal, state, and local regulations. Through the 17 implementation of these measures, the impact from unearthing contaminated soils on the public and

18 environment would be less than significant.

#### 19 20

22

23

20 I 21

# Impact HZ-5:Impair implementation of or physically interfere with an adopted<br/>emergency response plan or emergency evacuation plan.<br/>LESS THAN SIGNIFICANT

Primary evacuation routes for the cities of San Juan Capistrano and San Clemente include northbound I-5,
westbound State Route 74, Camino Capistrano, Avenida Pico, and Avenue Vista Hermosa (City of San
Juan Capistrano 2007; City of San Clemente 2003). The Orange County Hazards Mitigation Plan does not
identify specific evacuations routes (Orange County n.d.).

28

29 Construction of the proposed project would require a partial closure of Camino Capistrano, and a full

30 roadway closure may be required for short-term periods during the installation of new underground 31 conduit. Additionally, traffic stops would be required along I-5 during conductor stringing. If an

emergency were to occur while Camino Capistrano or I-5 were closed, this would affect the

32 implementation of San Juan Capistrano and San Clemente's emergency evacuation plan, thus causing a

34 significant impact. With the implementation APM TT-3, "Emergency Access," and APM TT-7, "Traffic

35 Control Plans," the proposed project would minimize short-term construction-related impacts on local

36 traffic, including emergency access. The traffic control plans would detail how construction activities

37 would be coordinated with the affected local agencies in order to prevent closure of any emergency access

38 route. Flaggers may briefly hold traffic back while conductor is pulled across a roadway, but emergency

39 vehicles would be provided access even in the event of temporary road closures. Emergency access would

40 not be directly impacted by construction of the proposed project because all streets would remain open to

41 emergency vehicles at all times during construction activities.

42

43 Operation and maintenance activities would be similar to those associated with the existing facilities and, 44 therefore, would not impair an existing emergency response plan or emergency evacuation plan. Impacts

45 on traffic are further discussed in Section 4.15, "Traffic and Transportation."

#### 1 **Impact HZ-6:** 2 3 4

Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands. LESS THAN SIGNIFICANT WITH MITIGATION

6 Construction activities associated with the proposed project would increase fire risk during refueling, 7 vehicle and equipment use, welding, vegetation clearing, worker cigarette smoking, and other high heat 8 activities. The applicant would implement its existing Wildland Fire Prevention and Fire Safety (ESP No. 9 113.1), which includes requirements for carrying emergency fire suppression equipment, conducting 10 "tailgate meetings" that cover fire safety discussions, and restrictions on smoking and idling vehicles. 11 Consistent with ESP 113.1, the applicant would also implement a project-specific fire plan to assist in 12 safe practices to prevent fires. This plan would include equipping diesel and gasoline operated engines 13 with spark arrestors, carrying emergency fire suppression equipment, and furnishing a water truck on or 14 immediately adjacent to the proposed project area. The applicant would also implement APM HAZ-6, 15 which would require the applicant to issue a stop work order during times of high fire threat such as a Red 16 Flag Warning issued by the National Weather Service.

17

5

18 The applicant would construct and maintain vegetation clearance along the proposed double-circuit 230-

19 kV transmission line in accordance with California PRC Sections 4291 through 4299, which regulate

20 vegetation management and CPUC GO 95, GO 128, GO 165, and GO 166, which regulate overhead and

21 underground transmission line construction, inspection, and safety. Construction activities would

22 significantly increase fire risk regardless of vegetation clearing and compliance with applicable laws, 23

regulations, and standards. To ensure that the applicant's project-specific fire plan meets all of the 24 objectives and standards of the Orange County Fire Authority, the applicant would prepare the fire plan to

25 meet the requirements of MM HAZ-4. MM HAZ-4 requires the applicant to develop a Fire Control and

26 Emergency Response Plan in coordination with the Orange County Fire Authority (OCFA). The Fire

27 Control and Emergency Response Plan would identify fire prevention measures and response and

28 communication protocols in the event of a fire emergency. Implementation of MM HAZ-34 would reduce

29 the impacts associated with the increased fire risk to less than significant.

30

31 Operation and maintenance activities would be similar to those associated with the existing facilities and,

32 therefore, would not result in a new potential for wildfires. As part of the proposed project, the

33 replacement of wood poles with steel poles is often undertaken specifically to minimize the risk of 34 wildfires that exists when certain atmospheric conditions occur within fire threat areas. Additionally,

35

undergrounding the conductors reduces the fire risk. The new steel structures and underground segments

36 of the proposed double-circuit 230-kV transmission line and proposed 12-kV distribution line would 37 withstand more severe fire conditions and reduce overall fire risk from the existing conditions and

38 therefore would be a beneficial impact by reducing risk of loss, injury, or death from wildfires.

39

#### 40 4.8.4 **Mitigation Measures** 41

42 MM HAZ-1: Hazardous MaterialsSubstances Contamination Prevention Plan. Prior to construction, 43 the applicant shall prepare and implement a Hazardous Materials Substances Contamination Prevention 44 Plan supplementing the Hazardous Material Business Plan to prevent the release of hazardous materials 45 and hazardous waste. The plan will include the following requirements and procedures:

46 47

48

49

50

1. Training requirements for construction workers in appropriate work practices, including spill prevention and response measures. Additional training requirements for those performing excavation activities shall be required and shall include training on types of contamination (e.g., petroleum hydrocarbons, lead, asbestos, and hazardous materials (as defined by the California

| 1<br>2                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HSC) and identifying potentially hazardous contamination (e.g., stained or discolored soil and odor).                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3                                                                    | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contain all hazardous materials at work sites and properly dispose of all such materials.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 4<br>5                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a. Hazardous materials shall be stored on pallets within fenced and secured areas and protected from exposure to weather and further contamination.                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b. Fuels and lubricants shall be stored only at designated staging areas.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 7<br>8                                                               | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintain hazardous material spill kits for small spills at all active work sites and staging areas.<br>Thoroughly clean up all spills as soon as they occur.                                                                                                                                                                                                                                                                                                                                  |  |  |
| 9<br>10<br>11<br>12                                                  | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Store sorbent and barrier materials at all construction staging areas, including staging areas used during activities for decommissioning. Sorbent and barrier materials will be used to contain runoff from contaminated areas and from accidental releases of oil or other potentially hazardous materials to prevent the runoff from entering the storm drainage system.                                                                                                                   |  |  |
| 13<br>14                                                             | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perform all routine equipment maintenance at a shop or at the staging area and recover and dispose of wastes in an appropriate manner.                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 15<br>16                                                             | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitor and remove any vehicles with chronic or continuous leaks from use and complete repairs before returning them to operation.                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 17<br>18<br>19<br>20<br>21                                           | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Store shovels and drums at the staging areas. If small quantities of soil become contaminated, use shovels to collect the soil and store in drums before proper offsite disposal. Large quantities of contaminated soil may be collected using heavy equipment and stored in drums or other suitable containers prior to disposal. Should contamination occur adjacent to staging areas because of runoff, shovels and/or heavy equipment shall be used to collect the contaminated material. |  |  |
| 22                                                                   | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transporting, shipping, and disposal procedures for hazardous waste.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 23                                                                   | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Procedures for managing asbestos material.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 24<br>25<br>26<br>27                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Procedures for notifying applicant and agency personnel in the event of the discovery of contaminated soil and/or groundwater. Contact information for federal, regional, and local agencies, the applicant's environmental coordinator(s) responsible for the cleanup of contaminated soil or groundwater, and licensed disposal facilities and haulers.                                                                                                                                     |  |  |
| 28<br>29                                                             | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dewatering procedures including storage, testing, treatment, and disposal requirements and dewatering best management practices with reference to the applicant's SWPPP.                                                                                                                                                                                                                                                                                                                      |  |  |
| 30<br>31<br>32<br>33                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an will be submitted to the CPUC for review and approval 30 days prior to the start of construction of posed project.                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45 | <b>MM HAZ-2: Contaminated Materials from Camp Pendleton.</b> Excavation, grading, or removal of any materials within MCB Camp Pendleton boundaries shall be accomplished in accordance with EPA Best Management Practices for Outdoor Shooting Ranges (EPA-902-B-01-001), RCRA, the Clean Water Act, 40 CFR 260 (Federal Hazardous Waste Regulations), and California Title 22 (California Hazardous Waste Regulations). All work shall be accomplished with every effort to prevent the spread of any potential contamination or release of any potential existing contaminants to the environment in accordance with all federal, state and local laws, regulations and instructions. Prior to the removal of any soil or wood and construction debris that has been used in live fire training and received impact from rounds, the soil or debris shall be sampled for appropriate hazardous in accordance all federal, state and local laws, regulations and instruction debris that has been used in live fire training and construction debris that has been used of any wood and construction debris that has been used in accordance all federal, state and local laws, regulations in accordance all federal, state and local laws, regulations. Also, prior to the removal of any wood and construction debris that has been used in live fire training and received impact from rounds, the debris should be sampled for lead and other constituents. If the soil, wood, or debris is determined to be considered hazardous waste, it |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

1 will be handled and disposed of in accordance with applicable hazardous waste regulations. All hazardous

2 waste manifests shall be signed by the Hazardous Waste Branch, AC/S Environmental Security. Solid

lead or copper removed from the base shall be recycled in accordance with the base Qualified Recycling
 Program regulations.

