APPENDIX 4.6-B

GEOTECHNICAL INVESTIGATION FOR SALT CREEK SUBSTATION PROPONENT'S ENVIRONMENTAL ASSESSMENT (PEA)

Prepared by Geosyntec Consultants 10875 Rancho Bernardo Road, Suite 200 San Diego, CA 92127

August 22, 2012

Prepared for:

San Diego Gas & Electric Company 8316 Century Park Court, CP52G San Diego, California 92123

GEOTECHNICAL INVESTIGATION 69KV TRANSMISSION LINE TL6965 SALT CREEK SUBSTATION TO MIGUEL SUBSTATION CHULA VISTA, CALIFORNIA

Prepared by:

Geosyntec Consultants

engineers | scientists | innovators

10875 Rancho Bernardo Road, Suite 200 San Diego, CA 92127 Telephone: (858) 654-6559 www.geosyntec.com

Project Number: SC0368-26

22 August 2012

Geosyntec[▷] consultants

10875 Rancho Bernardo Road, Suite 200 San Diego, CA 92127 PH 858.674.6559 FAX 858.674.6586 www.geosyntec.com

22 August 2012

Mr. Tyler Lonsdale San Diego Gas & Electric Company 8316 Century Park Court, CP-52G San Diego, California 92123

Subject: Geotechnical Investigation 69KV Transmission Line TL6965 Salt Creek Substation to Miguel Substation Chula Vista, California

Dear Mr. Lonsdale:

Geosyntec Consultants (Geosyntec) is pleased to provide the San Diego Gas & Electric Company (SDG&E) the accompanying geotechnical investigation report for the proposed 69 kilovolt (kV) Transmission Line TL6965 between the proposed Salt Creek Substation and the existing Miguel Substation in Chula Vista, California. This report presents our conclusions and recommendations pertaining to the project and the results of the field exploration program and laboratory testing.

We appreciate the opportunity to provide geotechnical consulting services to SDG&E on this important project. If you have any questions or require additional information, please contact the undersigned at (858) 674-6559.

Sincerely,

Neveus

Jennifer L. Nevius, G.E. 2825 Project Engineer

Alexander J. Greene, C.E.G. 2249 Senior Engineering Geologist

TABLE OF CONTENTS

Page

1.	INT	RODUCTION	1
	1.1	Project Description	
	1.2	Purpose and Scope of Services	1
2.	GEO	DTECHNICAL INVESTIGATION	3
	2.1	Previous Investigations	
		2.1.1 URS, 2011	
		2.1.2 GEOCON, 2011	
		2.1.3 Woodward-Clyde Consultants, 1981	
	2.2	Pre-Field Activities	
	2.3	Site Reconnaissance	
	2.4	Exploratory Borings	
	2.5	Geotechnical Laboratory Testing	5
3.	SITI	E AND GEOLOGIC CONDITIONS	6
	3.1	Geologic and Seismic Setting	6
	3.2	Surface Conditions	7
	3.3	Geologic Units	7
		3.3.1 Surficial Deposits	8
		3.3.2 Otay Formation	8
		3.3.3 Santiago Peak Volcanics	8
	3.4	Groundwater	8
4.	GEO	DLOGIC HAZARDS	10
	4.1	Fault Ground Rupture	10
	4.2	Strong Ground Shaking	10
	4.3	Soil Liquefaction	10
	4.4	Secondary Effects of Seismic Activity	
	4.5	Landslides and Slope Stability	
		4.5.1 Expansive and Collapsible Soil	
		4.5.2 Other Geologic Hazards	12
5.	DIS	CUSSIONS, CONCLUSIONS, AND RECOMMENDATIONS	13
	5.1	Earthwork	13
		5.1.1 Removal of Unsuitable Areas	13
		5.1.2 Fill and Backfill	13
		5.1.3 Fill Slopes	14

TABLE OF CONTENTS (Continued)

Page

	5.2	Surface Drainage	14
	5.3	Foundation Design	14
	5.4	Foundation Excavation Characteristics	15
	5.5	Construction Observation	16
6.	LIM	ITATIONS	17
7.	REF	ERENCES	18

