Table 1 Total Land Disturbance for Proposed Project with Revised Components Compared to 2013 RIRP ER

Project Feature	Stie Quantity		Work Area Disturbance Calculation (L x Win feet)		Permanent Disturbance Calculation (L x Win feet)		Work Area Disturbance (acres)		Temporary Disturbance (acres)		Pemmanent Disturbance (acres)	
	2013 ER	Curenty Proposed	2013 ER	Curently Proposed	2013 ER	Curently Proposed	2013 ER	Curently Proposed	2013 ER	Currently Proposed	2013 ER	Curently Proposed
Overhead 230-kV Transmission Lines												
Guard Structures	16	14	150×100	100×50	--	--	5.5	1.6	5.5	1.6	0	0
Construct New LTT	16	12	200×200	200×200	$84 \times 84{ }^{1}$	954.951	14.7	11.0	11.5	8.6	3.2	2.4
Construct New TSP	59	47	200×100	200×100	$\begin{gathered} \text { 35-ft } \\ \text { diameter }{ }^{2} \end{gathered}$. 60 -ft diameter ${ }^{2}$	27.1	21.6	23.5	18.8	3.5	2.8
Construct New Riser Pole	--	4	200×100	200×100	--	$\underset{\text { diameter }{ }^{\frac{60-\mathrm{ft}^{2}}{}} .}{ }$	---	3.7	--	3.4	--	0.3
Modify Existing LST	1	1	200×200	200×200	--	--4	0.7	0.9	0.7	0.9	0	0
230-kV Conductor \& optical ground wire (OPGW) Stringing Setup Area - Puller ${ }^{4}$	17	11	300×100	300×100	--	--	11.7	7.6	11.7	7.6	0	0
230-kV Conductor \& OPGW Stringing Setup Area - Tensioner ${ }^{4}$	17	11	400×100	400×100	--	--	15.6	10.1	15.6	10.1	0	0
230-kV Conductor Field Splice Area ${ }^{5}$	2	2	50×50	50×50	--	--	0.1	0.1	0.1	0.1	0	0
New Roads (Downline, Access, and Spur)	7.5 miles	4.1 miles	Linearfeet x $18{ }^{6}$	Linearfeet x $18{ }^{6}$	Linear feet x $18{ }^{6}$	Linearfeet x $18{ }^{6}$	16.4	8.9	0	0	16.4	8.9
Underground $230-\mathrm{kV}$ Transmission Lines												
Vault Installation	--	32	--	150×100	--		--	11.0	--	11.0	--	$0.030+0.06$
Conduit Duct Bank Installation	--	22,000 feet	--	$\begin{aligned} & \text { Linear feet x } \\ & 30 \end{aligned}$	--	--	--	15.2	--	15.2	--	0
Distribution Lines												
Distribution Pole Removal	23	27	* $\times 30 \times 150$	7 $\times 30 \times 150$	X $\times 14$	X $\times 14$	X 2.4	X 2.8	-x	xx	Xx 0.08	X× 0.1
TSP Riser Pole or Distribution Pole Installation	14	11	+ $\times 30 \times 150$	$x \times 30 \times 150$	$\times 15$	X $\times 15$	Xx 1.4	X $\times 1.1$	xx	x x^{8}	Xx0.06	X $\times 0.04{ }^{8}$
Vault Installation	7	9	* $\times 30 \times 150$	$2 \times 30 \times 150$	$\times \times 4 \times 4$	$x \times 4 \times 4$	Xx0.7	X×0.9	xx	xx	X×0.003	X×0.003
Conduit Duct Bank Installation	4,000 feet	5,850 feet	Linearfeet x 30 or 32	$\begin{aligned} & \text { Linearfeet } \mathrm{x} \\ & 30 \end{aligned}$	X \times Q	$\pm \times 0$	2.7	4.5	xx	$x \times$	0	0