5

6 **MM HAZ-3: Worker Safety Training.** As part of the worker environmental awareness program, the 7 applicant will prepare a safety training module, in coordination with an appropriate representative from 8 MCB Camp Pendleton, to inform all onsite personnel of the active military training activities occurring 9 within MCB Camp Pendleton and the potential hazards associated with working at Talega Substation. 10 The worker environmental awareness program shall include training on how to identify an unexploded 11 ordinance and what procedures shall be followed if a potential unexploded ordinance is identified, 12 including the "Three R's" method: Recognize, immediately Retreat, and Report to the Provost Marshal's 13 Office at (760) 725-3888 or dial 911 immediately. The applicant shall provide a copy of the training 14 material and trainee sign-in sheets to the CPUC prior to construction. 15

16 **MM HAZ-4: Fire** <u>ControlPrevention</u> and Emergency Response Plan. The applicant will develop and 17 implement a Fire <u>ControlPrevention</u> and Emergency Response Plan. This plan, and a record of contact 18 and coordination with the Orange County Fire Authority (OCFA) will be submitted to the CPUC for 19 review and approval 30 days prior to the start of construction of the proposed project. The plan will 20 describe fire prevention and response practices that the applicant will implement during construction of 21 the proposed project to minimize the risk of fire and, in the case of fire, provide for immediate 22 suppression and notification. The plan will include:

23 24

25

26

27

28

29

30

• Fire prevention and response practices, including the proper regarding the dispensing and storage of gasoline, diesel, and other fuels and combustible chemicals; power tool and equipment use; emergency access; fire suppression equipment and training; electrical grounding; and vegetation clearing; designated parking areas; appropriate climatic conditions and designated areas to perform welding or blow torch activities and other hot-work activities; and ceasing any or all work activities, including helicopter use, as directed by the OCFA or other applicable fire department representatives.

- Communication protocols for onsite workers to coordinate with local agencies and emergency
   personnel and for the applicant's environmental health and safety personnel to coordinate with on site workers in the event of fire, flood, or other emergencies or increased risk of emergency during
   construction or operation of the project.
- The assignment of Fire Risk Managers who Project Construction Manager, Contract
   Administrators, and/or Site Foreman will be present at each worksite during construction
   activities, whose sole and it will be their responsibility will be to monitor the contractor's fire prevention activities. The Project Construction Manager, Contract Administrators, and/or Site
   Foreman and who will have full authority to stop construction as needed to prevent fire hazards.
   The Fire Risk Managers will The Project Construction Manager, Contract Administrators, and/or
   Site Foreman responsibilities will include:
- 42 Maintain a complete copy of the Fire <u>ControlPrevention</u> and Emergency Response Plan;
- 43 Serve as liaisons to fire departments and act as<u>a</u> points of contact for fire departments in the event of fire or other emergency;
- 45 Manage the prevention, detection, control, and extinguishing of fires setstarted accidentally
   46 as a result of construction activity;
- 47 Review site-specific fire control prevention and emergency response plans-with construction
   48 personnel prior to starting work atin each project area;

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | - Ensure that all construction personnel are trained in fire safety measures relevant to their responsibilities. At minimum, construction personnel will be trained in fire <u>prevention</u> and emergency reporting and incipient stage fire prevention, control, and extinguishing. Each member of the construction work force will be trained and equipped to extinguish small fires (i.e., the fire can be controlled or extinguished by portable fire extinguishers, small hose systems, or portable water supplies without the need for protective clothing or breathing apparatus). Each member of the construction workforce will be trained and equipped to extinguishers; |  |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 9                                    | - Be equipped with radio and cellular telephone access for the duration of each work day;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 10<br>11<br>12<br>13                 | - Ensure that all construction personnel are provided with operational radio and/ <u>or</u> cellular telephone access at each worksite to allow for immediate reporting of fires or other emergencies and ensure that communication pathways and equipment are tested and confirmed operational each day prior to initiating construction activities at each worksite;                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 14<br>15                             | - Maintain an updated key personnel and emergency services contact (telephone and email) list onsite and available to construction personnel; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 16                                   | - Construction workers will immediately report all fires to the nearest Fire Risk Manager.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 17<br>18<br>19<br>20<br>21           | <ul> <li>Fire prevention practices, including the proper dispensing and storage of gasoline, diesel, and other<br/>fuels and combustible chemicals; electrical grounding; designated parking area, appropriate climatic<br/>conditions and designated areas to perform welding or blow torch activities and other hot-work<br/>activities; and ceasing any or all work activities, including helicopter use, as directed by the OCFA<br/>or other applicable fire department representatives in response to fire incidents.</li> </ul>                                                                                                                                               |  |  |  |  |  |
| 22<br>23<br>24<br>25<br>26           | • The necessary required fire suppression equipment, tools, and other materials to be with each construction vehicle on the Project.(e.g., fire extinguishers), tools (e.g., shovels); and other materials necessary to prevent fires, control the spread of fire if started, and providing assistance to extinguish fires started as a result of construction of the project for construction vehicles.                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 27<br>28<br>29<br>30<br>31<br>32     | <b>MM HAZ-5: Discovery of an Unrecorded Oil or Gas Well.</b> If an unrecorded oil and gas well is discovered during construction of the proposed project and the well is located within 50 feet of a construction disturbance area, the applicant shall immediately cease work within 50 feet of the well and notify the California Department of Conservation Division of Oil, Gas, and Geothermal Resources (DOGGR) Cypress District Office. Work shall not resume within 50 feet of the unrecorded well until DOGGR has determined appropriate actions to be taken and given written notice of approval for work to                                                               |  |  |  |  |  |
| 33                                   | rogumo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

33 resume.

## 4.9 Hydrology and Water Quality

2 3 This section describes the environmental and regulatory setting and discusses impacts associated with the 4 construction and operation of the South Orange County Reliability Enhancement Project (proposed 5 project) with respect to hydrology and water quality. During scoping, the following issues were raised 6 and are addressed in this section: impacts on wetlands and drainages; impacts on drainage patterns and 7 water quality; anticipated changes in impervious surface area; downstream receiving waters that may 8 receive contributory runoff from the project; impacts on municipal drainage systems; and impacts from water extraction activities. Impacts associated with geologic hazards are discussed in Section 4.6, 9 10 "Geology, Soils, and Mineral Resources," and impacts on wetlands and aquatic habitats are discussed in 11 Section 4.4, "Biological Resources." Pollutants generated from construction and operation of the project 12 are discussed in Section 4.8, "Hazards and Hazardous Materials." 13

### 14 4.9.1 Environmental Setting

#### 16 **4.9.1.1 Regional Area, Precipitation, and Drought**

The proposed project would be located within Orange and San Diego counties, with the majority of the
project being located in Orange County. The proposed project would fall within the San Juan Hydrologic
Unit<sup>1</sup> and would include components in the San Mateo Canyon, San Clemente, and Mission Viejo
Hydrologic Areas<sup>2</sup> (SDRWQCB 2012). The San Juan Hydrologic Unit covers about 500 square miles and
includes major population centers, such as San Juan Capistrano and San Clemente, and undeveloped
areas of Orange and San Diego counties.

The region's coastal climate is typically mild, with temperatures averaging about 65 degrees Fahrenheit (SDRWQCB 2012). The majority of the precipitation falls between November and February, and average annual precipitation is between 10 to 13 inches (SDRWOCB 2012).

28

15

1

### 29 **Drought Conditions**

On January 17, 2014, Governor Brown issued an Executive Order declaring a State of Emergency due to
 current drought conditions in California and urged Californians to reduce water usage by 20 percent
 (California Office of the Governor 2014). However, over the past 20 years, Southern California has

invested over 15 billion dollars in water storage and infrastructure improvements to prepare for times of

34 drought. According to the Municipal Water District of Orange County (MWDOC), there is no immediate

35 danger of water supply interruptions in Orange County as of May 2014 (MWDOC 2014a).

<sup>&</sup>lt;sup>1</sup> In coastal areas, a Hydrologic Unit is two or more small contiguous watersheds having similar hydrologic characteristics, each watershed being directly tributary to the ocean and all watersheds emanating from one mountain body located immediately adjacent to the ocean.

<sup>&</sup>lt;sup>2</sup> A Hydrologic Area is a major logical subdivision of a Hydrologic Unit, which includes both water-bearing and nonwater-bearing formations. It is best typified by a major tributary of a stream, a major valley, or a plain along a stream containing one or more groundwater basins and having closely related geologic, hydrologic, and topographic characteristics.