LIST OF TABLES

Table 1:	Summary of Site Information
Table 2:	Recommended Foundation Design Parameters

LIST OF FIGURES

Figure 1:	Site Location and Vicinity Map
Figure 2a:	Site and Exploration Location Plan - North
Figure 2b:	Site and Exploration Location Plan - South
Figure 3:	Regional Topographic Map
Figure 4:	Regional Geologic Map
T ' 7	

Figure 5: Regional Fault and Epicenter Map

LIST OF APPENDICES

- Appendix A: Previous Investigations
- Appendix B: Logs of Field Explorations
- Appendix C: Geotechnical Laboratory Testing

1. INTRODUCTION

This report presents the results of the geotechnical investigation for the San Diego Gas & Electric Company (SDG&E) proposed 69kV Transmission Line TL6965 in Chula Vista, California (Site). The subject improvements will be located between the proposed Salt Creek Substation and the existing Miguel Substation. This report was prepared by Mr. Jared Warner and Ms. Jennifer Nevius, G.E. and has been reviewed by Mr. Steven Fitzwilliam, G.E., and Mr. Alexander Greene, C.E.G of Geosyntec Consultants (Geosyntec), in accordance with the peer review policies of the firm.

1.1 <u>Project Description</u>

We understand that SDG&E is proposing to construct new poles along Transmission Line TL6965, located in the vicinity of State Route 125 (SR125) and approximately from Hunte Parkway to San Miguel Road (Figure 1). The subject portion of the transmission line alignment is shown on Figure 2. We understand that fourteen of the new pole structures require geotechnical investigation. A summary of information for these proposed pole locations is presented in Table 1.

1.2 <u>Purpose and Scope of Services</u>

The purpose of our geotechnical investigation was to provide geotechnical engineering recommendations for the referenced pole foundations. The scope of the investigation was outlined in our proposal dated 25 April 2012. Geosyntec performed a geotechnical investigation consisting of a site reconnaissance, review of existing geotechnical and geologic information, field explorations, laboratory testing, engineering analyses and evaluations, and the preparation of this geotechnical investigation report. In addition, we reviewed existing geotechnical reports provided by SDG&E for the design and construction of other transmission lines, transmission line improvements, and substation facilities in the area to supplement the current investigation.

This report presents our findings, conclusions, and geotechnical engineering recommendations for the proposed project. Specifically, this report provides discussions, conclusions, and recommendations for the project regarding:

- Geologic and seismic setting;
- Surface conditions;
- Anticipated geologic units;
- Potential geologic hazards;

- Earthwork and grading;
- Parameters for deep foundation design;
- Foundation excavation characteristics; and
- Construction observation recommendations.

Tables, figures, and appendices follow the text of this report.

2. GEOTECHNICAL INVESTIGATION

2.1 <u>Previous Investigations</u>

Several geotechnical investigations have been performed in the vicinity of the proposed pole structures for previous substation and transmission line projects. Summaries of the most pertinent previous investigations are provided below, and references for the available investigation reports are provided in Section 7. Copies of the pertinent boring logs, and/or laboratory test data from the previous investigations are provided in Appendix A. The locations of the applicable subsurface explorations are presented on Figures 2a through 2c.

2.1.1 GEOCON, 2011

Geosyntec was provided with a 2011 report of geotechnical investigation prepared by GEOCON Incorporated (GEOCON) for proposed wood to steel improvements to Transmission Line TL6910 [GEOCON, 2011]. This geotechnical investigation included exploratory borings, seismic refraction surveys, and laboratory testing. Nine of these previous borings and one previous seismic refraction survey are applicable to the current project. This geotechnical report also provided recommendations for foundation design and construction considerations for a wood to steel project.

2.1.2 URS, 2011

Geosyntec was provided with a 2011 report of geotechnical investigation prepared by URS Corporation (URS) for proposed wood to steel improvements to Transmission Line TL6910 [URS, 2011]. This geotechnical investigation included review of previous exploratory borings and previous seismic refraction surveys performed by URS [2005], additional exploratory borings, and laboratory testing. Three of these previous exploratory borings and two of these previous seismic refraction surveys are applicable to the current project. This geotechnical report also provided recommendations for foundation design and construction considerations for a wood to steel project.