Project Feature	Ste Q	antity	Work Area Calc (Lx W	Disturbance lation nfeet)	Pem	Disturbance lation nfeet)	Work	Disturbance es)	Tempo	Disturbance res)	Pema	Disturbance es)
Telec ommunic ation Fiber Optic Cables												
Vault Installation	6		6×6	$6 \times 6100 \times 50$	-	$\begin{gathered} 8 \times 54 \times 4 \text { (just } \\ \text { the lid) } \end{gathered}$	0.13	0.332 .57	0.13	0.132.57	0	. (Since no change to ground surface use)
Conduit Duct Bank Installation	3,900 feet	$\begin{aligned} & \text { 17,700 feet } \\ & (\mathrm{OK}) \end{aligned}$	Linear feet x 1.5	$\text { Linearfeet } \mathrm{x}$ 1.53	--	--	0.005	0.00512 .27	0.005	0.00512 .27	0	0
Fiber Optic Cable Pulling Site	6	6	40×60	40×60	--	--	0.33	0.33	0.33	0.33	0	0
Marshalling Yards												
Yard-1-Material and Equipment Marshalling Yard ${ }^{9}$	1 (15 acres)	1 (15 acres)	--	--	--	--	--	--	--	--	--	--
Yard-2 - Material and Equipment Marshalling Yard ${ }^{9}$	1 (4 acres)	1 (5.5 a cres)	--	--	--	--	--	--	--	--	--	--
Sum of Etimated Disturbance Acreage ${ }^{10}$							xx	xx	xx	xx	xx	xx

${ }_{1}$ Assumes permanent disturbance is comprised of the 45 -foot-wide by 45 -foot-long footprint for each LTT and clearance of vegetation within 25 feet of the tower footprint inside the ROW (approximately 0.2 acre per LST). As each tower's actual permanent footprint varies with tower height and strength level, these values will adjust with final engineering.
${ }^{2}$ Assumes pemanent disturbance is comprised of the 10 -foot diameter footp int foreach TSP and clearance of vegetation within 25 feet of the TSP inside the ROW (approximately 0.06 acre per TSP). As each TSP's actual
Assumespermanent disturbance iscompised of the 10 -loot diameter footp int for each isp and clearance
${ }_{3}^{3}$ A riser pole is assumed to have the same permanent disturbance as a TSP.
4 This structure has pre-existing permanently disturbed area for ongoing operations and maintenance access by SCE
${ }^{4}$ Based on 9,000 feet conductor reel lengths, number of circ uits, and route design.
5 Includes anchoring and dead-end hardware and/or equipment needed to temporarily secure conductor wire to the corect tension
${ }^{6}$ Based on length of road in miles \times road width of 14 feet with 2 feet of shoulder on each side of road.
7 The telecommunic ations fiber optic cables would be installed at the same time as and within the same duct banks the underground $230-\mathrm{kV}$ transmission lines and the distribution lines. As such, the work areas and
associated work area and temporary disturbance would not increase.
8 TSP niser poles for distribution line loc ations 7 and 8 would be placed in location
pole installation are accounted for in the pole removal disturbance acreage.

- Material and Equipment Marshalling Yards to be located in previously disturbed areas
${ }^{10}$ The disturbed acreage calculations are estimates based upon SCE'sprefered area of use for the described project feature, the width of the existing ROW, or the width of the proposed ROW; they are subject to revision based upon final engineering and review of the project by SCE's Construction Manager and/or contractorawarded project.
Footing Volume and Area Calculations
LTdepth $H-60$ ft. deeep, $4 . f \mathrm{ft}$. diameter, aty 4 per LT: earth removed for footing $=H-28 \mathrm{cu}$. yds. $\times 4=112 \mathrm{cu}$. yds.; surface area $=12.57 \mathrm{sq}$. ft. $\times 4=50.28$ sq. ft.
TSP depth $H-60 \mathrm{ft}$. deep, 10 ff . diameter, qty 1 per TSP: earth removed for footing $=H-175 \mathrm{cu}$. yds ; surface area $=78.54 \mathrm{sq}$. ft.

Formatted: Strikethroug
Formatted: Strikethroug
Formatted: Superscript
Formatted: Strikethroug
Formatted: Strikethroug
Formatted: Strikethroug
Deleted: xx
Formatted: Strikethrough
Formatted: Strikethroug
Formatted: Strikethrough