#### 1 4.9.1.2 Surface Water Bodies

2

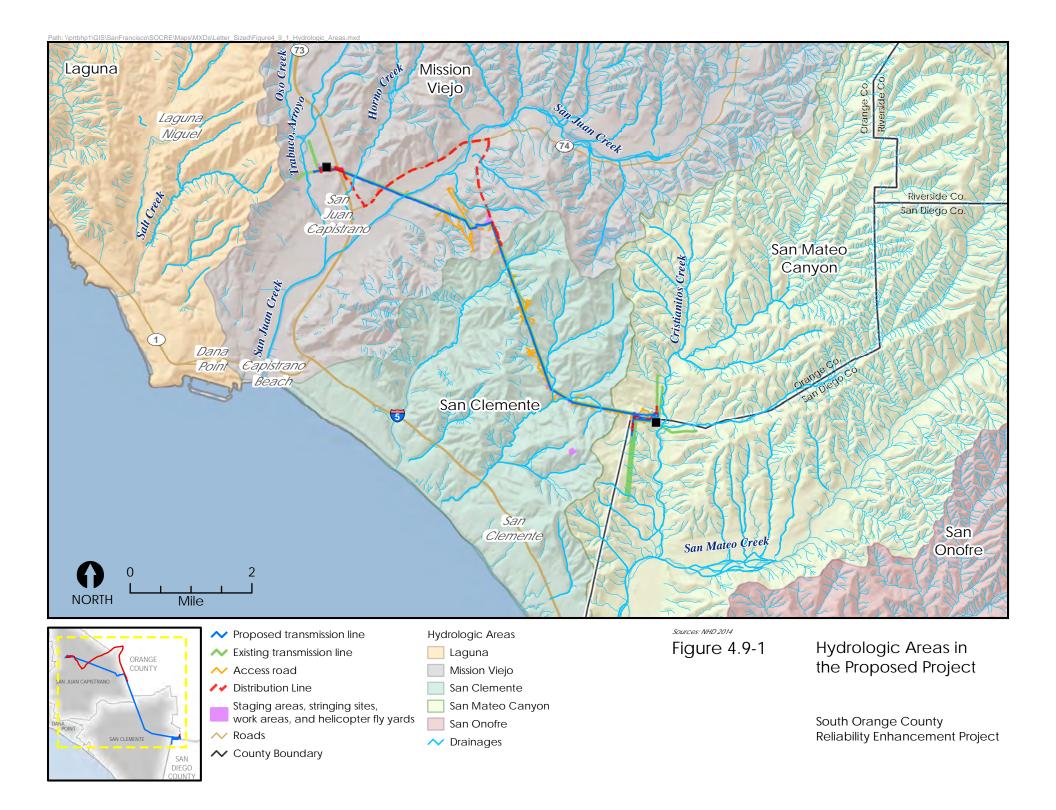
#### 3 Lakes, Reservoirs, Dams, and Levees

4 There is a small reservoir on Trampas Canyon Creek, located about 1.5 miles west of proposed

- 5 Transmission Line Pole 22 and the Prima Deschecha Landfill. The reservoir is created by the earthen
- 6 Trampas Canyon Dam (City of San Juan Capistrano 1999). No other large lakes or reservoirs exist within
- 7 2 miles of the proposed project.
- 8

#### 9 **Rivers, Drainages, Creeks, and Streams**

- 10 The proposed project would cross a number of perennial and intermittent creeks and drainages (Table
- 11 4.9-1 and Figure 4.9-1). Most of the drainages in the vicinity of the proposed project flow intermittently
- 12 due to the seasonal nature of precipitation and relatively small size of the watersheds. The majority of the
- 13 drainages that cross undeveloped foothill terrain along the proposed double-circuit 230-kilovolt (kV)
- 14 transmission line route remain in their natural conditions, whereas many of the watercourses drainages in
- 15 the low-lying developed portions of the proposed project area have been altered through straightening
- 16 and/or fortification with sand levees or concrete channels for flood control purposes. San Juan Creek is
- 17 the largest surface water body that would be spanned by the proposed project. All of the drainages that
- 18 would be spanned by the proposed project flow to the Pacific Ocean.
- 19


| Table / 0-1  | Watersheds and Water BodiesDrainages Spanned by the Proposed Project         |
|--------------|------------------------------------------------------------------------------|
| 1 able 4.9-1 | watersneus and water boules <u>Drainages</u> Spanneu by the Proposed Project |

| Watershed        | Project Segment       | Water bodyDrainages Spanned            |
|------------------|-----------------------|----------------------------------------|
|                  | TL Segments 1a and 1b | San Juan Creek                         |
|                  |                       | Horno Creek (Tributary to San Juan     |
| Mission Viejo    |                       | Creek)                                 |
|                  |                       | Unnamed Tributary to San Juan Creek    |
|                  | 12-kV Segment H       | Tributaries (2) to San Juan Creek      |
|                  | TL Segment 2          | Rancho San Juan Drainage               |
|                  | TL Segment 3          | Prima Deshecha Canada                  |
|                  |                       | Unnamed Tributary to Prima Deshecha    |
| San Clemente     |                       | Canada                                 |
|                  |                       | Segunda Deshecha Canada                |
|                  |                       | Unnamed Tributaries (3) to Segunda     |
|                  |                       | Deshecha Canada                        |
|                  | TL Segment 4          | Tributaries (2) to Christianitos Creek |
| San Mateo Canyon | 12-kV Segment M       | Unnamed Tributary to Christianitos     |
|                  |                       | Creek                                  |

20

### 21 Jurisdictional Waters

- 22 Jurisdictional waters include wetlands, "Waters of the U.S.," and "Waters of the State." Wetlands and
- drainages within the proposed project area may be subject to the jurisdiction of the U.S. Army Corps of
- 24 Engineers (USACE), the California Department of Fish and Wildlife (CDFW), and/or the San Diego
- 25 Regional Water Quality Control Board (SDRWQCB). The jurisdictional limits among the three agencies
- vary based on different legislation that defines the boundaries of each agency's regulatory authority.



1 Field surveys were conducted in May 2010, July 2010, December 2011, and February 2012 to delineate

2 potential jurisdictional wetlands, "Waters of the U.S.," and "Waters of the State" within the proposed

3 project area (TRC 2012). During the delineation, 12 drainages were identified that may be subject to the

4 jurisdiction of the USACE, CDFW, and the SDRWQCB (TRC 2012). These drainages included

- 5 relatively permanent (or perennial) waterways, associated riparian areas, and ephemeral drainages.
- 6

Jurisdictional waters and regulatory requirements are further discussed under the "Clean Water Act"
 heading in Section 4.9.2 and in Section 4.4, "Biological Resources."

### 10 **4.9.1.3 Groundwater**

11

9

12 The majority of the proposed project area is located in upland terrain, with bedrock close to the surface,

13 or in narrow canyons without substantial alluvial groundwater basins. The proposed project area crosses

14 two groundwater basins: the San Juan Valley Groundwater Basin and the San Mateo Valley Groundwater

15 Basin (Figure 4.9-1). The San Juan Valley Groundwater Basin underlies the San Juan Valley and several

16 tributary valleys in southern Orange County (DWR 2004). The San Mateo Valley Groundwater Basin

17 underlies the San Mateo Valley and Christianitos Canyon in northwestern San Diego County and

18 southeastern Orange County (DWR 2003). The primary water-bearing hydrogeologic unit in both basins

19 is Quaternary alluvium. Quaternary alluvium can be more than 125 feet thick in the San Juan Valley

20 Groundwater Basin and 100 feet thick in the San Mateo Groundwater Basin, although the average

21 thickness of the Quaternary alluvium is 65 feet thick in the San Juan Valley Groundwater Basin and 60

- 22 feet thick in the San Mateo Groundwater Basin (DWR 2003, 2004).
- 23

24 Groundwater recharge in the San Juan Valley Groundwater Basin is primarily from in-stream flows,

25 precipitation to the valley floor, and water from spring-flow (DWR 2004). The total storage capacity of

the basin has been estimated to be between 63,000 and 90,000 acre-feet (af) (DWR 2004). A recent study

of the basin's groundwater budget has not been completed, but a 1994 study estimated average annual

pumping to be about 5,625 acre-feet per year (afy), average annual subsurface inflow to be about 2,250

afy, and average annual subsurface outflow to the Pacific Ocean to be about 450 afy (DWR 2004).

30 Groundwater levels have historically been stable, although depth to groundwater varies based on

31 seasonal cycles and weather conditions (DWR 2004).