2.1.3 Woodward-Clyde Consultants, 1981

Geosyntec was provided with a 1981 report of geotechnical investigation prepared by Woodward-Clyde Consultants (WCC) for a 230kV transmission line from the Miguel Substation to Mexico. This geotechnical investigation included site reconnaissance, exploratory borings, seismic refraction traverses, and laboratory testing. Several of these previous exploration locations are in close proximity to the current improvements, with additional explorations in the general vicinity of the project. This geotechnical report also provided recommendations for foundation design and construction considerations for this transmission line project.

2.2 <u>Pre-Field Activities</u>

Prior to conducting field explorations, a site-specific health and safety plan was prepared to protect Geosyntec personnel in accordance with Geosyntec and Occupational Safety and Health Administration (OSHA) requirements. Underground Service Alert (USA) was contacted to identify subsurface utilities at each of the boring locations. Boring permits were obtained from the County of San Diego Department of Environmental Health.

2.3 <u>Site Reconnaissance</u>

Site reconnaissance was performed at the proposed pole locations by a geologist from our firm. The reconnaissance consisted of evaluating site access for the field exploration program and a preliminary evaluation of geologic conditions in the vicinity of the proposed pole locations.

2.4 <u>Exploratory Borings</u>

Exploratory borings were performed at nine of the proposed pole locations between 25 June and 3 July 2012 and were designated Borings B-1 through B-9. The borings were advanced by Pacific Drilling of San Diego, California. Borings B-2 and B-4 were advanced using a track-mounted limited-access "Mole" drill rig due to the proximity of the boring to overhead utility lines. The remaining borings advanced for this investigation were advanced using a truck-mounted Unimog drill rig. Both drill rigs were equipped with 7-inch diameter hollow-stem augers. The borings were advanced to depths ranging between 17.0 and 41.5 feet below the existing ground surface (ft bgs). The approximate locations of the borings are shown on Figure 2a and 2b.

Soil samples from the borings were collected using a Standard Penetration Test (SPT) sampler or a 3-inch diameter, split-spoon California sampler driven with an automatic hammer (140-pound hammer falling approximately 30 inches). Bulk samples of the soil cuttings were also collected from exploratory borings. The soil samples from the borings were sealed and transported to the geotechnical laboratory for testing.

Descriptions and visual classifications of the subsurface materials were logged by a geologist from our firm and subsurface descriptions were based on the recovered soil samples and soil cuttings. The subsurface descriptions were developed in general accordance with American Society for Testing and Materials (ASTM) standard D2488.

A key to logs and the individual exploratory boring logs are presented in Appendix B. Sampling information, and other pertinent field data and observations are included on the boring logs.

Due to the developed nature of the site, the soil cuttings from Boring B-6 at Location 24 were drummed and temporarily stored on site. After characterization, the drums were removed from the site by SDG&E for disposal. The soil cuttings from the remainder of the borings were thinly spread in the vicinity of those borings.

2.5 Geotechnical Laboratory Testing

Soil samples from the test borings were tested to verify field classifications and evaluate the physical and engineering properties of the subsurface materials. The geotechnical laboratory testing of soil samples was performed by Excel Geotechnical Testing Inc. of Roswell, Georgia. The laboratory tests were performed in general accordance with the testing procedures of ASTM or other generally accepted test methods.

Laboratory Tests	ASTM Designation			
Moisture Content/Dry Density	D2216 / D2937			
Grain Size Analysis	D422			
Atterberg Limits	D4318			

The laboratory testing performed for this project included:

A summary table and individual results of the geotechnical laboratory testing program are presented in Appendix C.

3. SITE AND GEOLOGIC CONDITIONS

Our knowledge of the site conditions has been developed from a review of available geologic literature, previous geologic and geotechnical investigations by others, professional experience, site reconnaissance, and field and laboratory investigations performed for this study. A regional topographic map is presented in Figure 3, and a regional geologic map is presented in Figure 4.