32

33 Groundwater recharge in the San Mateo Valley Groundwater basin is primarily from percolation of

runoff after precipitation events and from effluent generated by a wastewater treatment plant (DWR

2003). Recharge takes places in natural reaches (i.e., areas of the stream channel that are not lined with

concrete) and at five spreading basins in the stream channel of San Mateo Creek (DWR 2003). The total

storage capacity of the basin has been estimated to be about 14,000 af (DWR 2003). In 1997, average

annual groundwater production for potable use was estimated to be about 14,000 af (DwK 2005). In 1997, average

38 annual groundwater production for potable use was estimated to be about 900 ary, and average annual groundwater production for irrigation was estimated to be about 640 afy (DWR 2003). Groundwater

40 levels in the basin vary depending on weather conditions, but have historically remained stable (DWR

41 2003). In some areas of the basin, groundwater has been encountered at as little as 5 feet below ground

- 42 surface (DWR 2003).
- 43

#### 44 **4.9.1.4 Water Quality** 45

### 46 Surface Water

- 47 Surface water quality in the proposed project area is primarily affected by nonpoint sources of pollution
- 48 transported in storm water or irrigation runoff (e.g., automotive care products, fertilizers, pesticides).
- 49 None of the creek segments crossed by the proposed project are included on the California list of

- 1 impaired waterways pursuant to Clean Water Act (CWA) Section 303(d). However, three creeks crossed
- 2 by the proposed project have impaired segments downstream: San Juan Creek, Prima Deshecha Creek,
- 3 and Segunda Deshecha Creek (SDRWQCB 2009) (Table 4.9-2).
- 4

| Stream Segment                       | Pollutant                        | Sources                                                                              |
|--------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|
|                                      | dichlorodiphenyldichloroethylene | unknown source                                                                       |
|                                      | indicator bacteria               | nonpoint and point sources                                                           |
| Lower Mile of San Juan Creek         | phosphorus                       | unknown point sources, unknown<br>nonpoint sources, and urban<br>runoff/storm sewers |
| Lower Mile of Sall Juan Creek        | selenium                         |                                                                                      |
|                                      | total nitrogen                   |                                                                                      |
|                                      | toxicity                         |                                                                                      |
|                                      | cadmium                          | unknown point sources, unknown<br>nonpoint sources, and urban                        |
| Lower Mile of Prima Deshecha Creek   | nickel                           |                                                                                      |
| Lower Mile of Frina Desilectia Creek | phosphorus                       |                                                                                      |
|                                      | turbidity                        |                                                                                      |
| Lawar Mila of Community Database     | phosphorus                       | unknown point sources, unknown nonpoint sources, and urban                           |
| Lower Mile of Segunda Deshecha       | toxicity                         |                                                                                      |
| Creek                                | turbidity                        |                                                                                      |

Table 4.9-2 Water Bodies in the Vicinity of Proposed Project on the California 303(d) List

Source: SDRWQCB 2009

#### 5

#### 6 Groundwater

7 Groundwater quality is rated based on the amount of total dissolved solids (TDS) in the water. The

recommended secondary drinking water standard<sup>3</sup> for TDS ranges between 500 milligrams per liter 8

9 (mg/L) and 1,000 mg/L (SDRWQCB 2009). TDS concentrations in the San Juan Valley Groundwater

10 Basin range from below 500 mg/L in the upper reaches of the valleys to near 2,000 mg/L near the coast

11 (DWR 2004). TDS concentrations in the San Mateo Valley Groundwater Basin range from 490 to 770

- 12 mg/L, with an average of 586 mg/L (DWR 2003).
- 13

#### 14 4.9.1.5 Flood and Dam Failure Inundation Areas

15

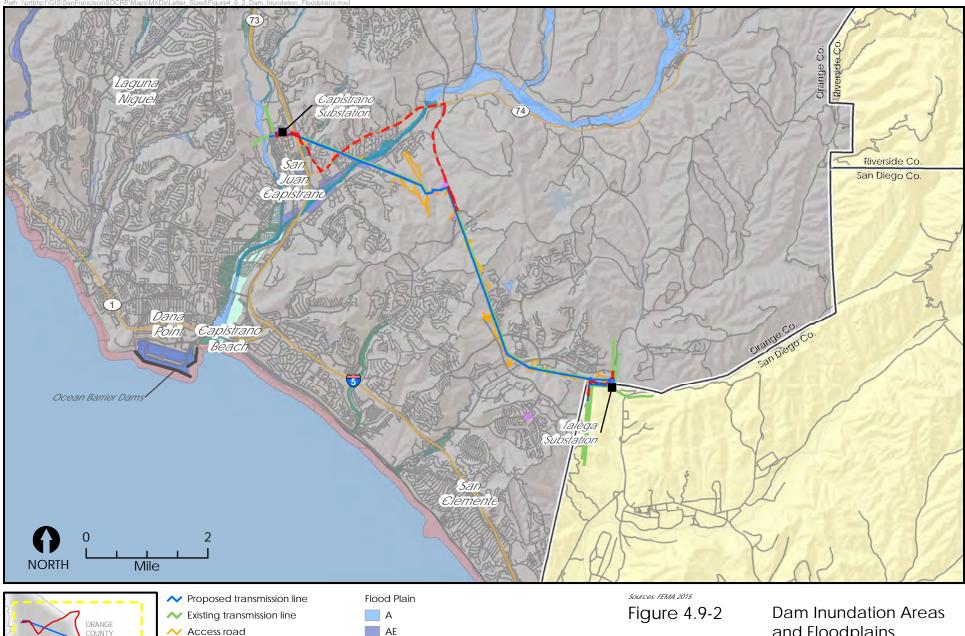
16 A 100-year flood hazard area is an area of land that has a one percent chance of being inundated by a flood during any year (FEMA 2013). The proposed project crosses the 100-year flood hazard areas of

17

18 Horno Creek, San Juan Creek, Prima Deshcecha Creek, and Segunda Deshecha Creek (FEMA 2014)

19 (Figure 4.9-2). The proposed project would generally span these areas; however, Transmission Line

Poles 9 and 10 would be located within the 100-year flood hazard area of San Juan Creek. In addition, 20


21 existing access roads cross the 100-year flood hazard zones of San Juan Creek, Prima Deshecha Creek,

22 and Segunda Deshecha Creek. The Talega Substation and proposed San Juan Capistrano Substation are 23 not located within a 100-year flood hazard area.

24

25 The proposed project crosses one dam inundation area along San Juan Creek, which would be associated 26 with the failure of the Trampas Canyon Dam (Figure 4.9-2). However, the predicted inundation areas are 27 similar to that of the 100-year flood hazard area of San Juan Creek, albeit slightly greater in spatial extent 28 (City of San Juan Capistrano 1999).

Secondary drinking water standards are non-mandatory water quality standards that are established as guidelines for public water systems in managing their drinking water for aesthetic considerations such as taste, color, and odor.



AE, Floodway

X, 20% Annual Chance Flood Hazard

X, Area of Minimal Flood Hazard

AH

AO

D

VE

AN JUAN CAPISTRANO

SAN CLEMENTE

SAN

DIEGO

Distribution Line

∧ Roads

✓ Local road

➤ County Boundary

٨ Regional Dams

Staging areas, stringing sites, work areas, and helicopter fly yards

and Floodplains within the Proposed Project Area South Orange County Reliability Enhancement Project

### 4.9.2 Regulatory Setting

#### 4.9.2.1 Federal

#### 5 Clean Water Act and Sections 303(d), 401, 402, and 404

6 The CWA (33 United States Code [U.S.C.] §1251 et seq.) was enacted with the intent of restoring and 7 maintaining the chemical, physical, and biological integrity of the waters of the United States. The CWA 8 establishes the basic structure for regulating discharges of pollutants into the waters of the United States 9 and has given the United States Environmental Protection Agency (U.S. EPA) the authority to implement 10 pollution control programs.

11

1

2 3

4

12 The CWA requires states to set standards to protect, maintain, and restore water quality through the

- 13 regulation of point source and certain non-point source discharges to surface water. Those discharges are
- 14 regulated by the National Pollutant Discharge Elimination System (NPDES) permit process (CWA
- 15 Section 402). In California, NPDES permitting authority is delegated to, and administered by, the nine
- 16 Regional Water Quality Control Boards (RWQCBs). The proposed project would be located within the
- 17 jurisdiction of the SDRWQCB.
- 18

19 CWA Section 402 authorizes RWQCBs to issue NPDES Construction General Storm Water Permits

20 (Water Quality Order No. 2009-009-DWQ), referred to as Construction General Permits. The NPDES

21 permitting process requires that a Storm Water Pollution Prevention Plan (SWPPP) be developed and

22 implemented for each construction site covered by the NPDES Construction General Permits. SWPPPs

are required for storm water discharges associated with any construction activity, including clearing,

grading, excavation, reconstruction, or dredge and fill that results in the disturbance of at least one acre

of total land area. Since the proposed project would disturb more than one acre, a SWPPP would be required. For a linear project (e.g., powerline construction), all disturbance is accounted for and totaled

along the length of the linear route (SWRCB 2013). The purpose of a SWPPP is to:

28 29

30

- Identify all pollutant sources that may affect the quality of discharges of storm water associated with construction activity from the construction site;
- Identify non-storm water discharges;
- Identify, construct, implement, and maintain best management practices (BMPs) to reduce or
   eliminate pollutants in storm water discharges and authorized non-storm water discharges from
   the construction site during construction;
- Develop a maintenance schedule for BMPs installed during construction that are designed to reduce or eliminate pollutants after construction is completed;
- Identify a sampling and analysis strategy and sampling schedule for discharges from construction
   activity that discharge directly to a water body listed for impairment due to sedimentation, in
   accordance with CWA Section 303(d); and
- Identify a sampling and analysis strategy and sampling schedule for discharges that have been discovered through visual monitoring to be potentially contaminated by pollutants not visually detectable in the runoff.

The SWPPP would apply to all components of the proposed project that would result in grounddisturbance.

46

- 1 The CWA authorizes the USACE to regulate the discharge of dredged or fill material into the waters of
- 2 the United States and adjacent wetlands. Jurisdictional delineations are fundamental to USACE and U.S.
- 3 EPA regulatory responsibilities under CWA Section 404. The USACE evaluates permit applications for
- 4 all construction activities that occur within wetlands or waterways determined by formal delineations to
- 5 be waters of the United States. Applicants applying for USACE permit coverage under CWA Section 404
- 6 for actions that could result in any discharge into waters of the United States must also obtain a water
- 7 quality certification from the state in which the action is proposed. The State of California uses its CWA
- 8 Section 401 certification authority to ensure Section 404 permits are consistent with state water quality
- 9 standards. A Water Quality Certification (or waiver thereof) from the SDRWQCB pursuant to Section
- 10 401 would be required for the proposed project.
- 11

12 CWA Section 303(d) requires states to identify impaired waterbodies and submit the list to the U.S. EPA

13 for review and approval. The list is known as the Section 303(d) list of impaired waters. The State Water

Quality Control Board and RWQCBs are required to monitor and assess water quality, prepare Section
 303(d) lists, and develop total maximum daily load requirements.

15 16

### 17 NPDES Municipal Separate Storm Sewer Permit

18 Storm water runoff is often transported through Municipal Separate Storm Sewer Systems (MS4s) and

19 discharged, untreated, in local waterbodies. To prevent water quality degradation, MS4 operators must

20 obtain a NPDES permit and develop a stormwater management program. The SDRWQCB adopted Order

21 No. R9-2013-001, NPDES Permit and Waste Discharge Requirements for Discharges from the Municipal

22 Separate Storm Sewer Systems (MS4s) Draining the Watersheds within the San Diego Region, on May 8,

23 2013 (SDRWQCB 2013). This regional permit regulates MS4 discharges to inland surface waters, bays,

estuaries, and coastal waters within the San Diego Region and covers 39 entities (jointly referred to as

25 Copermittees), including Orange County, San Juan Capistrano, and San Clemente (SDRWQCB 2013).

26

27 The NPDES MS4 permit requires the Copermittees to regulate construction project discharges to their

storm water conveyance systems using their municipal ordinance authority. As part of complying with

29 the permit, Copermittees must require all development projects to implement structural and low impact

30 development BMPs. Certain projects, such as redevelopment projects that create, add, or replace 5,000 or

31 more square feet of impervious surface on an already developed site, are considered "priority

32 development projects" (SDRWQCB 2013). Priority development projects are required to implement

33 more stringent structural BMPs than other development projects, and post-project runoff conditions must

34 not exceed pre-development runoff conditions by more than 10 percent.

35

### 36 Oil Pollution Prevention

40 CFR 112 requires owners and operators of certain facilities to prepare and implement a spill

prevention, control, and countermeasures (SPCC) plan to prevent any discharge of oil. Facilities that are

39 subject to SPCC plans are non-transportation-related facilities with an aggregate aboveground storage

40 capacity greater than 1,320 gallons or a completely buried storage capacity greater than 42,000 gallons

41 that could discharge into or upon navigable waters of the United States or adjoining shorelines. These

42 regulations require regulated facilities to establish related procedures, methods, and equipment standards

43 to prevent oil from reaching navigable waters and adjoining shorelines and to contain discharges of oil.

44 Substations with oil-filled electrical equipment above the threshold capacity are subject to these

requirements. Additionally, stationary oil-filled equipment with a capacity greater than or equal to 55

46 gallons must have secondary containment to ensure that oil spilled from primary containment systems is

47 prevented from impacting surface waters.

#### 1 4.9.2.2 State

2

#### 3 California Fish and Game Code Section 1600

4 The CDFW monitors streambed alteration to conserve, protect, and manage California's fish, wildlife, 5 and native plant resources. California Fish and Game Code Section 1600 requires any person, state, or 6 local governmental agency or public utility to notify the CDFW before beginning any activity that would 7 substantially divert, obstruct, or change the natural flow of the bed, channel, or bank (including 8 associated riparian vegetation) of a river, stream, or lake and/or use material from, or deposit material 9 into, a streambed prior to commencement of the activity. Streams covered under this code include, but 10 are not limited to, intermittent and ephemeral streams, rivers, creeks, dry washes, sloughs, blue-line streams, and watercourses with subsurface flow. If the CDFW determines that an action could have an 11 12 adverse effect on existing fish and wildlife resources, a Lake or Streambed Alteration Agreement is 13 required. The proposed project may impact water resources and their associated riparian habitat; 14 therefore, this regulation is applicable to the proposed project. 15

#### 16 California Porter–Cologne Water Quality Control Act

17 The State Water Resources Control Board regulates water quality through the Porter–Cologne Water

18 Quality Act of 1969 (California Water Code, Division 7), which contains a complete framework for the

19 regulation of waste discharges to surface water and groundwater of the state. The Act assigns

20 responsibility for implementing CWA Sections 401 (Water Quality Certification), 402 (NPDES), and

21 303(d) (List of Impaired Water Bodies) to the State Water Quality Control Board, which has delegated

22 authority to the nine RWQCBs. The proposed project falls under the jurisdiction of the SDRWQCB,

which is responsible for the implementation of federal and state water quality protection statutes,

regulations, and guidelines.

## 26 **4.9.2.3 Regional and Local**27

### 28 City of San Juan Capistrano

29 Grading Ordinance. Section 9-2.323 of the City of San Juan Capistrano Municipal Code requires 30 preliminary grading plans to be submitted along with discretionary development applications. Prior to 31 issuance of a grading permit, grading plans must be reviewed by the City of San Juan Capistrano's water 32 and engineering divisions and by the Orange County Fire Authority (City of San Juan Capistrano 2015a). 33 Grading plans are required to have City Grading Notes (City of San Juan Capistrano 2015b) and City 34 Erosion and Silt Control Notes (City of San Juan Capistrano 2015c), which include, among other things, 35 BMPs to maintain drainage patterns, protect adjacent properties from drainage problems, and protect 36 water quality.

37

General Plan. The City of San Juan Capistrano General Plan, Floodplain Management Element (City of
 San Juan Capistrano 2002) establishes policies to support the goals of protecting life and property from
 floodwaters and to preserve and enhance the natural character of creeks and their floodplains. Policies
 established to support this goal include the following:

42 43

44

- **Floodplain Management Element Policy 1.1**: Limit development within the floodplain to minimize risks to life and property and satisfy the flood insurance and other requirements of the Federal Emergency Management Agency (FEMA).
- Floodplain Management Element Policy 1.2: Prevent the placement of unauthorized fill
   material in creeks and floodplains in order to avoid alteration of flow characteristics and bridge
   scour.

- **Floodplain Management Element Policy 2.1**: Use environmentally sensitive treatments where creek improvements are necessary to preserve wetlands.
  - **Floodplain Management Element Policy 2.2**: Enhance and/or restore the creeks and their floodplains as part of private development projects and public works projects.

#### 6 City of San Clemente

Grading Ordinance. Section 15.36.050 through Section 15.36.420 of the San Clemente Municipal
Code detail the requirements of the City of San Clemente Grading Ordinance. The City's grading
ordinance requires erosion controls and water quality protection BMPs to be implemented for
development projects.

11

16

1

2

3

4

5

General Plan. The City of San Clemente General Plan, Natural Resources Element (City of San
 Clemente 2014) establishes policies to support the goal of protecting and restoring significant plant and
 wildlife species and habitats. Policies to accomplish this goal related to hydrology and water quality
 include the following:

- Natural Resources Policy NR-1.02(b): In natural areas that are undeveloped or essentially so,
   we require applicants for proposed projects to retain watercourses, riparian habitat, and wetlands
   in their natural condition.
- 20 Natural Resources Policy NR-1.03(a): We prohibit development and grading which alters the • biological integrity of sensitive habitats, including Riparian Corridors unless no feasible project 21 22 alternative exists which reduces environmental impacts to less than significant levels, or it is replaced with habitat of equivalent value, as acceptable to the City Council. Where no 23 24 environmentally feasible alternative exists, development within Riparian Corridors shall avoid 25 removal of native vegetation; prevent erosion, sedimentation and runoff; provide for sufficient 26 passage of native and anadromous fish; prevent wastewater discharges and entrapment; prevent 27 groundwater depletion or substantial interference with surface and subsurface flows; and protect 28 and reestablish natural vegetation buffers.

#### 30 Orange County

**Grading and Excavation Code.** The Orange County Grading and Excavation Code (County of Orange 1993) requires development projects to obtain a grading permit from the county prior to conducting any grading or activities that are preparatory to grading (e.g., brushing or grubbing). Grading permits are also required prior to altering an existing watercourse or channel. To obtain a grading permit, applicants are required to submit erosion control plans that detail BMPs that will be implemented to protect drainage patterns and water quality.

37

29

General Plan. The County of Orange General Plan, Resources Element (County of Orange 2005a)
establishes policies to support the goal of ensuring an adequate, dependable supply of water of acceptable
quality for all reasonable uses. Policies to accomplish this goal related to hydrology and water quality
include the following:

42 43

44

• Water Resources Component Policy 1, Water Supply: To ensure the adequacy of water supply necessary to serve existing and future development as defined by the General Plan.