3.1 Geologic and Seismic Setting

The site lies within the coastal margin along the western flanks of the Peninsular Ranges Geomorphic Province of southern California. The general site area extends across a relict terraced surface dissected by numerous incised drainages extending to the west off the topographic highlands east of the alignment down toward the Pacific Ocean. To the east and southeast of the alignment respectively, crystalline granitic rock associated with the Peninsular Range batholith and metavolcanic rock associated with the Santiago Peak Volcanics form the moderately steep slopes of the Peninsular Range foothills. To the northwest of the alignment, the general site area is bounded by the Otay Valley floodplain and to the west by the marine Nestor terrace. The site is situated approximately 11 miles east of the Pacific Ocean at the Silver Strand. The site area is underlain by shallow fills, topsoil, and alluvial, colluvial, and slopewash deposits), the Tertiary-age Otay Formation, and Jurassic to Cretaceous-age Santiago Peak Volcanics at depth. The surficial regional geology is shown on Figure 4.

The Rose Canyon fault zone (RCFZ) is the closest major active fault to the project area, located approximately 9.3 miles to the northwest, and dominates the seismic exposure of San Diego [Lindvall and Rockwell, 1995]. The primary faults comprising the RCFZ extend on land from La Jolla and continue south along the east margin of Mission Bay to the Old Town area; the RCFZ then continues south toward downtown San Diego, through San Diego Bay and south of the border roughly parallel to the coastline. Together with the Newport Inglewood fault zone, the RCFZ is considered a continuous zone comprised of 5 fault segments with a total length of approximately 110 miles (175 kilometers [km]). Studies in the San Diego area indicate an estimated slip rate of 1.5 millimeters/year along the RCFZ [Rockwell, 1991]. The maximum earthquake for this fault zone consists of a three segment rupture and an estimated 7.25 moment magnitude (M_w) event. Other active faults in the vicinity include the Palos Verde fault zone offshore to the west and the Elsinore and San Jacinto fault zones to the northeast. These fault zones and their respective distance from the site and maximum moment magnitudes are presented in the following table.

Fault Name	Distance and Direction from Site ^a	Maximum Moment Magnitude ^b
Rose Canyon	9.3 miles (15 km) to northwest	7.2
Palos Verdes	17.4 miles (28 km) to west	7.1
Elsinore (Julian Segment)	45.9 miles (74 km) to northeast	7.1
San Jacinto (Coyote Creek Segment)	47.8 miles (77 km) to northeast	6.8

Notes:

- a. Distances from site noted are the closest distance to the surface trace or inferred projection of the fault as measured from California Division of Mines and Geology [1998].
- b. Maximum moment magnitude values reported by California Geological Survey OFR 96-08 Appendix A, revised 2002 [CGS, 2003].

3.2 <u>Surface Conditions</u>

The proposed poles are located within the existing SDG&E easement between the proposed Salt Creek Substation adjacent to Hunte Parkway and the existing Miguel Substation off of San Miguel Road. From south to north, the alignment extends up the margin of terrace and fanglomerate deposits out of Salt Creek (Sites 1, 2, 43 and 44), crests the Otay Valley floodplain (Sites 22 through 29), and extends northward along rolling hills with intervening ridge tops (Sites 38 and 42). The general site areas include residential and commercial development beyond the easement.

The surface conditions along the alignment in the subject pole locations are characterized by sloping terrain varying from relatively flat to gentle slopes. The natural hillsides along the alignment are covered by moderate growth of scrub brush and low grasses. Each of the proposed pole locations are sited in open space adjacent to existing residential development with the exception of Site 24, which is situated within the asphalt parking lot of an existing commercial development. Site 24 is also situated adjacent to a descending slope with an inclination of approximately (2H:1V). Elevations along the alignment range from 487 to 630 feet above Mean Sea Level, and generally drain to the west or southwest toward San Diego Bay, except for Site 1, which drains to the southeast toward Salt Creek and Lower Otay Lake.

3.3 Geologic Units

Our knowledge of the subsurface conditions at the proposed pole locations is based on a review of available published geologic information, site reconnaissance, previous

borings and seismic refraction surveys performed by others for previous projects, and exploratory borings performed for the project by Geosyntec. A regional geologic map is presented in Figure 4. Generalized subsurface profiles at each of the proposed structure locations are provided in Table 2.