- Water Resources Component Policy 5, Water Quality: Protect and improve water quality
   through continued management, enforcement, and reporting requirements.
- Encourage an integrated water resources approach for stormwater management that considers
  water supply, water quality, flood control, open space, and native habitats.
- 5 Promote coordination between the County, cities, and other stakeholders in the identification and 6 implementation of watershed protection and Low Impact Development (LID) principles.
- Consider implementation of LID principles to conserve natural features (trees, wetlands, streams,
  etc.), hydrology, drainage patterns, topography, and soils.
- 9 Encourage the creation, restoration, and preservation of riparian corridors, wetlands, and buffer 10 zones.
- 11 Continue to educate the public about protecting water resources.
- Water Resources Component Policy 6, Intergovernmental Coordination: To encourage and support a cooperative effort among all agencies toward the resolution of problems and the utilization of opportunities in the planning management and protection of water resources, including water quality.
- 16

The County of Orange General Plan Land Use Element (County of Orange 2005b) establishes policies to
support the goal of guiding physical development within the county while protecting water quality
through required compliance with urban and stormwater runoff regulations. Policies established to
support this goal include the following:

21 22

23

- Land Use Element Policy 13: To guide physical development within the county while protecting water quality through required compliance with urban and stormwater runoff regulations.
- Encourage, support, and require all new development and redevelopment projects to identify
   opportunities for implementation of LID principles in the early stages of the development
   planning process.
- Promote, support, and require innovative site planning and development techniques that allow for
   implementation of LID principles while taking into consideration specific hydrology and geology
   conditions.
- Encourage, support, and require the use of LID as art of an overall strategy to mitigate
   stormwater impacts from new development and redevelopment projects consistent with current
   NPDES permit requirements.
- Encourage and support, where applicable, the use of buffer zones to protect natural water bodies, including, but not limited to, wetlands and riparian corridors. Where infeasible, require other measures to protect natural water bodies.
- Identify and evaluate potential changes to land use development regulations to support and
   promote stormwater management techniques and ensure regulations do not inhibit compliance
   with current NPDES permit requirements.

### 4.9.3 Impact Analysis

1

2 3

4

9 10

#### 4.9.3.1 Methodology and Significance Criteria

Potential impacts on hydrology and water quality were evaluated according to the following significance
criteria. The criteria were defined based on the checklist items presented in Appendix G of the CEQA
Guidelines. The proposed project would cause a significant impact on hydrology and water quality if it
would:

- a) Violate any water quality standards or waste discharge requirements;
- b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge
   such that there would be a net deficit in aquifer volume or a lowering of the local groundwater
   table level;
- c) Substantially alter the existing drainage pattern of the site or area, including through the
   alteration of the course of a stream or river, in a manner which would result in substantial erosion
   or siltation on- or off-site;
- d) Substantially alter the existing drainage pattern of the site or area, including through the
   alteration of the course of a stream or river, or a substantial increase in the rate or amount of
   surface runoff in a manner which would result in flooding on- or off-site;
- e) Create or contribute to runoff water, which would exceed the capacity of existing or planned
   storm water drainage systems or provide substantial additional sources of polluted runoff;
- 22 f) Otherwise substantially degrade water quality;
- 23 g) Place within a 100-year flood hazard area structures that would impede or redirect flood flows;
- h) Expose people or structures to a significant risk of loss, injury, or death involving flooding,
   including flooding as a result of the failure of a levee or dam; or
- i) Expose people or structures to a significant risk of loss, injury, or death involving inundation by
   seiche, tsunami, or mudflow.
- 29 Appendix G of the CEQA Guidelines also includes the following checklist item:
  - Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary, Flood Insurance Rate Map, or other flood hazard delineation map.
- No housing construction would occur as part of the proposed project. Therefore, this item is not applied as a criterion for the analysis of environmental impacts.
- 36

30 31

32

#### 4.9.3.2 Applicant Proposed Measures

The applicant has not committed to any applicant proposed measures that apply to hydrology and water quality.

#### 4.9.3.3 Environmental Impacts

## Impact WQ-1:Violate any water quality standards or waste discharge requirements.LESS THAN SIGNIFICANT

9 10

1

2 3

4

5 6

7 8

10

#### 11 Construction Impacts

12 Construction of the proposed project would require ground-disturbing activities, such as grading for new 13 access roads, new transmission structure pads, and at the proposed San Juan Capistrano substation site, 14 and trenching for construction of underground segments of transmission line. Soil disturbance and 15 vegetation clearing could result in increased soil erosion, potentially resulting in sedimentation of adjacent water bodies, violating water quality standards, and/or impacting beneficial uses. Sedimentation 16 17 of adjacent drainages could occur if precipitation events take place during active ground disturbing 18 activities or if water used for construction purposes (e.g., water for dust suppression or soil compaction) 19 runs off-site. In addition, mechanized equipment that requires fuels and lubricants would be used during 20 construction of the proposed project, and construction would also involve the fabrication of facilities that 21 require hazardous materials such as coatings, adhesives, and solvents. Accidental spills of these materials 22 could adversely affect water quality if these materials are spilled directly into surface water bodies or if 23 they are indirectly transported to surface water bodies in storm water or construction water runoff. 24 25 The proposed project would result in more than one acre of ground disturbance; therefore, the applicant 26 would be required to apply for coverage under the NPDES Construction General Permit to address storm 27 water discharges. The NPDES Construction General Permit requires development and implementation of 28 a SWPPP, which specifies BMPs to reduce or eliminate pollutants in storm water discharges from the site 29 during construction that would otherwise violate water quality standards. The NPDES Construction

30 General Permit would also require inspections, monitoring, and reporting to ensure that BMPs are

- 31 implemented and effective. If the BMPs are not effective, they must be modified to become more
- 32 effective. In addition to compliance with the NPDES Construction General Permit, the applicant would
- 33 implement applicable BMPs from the SDG&E Best Management Practices Manual for Water Quality

34 Construction (BMP Manual), which includes BMPs for sediment controls, waste management and

35 material controls, non-storm water discharge controls, and erosion control and soil stabilization (SDG&E 26 2011). The employee the membra and implement on SPCC plan to present all apilla

2011). The applicant would also be required to prepare and implement an SPCC plan to prevent oil spillsfrom impacting water quality.

38

39 Dewatering may be required during construction if localized shallow groundwater is encountered in

40 structure footings or other project excavations. Dewatering could result in a violation of water quality

standards if the water is discharged to surface water bodies and appropriate dewatering techniques are

42 not applied. The NPDES Construction General Permit would cover dewatering discharges, provided that

the discharges are infeasible to eliminate, comply with BMPs as described in the SWPPP, filter or treat
 all dewatering discharges from sedimentation basins using appropriate technology, meet Numeric Action

1 Levels<sup>4</sup> for pH and turbidity, and do not cause or contribute to a violation of water quality standards

2 (SWRCB 2009).

3 4 Water quality could also be impacted if fill material is required to be placed in drainages to facilitate 5 construction (e.g., grading or placing fill in drainage to improve an existing, or create a new, access 6 road). Although grading or placing fill material in creeks or drainages is not currently anticipated as part 7 of the proposed project, if it was later determined that doing so would be required to facilitate 8 construction, the applicant would be required to secure permits from all applicable regulatory agencies 9 prior to conducting any work in these areas. For impacts on Waters of the U.S., the proposed project 10 would be required to obtain a Section 404 permit from the USACE and a Section 401 permit from the 11 SDRWQCB certifying that the proposed activity will comply with state water quality standards. 12 Conditions placed on the issuance of the 401 certification become a part of the Section 404 permit, and 13 the Section 404 permit cannot be issued if Section 401 certification is denied. If the proposed project 14 would result in impacts on Waters of the State that are not also considered Waters of the U.S., the 15 proposed project would be required to secure a Waste Discharge Requirements permit from the 16 SDRWQCB. 17

18 By complying with the terms and conditions of any necessary permits, and implementing site-specific

BMPs and project design features, the proposed project would not violate any water standards during

20 construction. Therefore, construction of the proposed project would result in less than significant impacts

21 on water quality.22

#### 23 **Operations Impacts**

24 Operation of the proposed project would be similar to current operations and maintenance activities

25 within the proposed project area. Project operations would include patrol of the proposed project right-

- 26 of-way (ROW), inspection of transmission lines, and maintenance within proposed project substation
- 27 sites. Any future potential maintenance-related construction activities would be evaluated under

28 California Public Utilities Commission (CPUC) General Order 131-D and the California Environmental

- 29 Quality Act (CEQA), and any applicable permit requirements would ensure that water quality standards 30 are met.
- 30 31

32 The only expected discharges from the proposed project site during operations would be storm water. To

comply with the NPDES MS4 permit, each of the permittees must require the project applicant to submit

- 34 proof of the mechanism under which ongoing long-term maintenance of all structural BMPs would be
- 35 conducted (SDRWQCB 2013). The SWPPP would require post-construction BMPs, such as stabilization
- 36 and revegetation of disturbed areas, and erosion and sediment control devices would be maintained
- during operations. Insulating mineral oil would be present in sealed electrical equipment, and secondary
   containment sufficient to contain the entire volume of mineral oil in the event of an unanticipated spill
- would be present. The applicant would also continue to implement the SPCC plan as well as internal
- 40 BMPs and standards to control containment of accidental spills. Therefore, potential impacts on water
- 41 quality during operations would be less than significant.
- 42

<sup>&</sup>lt;sup>4</sup> Numeric Action Levels are benchmark levels for certain parameters that, if exceeded during sampling, trigger the discharger to take action.