3.3.1 Surficial Deposits

Surficial deposits, including topsoil, alluvium, colluvium, slopewash, and residual soils are present in portions of the study area within the natural drainages and mantling the slope areas. The composition and strength of these materials are variable depending on the age, parent sources, and mode of deposition.

3.3.2 Otay Formation

The Tertiary-age Otay Formation underlies the majority of the proposed pole locations along the alignment and outcrops within the pronounced ridges of the western foothills of the Peninsular Range. The Otay Formation is described as predominantly grayish brown, silty fine sandstone to a reddish brown sandy, silty lean claystone (URS, 2011). Additionally, Kennedy and Tan (1977) describe the Otay Formation as light gray and light brown massive sandstone and claystone that is moderately well sorted and poorly indurated.

3.3.3 Santiago Peak Volcanics

The Jurassic- to Cretaceous-age, pre-batholithic metamorphosed volcaniclastic and meta-sedimentary rocks which underlie the Otay Formation at depth are known as the Santiago Peak Volcanics. These volcanic rocks, forming the bulk of the Peninsular Ranges to the east of the alignment, are slightly to intensely weathered forming the local deposits in the Otay Valley floodplain.

3.4 Groundwater

Groundwater was observed within the alluvium in Boring B-5 at a depth of approximately 11 ft bgs. This depth to groundwater represents conditions observed at the time of drilling and may not be indicative of stabilized water levels at this location.

With the exception of Boring B-5 as noted above, regional groundwater was not encountered in the current or previous explorations performed within the project alignment. Based on our review of available information, regional groundwater is expected to be greater than 40 ft bgs. Perched groundwater or localized zones of wet materials were observed in the borings, and based on our experience in the current field

investigation and similar sedimentary bedrock terrain, zones of perched groundwater are anticipated during foundation excavation.

4. GEOLOGIC HAZARDS

4.1 Fault Ground Rupture

The project area, like most of southern California, is considered to be situated in a seismically active area. Based on a review of previous geotechnical reports and available geologic maps, the project alignment is not underlain by known active faults that exhibit evidence of ground displacement during the last 11,000 years, therefore, fault rupture is not considered to be a constraint to the project. The potential for fault surface rupture is generally considered to be significant along "active" faults (defined as exhibiting surface rupture within the past 11,000 years) and to a lesser degree along "potentially active" faults (surface rupture within the past 1.6 million years). A review of published geologic maps did not identify the presence of any active or potentially active faults crossing on or projecting near the project site. The nearest mapped active fault traces are approximately 9.3 miles (15 km) to the northwest of the project area within the Rose Canyon fault zone, and 17.4 miles (28 km) to the west within the Palos Verdes fault zone [Jennings, 1994]. The closest potentially active fault to the site area is the La Nacion fault situated approximately 2.5 miles (4 km) to the west. Therefore it is our opinion that the potential for fault related surface rupture along the proposed project alignment is low.

4.2 <u>Strong Ground Shaking</u>

The RCFZ is the dominant source of potential ground motion at the site. Earthquakes on the Rose Canyon Fault have a maximum magnitude of 7.2 and are considered to be representative of the potential for seismic ground shaking within the property. The "maximum magnitude" is defined as the maximum probable earthquake that appears capable of occurring under the presently known tectonic framework (California Division of Mines and Geology Notes, Number 43). Based on the proximity of the site to the RCFZ and other potential seismic sources on more distant active faults, the project site will likely experience moderate ground shaking in response to a local or regional large magnitude earthquake occurring during the expected life span for the proposed project. The location of regional faults and historic earthquake epicenters are shown on Figure 5.

4.3 Soil Liquefaction

Seismically induced soil liquefaction can be described as a significant loss of strength and stiffness due to cyclic pore water pressure generation from seismic shaking or other large cyclic loading. The material types considered most susceptible to liquefaction are granular soils and low-plasticity fine grained soils which are saturated and loose to medium dense. Manifestations of soil liquefaction can include the loss of bearing capacity below foundations, surface settlements and tilting in level ground, and instabilities in areas of sloping ground.

For the proposed pole locations, due to the anticipated level of ground shaking for the expected life span for the proposed project, relatively dense nature of the formational soil, and weathered bedrock underlying the proposed pole locations below groundwater and/or the lack of permanent groundwater, the probability of soil liquefaction affecting the project is low. Correspondingly, the potential for damage due to liquefaction-induced seismic settlement and lateral spreading is also considered low.

4.4 <u>Secondary Effects of Seismic Activity</u>

The secondary effects of seismic activity resulting from ground shaking include lateral spreading, tsunamis and seiches. The probability of occurrence of each depends on the severity of earthquake, distance from the epicenter, faulting mechanism, topography, soil and groundwater conditions, and other factors.

Tsunamis are seismically-induced waves generated by sudden movements of the ocean bottom during submarine earthquakes, landslides, or volcanic activity. Seiches are similarly generated, but are waves in lakes or reservoirs. Based on the inland location, site elevation, and the location and direction of the downstream topography below the nearest large lake (Lower Otay Lake at approximately 1.0 miles southeast of the project, and the Sweetwater Reservoir at approximately 2.2 miles northwest of the project), the potential for damage due to a tsunami or seiche is considered very low and does not constitute a significant developmental hazard for the project.

4.5 Landslides and Slope Stability

The sedimentary deposits associated with the Otay Formation that are mapped within the site area are considered to be landslide prone. In addition, portions of the Miguel Substation have previously been identified as being underlain by landslide deposits or possible landslides (URS, 2011). Other nearby landslides have been previously mapped to the west of the proposed alignment (Figure 4), but based on our review of the available geologic maps and aerial photographs, there are no landslides that have been identified beneath the proposed sites. Given this review and our understanding of the proposed construction, the risk of slope movement associated with landslides at the proposed pole locations is considered to be low.

4.5.1 Expansive and Collapsible Soil

Our previous experience in the site area and the soil index testing performed for previous investigations and the current investigation indicates that the majority of the near-surface clayey materials are considered to be expansive and subject to desiccation cracking during cycles of wetting and drying.

Collapsible soils are not anticipated to be present in significant quantities along the proposed alignment and do not constitute a significant hazard during project construction.

4.5.2 Other Geologic Hazards

Other geologic hazards, including volcanic activity, are not considered to be a significant hazard given the geologic setting of the site.

5. DISCUSSIONS, CONCLUSIONS, AND RECOMMENDATIONS

The discussions, conclusions, and recommendations presented in this report are intended for the proposed new structures for Transmission Line TL6956 and are based on our understanding of the proposed project and this investigation.

5.1 <u>Earthwork</u>

We anticipate that the earthwork for the proposed project will include site preparation, cuts on the order of 5 feet, placement of engineered fill to achieve final grades, and fine grading for site drainage control. A majority of the material from cut areas will likely be used as fill.

We recommend that a pre-grading conference be held at the site with SDG&E, the contractor, and the geotechnical engineer. We also recommend that the earthwork be performed in accordance with Section 300 of the most recent edition of the "Standard Specifications for Public Works Constriction" (also known as the Greenbook) and "Regional Supplement Amendments" and the recommendations presented below.

5.1.1 Removal of Unsuitable Areas

Prior to grading, any abandoned utilities and improvements, vegetation, or other debris should be removed and properly disposed off-site. Removal of unsuitable topsoil and residual soils to competent material shall be required in areas of fill placement (graded pad areas). Removal depths are expected to range from 1 to 3 feet. Removals should extend beyond the toe of fill slopes a minimum distance equal to a 1:1 projection outward and down to an approved removal bottom. A representative of the geotechnical engineer should determine the actual lateral removal limits in the field during grading.

5.1.2 Fill and Backfill

Except for surficial organic materials (topsoil), the onsite soils are considered suitable for use as engineered fill. It is recommended that any import materials used for the project (if any) be composed of select material. "Select material" may be defined as having at least 40 percent of the material less than ¹/₄ inch in size, an expansion index less than 30, and no perishable, spongy, deleterious, impacted, or otherwise unsuitable material.