# 1Impact WQ-2:Substantially deplete groundwater supplies or interfere substantially with<br/>groundwater recharge such that there would be a net deficit in aquifer<br/>volume or a lowering of the local groundwater table level<br/>LESS THAN SIGNIFICANT5

#### 6 **Construction Impacts**

7 The applicant estimates that about 82 af of water would be used during construction of the proposed 8 project. Construction water demand is anticipated to be met with water secured through existing 9 municipal sources, such as the Municipal Water District of Orange County (MWDOC). Local water 10 supplies accommodate less than half of Orange County's water demand, and the MWDOC meets the 11 remaining demand by purchasing imported surface water from northern California and the Colorado

remaining demand by purchasing imported surface water from northern California and the Colorado
 River (MWDOC 2014b). Groundwater would not be used during construction of the proposed project.

13

14 Dewatering may be required during construction where localized shallow groundwater is encountered.

15 Dewatering may result in temporary declines in groundwater levels, but the effects would be isolated to a

small area due to the short duration of pumping. Any wells in the vicinity of dewatering activities are

17 unlikely to be affected because water supply wells typically rely on deeper water-bearing zones than the

- 18 depth that an area would have to be dewatered.
- 19

Groundwater recharge occurs as surface water or precipitation is absorbed into soil and filters down into a groundwater aquifer (USGS 1999). For the proposed project to interfere with groundwater recharge, it

- 22 would have to create impervious surfaces over an area with suitable soils for aquifer recharge or redirect
- 23 surface flows away from areas with suitable soils for aquifer recharge. The proposed project would
- 24 primarily use existing access roads and involve replacement of transmission structures along an existing
- route. New access roads and transmission structure pads would not be paved; they would be stabilized to
- allow infiltration and reduce runoff potential. Most of the work associated with construction of the
- 27 proposed project would take place in areas that do not overlay a groundwater basin. The only substantial
- area of new impervious surface that overlays a groundwater basin would be the area associated with the
- 29 proposed San Juan Capistrano Substation. However, the majority of the existing substation site's storm
- 30 water drainage currently flows into city storm drains, and groundwater recharge at the site is likely 31 negligible under existing conditions.
- 32

33 Project construction would not cause substantial depletion of groundwater supplies or substantial

- interference with groundwater recharge. Therefore, impacts under this criterion during construction of the proposed project would be less than significant.
- 36

### 37 **Operations Impacts**

The proposed project would not use groundwater during operations, nor would any new areas of impervious surface be introduced during operations. Therefore, there would be no impact on groundwater supplies or groundwater recharge during operation of the proposed project.

41 42

43

44

45

46

# Impact WQ-3:Substantially alter the existing drainage pattern of the site or area,<br/>including through the alteration of the course of a stream or river, in a<br/>manner which would result in substantial erosion or siltation on- or off-site.<br/>LESS THAN SIGNIFICANT

- 47 Construction of the proposed project would require grading to accommodate construction at
- 48 approximately 23 transmission structure locations, at new spur road locations, at staging areas, limited
- 49 grading at some of the new distribution poles sites, and at the San Juan Capistrano substation site.

- 1 Grading would require vegetation removal and would temporarily increase erosion potential. Grading at
- 2 transmission structure locations would include up to 1,200 cubic yards of net cut to 800 cubic yards of
- 3 net fill, but would typically be in the range of less than 300 cubic yards of net cut to less than 200 yards
- 4 of net fill. The majority of new distribution poles would be placed immediately adjacent to existing
- 5 distribution structures, and work would occur at locations accessible via existing access roads.
- 6

7 To minimize the potential for erosion and sedimentation of water bodies, the proposed project would be 8 required to implement a SWPPP to comply with the NPDES Construction General Permit. The SWPPP 9 would require BMPs, including erosion and sedimentation controls. Erosion controls consist of source 10 control measures that are designed to prevent soil particles from detaching and being transported in storm 11 water runoff, such as straw mulch, geotextiles and mats, hydraulic mulch, hydroseeding, and velocity 12 dissipation devices. Sedimentation controls are structural measures intended to complement and enhance

- the selected erosion control measures and reduce sediment discharges from active construction areas.
   Examples of sediment control measures include silt fences, sediment traps, check dams, fiber rolls, gravel
- bag berms, and sandbag barriers. In addition, the project would be required to comply with the
- requirements of the SDRWQCB and South Orange County MS4 Permit requirements, which include
- requirements of the SDRW QCD and South Orange County WS4 Fernit requirements, which include requirements for hydromodification control BMPs and project design features such as bioswales
- 18 paralleling access roads.
- 19

20 Alterations to the Talega substation would not change existing ground surface grades or runoff

21 conditions. Construction of the proposed San Juan Capistrano Substation would include changes to the

22 existing on-site grading and drainage, but the changes would not result in substantial erosion or siltation

- 23 on- or off-site. The grading plans for the proposed San Juan Capistrano Substation include new on-site
- storm water control facilities including a series of inlets, culverts, and bioswales that would convey water
- to bioretention facilities at the southwest corner of the substation property. Construction of the proposed
- 26 substation would also be required to comply with City of San Juan Capistrano grading requirements.
- 27

The proposed project does not include grading, placing fill, or any other activities in creeks or drainages that would alter the flow of water. If final designs of the proposed project would require grading or the placement of fill material within creeks or drainages, the applicant would be required to secure all applicable permits from the USACE, SDRWQCB, and CDFW prior to conducting any work within those drainages. Such permits would require mitigation for the placement of fill in drainages, and other measures would be required to ensure that the drainages are not impacted, including through

- 34 sedimentation, beyond the permitted use.
- 35

36 As a result of complying with all applicable laws and permit requirements, the proposed project would 37 not substantially alter the existing drainage pattern of the site in a manner that would result in substantial 38 erosion or siltation on- or off-site. Therefore, impacts under this criterion would be less than significant. 39

# 40Impact WQ-4:Substantially alter the existing drainage pattern of the site or area,41including through the alteration of the course of a stream or river, or42substantially increase the rate or amount of surface runoff in a manner43which would result in flooding on- or off-site.44LESS THAN SIGNIFICANT

45

46 Construction of the proposed project would require limited grading to create new spur roads, level

47 construction work areas at some of the transmission structure and distribution pole sites, at some of the

- 48 staging areas and stringing sites, and at the San Juan Capistrano Substation site. Because construction of
- the proposed project would take place along existing rights-of-way and primarily use existing access
- 50 roads, the amount of grading required would be minimal. New permanent access roads and graded pads

1 would not be paved and would be stabilized in a manner that allows infiltration and reduces runoff 2 potential. Although grading would result in minor localized changes in runoff volumes, the proposed 3 project would be designed to return runoff to existing drainages patterns. The proposed project would not 4 alter the course of any creeks or drainages. 5 6 Construction of the proposed San Juan Capistrano Substation would include changes to the existing 7 onsite grading and drainage, but the changes would not result in a substantial increase in the rate or 8 amount of surface runoff. The grading plans for the new substation include new on-site storm water 9 control facilities including a series of inlets, culverts, and bioswales that would convey water to 10 bioretention facilities at the southwest corner of the substation property. The bioretention facilities would 11 have a controlled discharge to the existing 57-inch storm sewer located under Camino Capistrano. There 12 would be no additional sheet flow runoff from the site to the curb and gutters on Camino Capistrano. 13 14 The proposed project would incorporate SWPPP BMPs to minimize erosion that could cause 15 sedimentation and loss of receiving water capacity. Therefore, after compliance with applicable laws and 16 permit conditions, impacts under this criterion would be less than significant. 17 18 **Impact WQ-5:** Create or contribute runoff water which would exceed the capacity of 19 existing or planned storm water drainage systems or provide substantial 20 additional sources of polluted runoff. 21 LESS THAN SIGNIFICANT 22 23 Project construction cwould generate storm water runoff and runoff from dust control activities and 24 storm water runoff from the construction site would occur during adequate precipitation events. 25 However, the proposed project would not significantly alter the existing drainage patterns of the site as 26 discussed under Impacts WQ-3 and WQ-4. Existing drainage facilities would be used, upgraded, or 27 replaced. New access roads and transmission structure pads would be constructed such that the natural 28 drainage direction is maintained, and runoff velocity dissipation devices such as water bars and gravel 29 bag berms would be employed to control the rate at which runoff enters drainage systems. Construction 30 of the proposed project would not result in a substantial increase in the amount of impervious surfaces, 31 and runoff volumes are anticipated to be roughly the same as current conditions. The only area of 32 substantial (i.e., greater than one acre) new impervious surface would be a location associated with the 33 increased concrete pad area at the proposed San Juan Capistrano Substation site. However, the project 34 would include design features, such as an above ground retention pond, and bioretention facilities, such 35 as open water quality basins and/or subsurface vaults, to provide flow duration control of the site runoff. 36 37 The proposed project would also be required to comply with all applicable county and city grading 38 ordinances, which would require project designs to be reviewed and approved prior to construction. To 39 be approved, the plans would have to demonstrate that the existing and planned storm water drainage 40 systems are capable of receiving the anticipated runoff volumes from the proposed project. In addition, 41 the proposed project would be required to implement BMPs as part of the SWPPP to reduce the potential 42 for polluted runoff leaving the site. Therefore, impacts under this criterion would be less than significant. 43 44 Impact WQ-6: Substantially degrade water quality. LESS THAN SIGNIFICANT WITH MITIGATION 45 46 47 During construction of the proposed project, potential contaminants could be released, including oil, 48 gasoline, diesel motor fuel, industrial solvents, and other chemicals necessary for project construction. Water quality could also be affected if by-products associated with paving operations, saw cutting, 49 50 coring/drilling, or mixing/applying concrete come are transported off-site in runoff. However, as