All fill and backfill should be compacted to a minimum relative compaction of 90 percent. Relative compaction is defined as the ratio of the in-place dry density to the maximum dry density as determined by ASTM D1557. Fill and backfill materials

should be compacted above the optimum moisture content, as determined by ASTM D1557. Fill soils should be placed in loose lifts no thicker than 8 inches. We recommend that a representative of the geotechnical engineer observe and test the compacted fills.

5.1.3 Fill Slopes

Fill slopes should be formed on an equipment width keyway (10-foot minimum) excavated at least 2 feet into competent material and tilted back at least 2 percent into the slope or as recommended in the field by the geotechnical engineer. Benching will be required after the removal of unsuitable material. Benches should be excavated within competent material as the fill slope formation progresses up slope. Benching shall be in accordance with Section 300-4.4 of the Greenbook unless otherwise directed by the geotechnical engineer.

Fill slopes should be constructed at a maximum inclination of 2H:1V (horizontal:vertical). The face of the slope should be compacted by back rolling with a sheepsfoot roller after each four-foot increase in slope height. When the pad grade is achieved, the slope face should be track walked with a dozer or rolled with a cable-lowered sheepsfoot, and finally grid-rolled.

5.2 <u>Surface Drainage</u>

It is recommended that positive measures be taken to properly finish grade the area of the proposed poles and pad areas so that drainage water from the project area does not pond and is directed away from foundations.

5.3 <u>Foundation Design</u>

We understand that the deep foundations to support the proposed poles will be designed using the Electric Power Research Institute (EPRI) computer program Moment Foundation Analysis and Design (MFAD). The design parameters for use with the MFAD program include:

- Subsurface material layer depths;
- Groundwater depth;
- Total unit weight;
- Internal friction angle;
- Cohesion;
- Elastic pressuremeter modulus; and
- Strength reduction factor.

Estimates of the required parameters were developed based on the results of our site reconnaissance, field exploration program, geotechnical laboratory testing, engineering evaluation and analyses, empirical correlations, literature research, and professional judgment. The design parameters recommended for foundation design using the MFAD computer program are presented in Table 2. These design parameters are intended for use in the MFAD computer program and may not reflect actual strengths. Pressuremeter testing was not performed as part of this project; the elastic pressuremeter modulus values were estimated from published correlations [EPRI, 1990].

Other conditions that influence the design of pole foundations include the presence of groundwater, inclination of adjacent slopes, thickness of residual, disturbed, or otherwise weak soil deposits. The observed groundwater depths, where applicable, are presented in Table 2. It is recommended that a depth of surface material be discounted in the design of the pole foundations. This recommendation is based on the assumption that the loose, weathered, and near surface materials inherently have lower strengths with an associated higher uncertainty. In addition, foundations in sloping terrain have the potential for erosion. The recommended surficial discount depth based on the potential for erosion, surfacing, and depth of weaker surficial deposits at the proposed pole locations is presented in Table 2. We assume that SDG&E will incorporate any additional discount depth or other method for the effects of sloping ground on foundation design, such as at Site 24.

5.4 **Foundation Excavation Characteristics**

Our evaluation of excavation characteristics is based on drilling characteristics during our exploratory borings, the logs of borings from explorations performed by others during previous investigations, and our local experience.

Based on the observed and reported drilling conditions observed during this and previous investigations, we anticipate that the drilled shaft foundations will be relatively easy to excavate within surficial deposits. However, caving of the drilled holes should be expected in surficial deposits, and will likely be exacerbated by the presence of perched groundwater. We anticipate that the formational materials may be excavated with moderate effort to high effort using conventional heavy-duty foundation drilling equipment. The borings were advanced with a small diameter hollow-stem auger to between 17 and 41.5 ft bgs. Auger and/or sampler refusal was encountered in multiple boring locations, as exhibited where borings were terminated at depths less than 40 feet. Although not encountered in our borings to the depths investigated, concretions may be present in the Otay Formation which may provide localized zones of difficult drilling.

5.5 <u>Construction Observation</u>

Variations in subsurface conditions may be encountered during construction. To permit correlation between the investigation data and the conditions encountered during construction, we recommend that the geotechnical engineer be retained to observe site preparation, grading, and foundation excavation. We further recommend that the geotechnical engineer be retained to test any compacted fills. Additional laboratory testing will be required during construction to evaluate the moisture and density relationships of fill soils at locations where a graded pad is planned.