1 discussed above, the applicant would be required to implement a SWPPP that includes BMPs to reduce

- 2 or prevent construction-related pollutants from contaminating runoff and degrading water quality on- or
- 3 off-site. In addition to BMPs related to erosion and sediment control, the SWPPP would also include
- 4 BMPs to address activities that could indirectly introduce contaminants to surface water runoff from the
- 5 site. The applicant would also comply with its BMP Manual (SDG&E 2011), which includes BMPs to
- 6 prevent construction-related contaminants from reaching water bodies, such as drain inlet protection and
- 7 secondary containment around oil and chemical storage.
- 8

9 Damage to an inadequately plugged and abandoned well could create a significant hazard to public

10 health, underground and surface waters, or oil or gas reservoirs. Table 4.8-5 (see Section 4.8, "Hazards

- and Hazardous Materials") identifies the oil, gas, and geothermal wells within 1,000 feet of the proposed
- 12 project. The closest well to the proposed project is an abandoned well located approximately 300 feet 13 west of a laydown area on Calle Saluda near Transmission Line Pole 31. Based on the dates of the final
- abandonment letters filed with the California Department of Conservation, Division of Oil, Gas, and
- 15 Geothermal Resources (DOGGR) (1978 and 1983), the wells listed in Table 4.8-5 were capped to
- relatively recent standards. DOGGR considers the potential risk to damage the wells listed in Table 4.8-5
- to be low based on capping history and proximity of the wells to the proposed project (Andrews 2014).
- 18 In the event that an unanticipated well is discovered during construction, damage to life, health, and
- 19 property could be significant. Implementation of MM HAZ-5 would reduce potential impacts to less than
- 20 significant by requiring construction workers to cease work within 50 feet of an unanticipated well
- 21 discovery until authorized by DOGGR. The potential for the proposed project to damage a well is less
- than significant.
- 23

If pesticides are used and applied in excessive amounts or applied improperly, impacts related to degradation of water quality could be significant. Implementation of MM WQ-1 would reduce potential

- 26 impacts to less than significant by requiring pesticide application to be in accordance with Federal
- Insecticide, Fungicide, and Rodenticide (FIFRA) labels, personnel applying the pesticides to be properly
- trained and certified, pesticide application to not occur 24 hours prior to a likely precipitation event, and
- 29 only approved pesticides to be used.
- 30

33

Compliance with all applicable laws and permits and implementation of MM WQ-1 and MM HAZ-<u>15</u>
 would reduce impacts from the proposed project under this criterion to less than significant.

## 34Impact WQ-7:Place within a 100-year flood hazard area structures that would impede or35redirect flood flows.36LESS THAN SIGNIFICANT

37

Transmission Line Poles 9 and 10 would be installed within the 100-year flood hazard area of San Juan Creek. Transmission Line Pole 9 would be located near the northern edge of the flood hazard zone, and Transmission Line Pole10 would be located south of San Juan Creek in a developed area within the floodplain. The foundations of these structures would be designed to withstand flood flows, and given the circular shape of the above ground portion of the structures and small diameter (5 to 6 feet), the structures would not impede or redirect flood flows if inundated. No other project components would be

- 44 located within a 100-year flood hazard area. Therefore, any potential impacts under this criterion would
- 45 be less than significant.
- 46

#### 1 **Impact WQ-8:** Expose people or structures to a significant risk of loss, injury, or death 2 involving flooding, including flooding as a result of the failure of a levee or 3 dam.

4 5 LESS THAN SIGNIFICANT

6 The proposed project crosses the 100-year flood hazard areas of Horno Creek, San Juan Creek, Prima 7 Deshcecha Creek, and Segunda Deshecha Creek. The proposed project would generally span these areas; 8 however, Transmission Line Poles 9 and 10 would be installed within the 100-year flood hazard zone of 9 San Juan Creek, and existing access roads would be used for construction and operations that cross the 10 100-year flood hazard zones of San Juan Creek, Prima Deshecha Creek, and Segunda Deshecha Creek. 11 Transmission Line Poles 9 and 10 are also within the predicted dam inundation area in the event that the 12 Trampas Canyon Dam fails. However, the predicted inundation area is similar to that associated with the 13 100-year flood hazard area of San Juan Creek (City of San Juan Capistrano 1999); therefore, the 14 transmission structures being located within the dam inundation area is inconsequential.

15

16 The proposed project does not involve development of facilities that would be occupied regularly.

17 Construction workers would need to be within the 100-year flood hazard zone/dam inundation zone of

San Juan Creek during the removal of two existing 138-kV transmission structures and construction of 18

19 Transmission Line Poles 9 and 10. Additionally, construction and operations personnel would

20 periodically travel through the flood hazard zones of Prima Deshecha Creek and Segunda Deshecha

21 Creek. However, construction and operations personnel would be within these areas for short durations,

22 and relocation out of these areas could be attained very quickly in the event of a flood. Structures located 23 within the 100-year flood hazard zone of San Juan Creek would be designed to withstand potential flood

24 inundation to comply with CPUC General Order 95 (Rules for Overhead Electric Line Construction) and

25 the California Building Standards Code. Therefore, impacts under this criterion risk to people or

26 structures would be less than significant.

27

#### 28 **Impact WO-9:** Expose people or structures to a significant risk of loss, injury, or death 29 involving inundation by seiche, tsunami, or mudflow. 30 LESS THAN SIGNIFICANT

31

32 A seiche is a standing wave of water on a river, lake, pond, gulf, or bay caused by an earthquake. A

33 tsunami, or tidal wave, is a wave of water on the ocean caused by an undersea earthquake. There are no 34 bodies of water in the vicinity of the proposed project that could generate a seiche in the event of an

35 earthquake. The Pacific Ocean is more than 3 miles from the nearest project component, and the entire

project is located well outside of mapped tsunami inundation areas (CDC 2009a, 2009b, 2009c). 36

37 Therefore, the proposed project would not expose people or structures to a significant risk of loss, injury,

- 38 or death by seiche or tsunami.
- 39

40 A mudflow is a downhill movement of soft, wet earth and debris caused by a rapid and heavy

41 accumulation of rain or snowmelt in areas. Mudflows usually begin on steep hillsides as shallow

42 landslides that liquefy. Transmission Line Segments 2 and 3 would be located in hilly terrain that may be

43 susceptible to mudslide. However, prior to the start of construction, the applicant would conduct a

44 geotechnical study to evaluate the physical properties of the soils, geology, and slope stability at the new 45 transmission structure sites near a mapped landslide or other unstable slope condition, consistent with

APM GEO-2 (see Section 4.6, "Geology, Soil, and Mineral Resources"). The results of the geotechnical 46

47 study would be incorporated into final engineering designs for transmission structure foundations. If

48 necessary, retaining walls and other slope stability controls would be implemented to reduce the potential

- for mudflow. Temporary work areas would be stabilized and revegetated, and the applicant would 49
- 50 implement BMPs from its BMP Manual, and as required by the SWPPP, that would further reduce the

potential for mudflow. The proposed project would be built in compliance with CPUC General Order 95
 and the California Building Standards Code to address local conditions. Construction and operations
 personnel would only be in areas susceptible to mudflow for short durations-and would not be on-site
 during precipitation events substantial enough to initiate a mudflow. Therefore, potential impacts under

this criterion risk to people or structures would be less than significant.

5 this criterionrisk to people or structures would be less than significant 6

#### 4.9.4 Mitigation Measures

7

8

9 **MM WQ-1:** Pesticide Application. If pesticides are used during construction or operations, they shall 10 be applied in accordance with Federal Insecticide, Fungicide, and Rodenticide (FIFRA) labels. 11 Applicators shall be appropriately trained and shall be certified by the California Department of Pesticide 12 Regulation. Prior to any use of pesticides, the type of pesticides proposed for use shall be approved by 13 the CPUC. Prior to each pesticide application the national weather service (forecast.weather.gov) shall be 14 consulted, and no pesticides shall be applied if the chance of rain exceeds 70 percent within 24 hours of 15 the proposed application time and location. Records of type and amount of pesticides used and locations 16 of application shall be kept and submitted to the CPUC on a monthly basis during construction. 17 18 Mitigation measure MM HAZ-5 is detailed in Section 4.8, "Hazards and Hazardous Materials." No other

19 mitigation measures are associated with impacts on Hydrology and Water Quality.