6. LIMITATIONS

The geotechnical investigation for this project provided for the observation of only a portion of the pertinent subsurface conditions. The information provided herein is based on specific explorations performed under the supervision of Geosyntec personnel and based on the logs of borings performed by others and is of the assumption that soil conditions do not deviate appreciably from those encountered during the current and previous field investigations. This geotechnical investigation report has been performed in accordance with current practices and the standard of care exercised by scientists, geologists, and engineers performing similar tasks in this area. The conclusions contained in this report are based solely on the analysis of the conditions observed by Geosyntec personnel and as reported in the referenced geotechnical investigations for the project site. We cannot make any assurances concerning the accuracy or completeness of the data presented to us.

No warranty, express or implied, is made regarding the professional opinions expressed in this report. Site grading and earthwork, utility trench backfill, and foundation excavations should be observed by a qualified engineer or geologist to verify that the site conditions are as anticipated. If actual conditions are found to differ from those described in the report, or if new information regarding the site is obtained, Geosyntec should be notified and additional recommendations, if required, will be provided. Geosyntec is not liable for any use of the information contained in this report by persons other than SDG&E or their subconsultants, or the use of information in this report for any purposes other than referenced in this report without the expressed, written consent of Geosyntec.

7. **REFERENCES**

- Abbott, P.L., 1999. "The Rise and Fall of San Diego, 150 Million Years of History Recorded in Sedimentary Rocks", Sunbelt Publications, 231 p.
- American Society for Testing and Materials (ASTM), 2012. "Annual Book of ASTM Standards", Section 4 Construction. Volume 04.08 Soil and Rock.
- California Divisions of Mines and Geology, 1998. "Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada", prepared for International Conference of Building Officials to be used with 1997 UBC, February.
- California Geological Survey (CGS), 2003. "The Revised 2002 California Probabilistic Seismic Hazard Maps", prepared by T. Cao, W.A. Bryant, B. Rowshandel, D. Branum, and C.J. Wills, updating Open File Report 96-08.
- Electric Power Research Institute, 1990. "Manual on Estimating Soil Properties for Foundation Design," August.
- GEOCON, 2011. "Geotechnical Investigation, TL 6910 Wood to Steel Improvements, M.S.A. 6160015454, San Diego County, California," dated 15 July 2011 (GEOCON Project No. G1115-52-29).
- Kennedy, M.P., and Tan, S.S. 1977. "Geology of National City, Imperial Beach and Otay Mesa Quadrangles, Southern San Diego Metropolitan Area, California," California Division of Mine & Geology, Map Sheet 29, map scale 1:24,000.
- Jennings, C.W., 1994. "Fault Activity Map of California and Adjacent Areas, with Locations and Ages of Recent Volcanic Eruptions", California Department of Conservation, Division of Mines and Geology, Geologic Data Map Series, Map No. 6- Faults, Locations of recent Volcanic Eruptions, map scale 1:750,000.
- Todd, V.R., 2004. "Preliminary Geologic Map of the El Cajon 30'x 60' Quadrangle, Southern California", California Geological Survey Open-File Report 2004-1361, Southern California Areal Mapping Project (SCAMP), version 1.0, map scale 1:100,000.
- Lindvall, S.C., Rockwell, T.K., 1995. "Holocene Activity of the Rose Canyon fault zone in San Diego, California," Journal of Geophysical research, Volume 100, No. B12, pp 24, 121-124, 132, 10 December.

- Rockwell, T.K., et. al., 1991. "Minimum Holocene Slip Rate for the Rose Canyon Fault in San Diego, California," Environmental Perils in the San Diego Region, P.L. Abbott and W.J. Elliott, eds., San Diego Association of Geologists, pp. 37-46.
- United States Geological Survey, 2008. "National Seismic Hazards Mapping Program" http://earthquake.usgs.gov/research/hazmaps/design.
- URS, 2011. "Geotechnical Investigation, New Steel Poles TL-13826 Miguel to Proctor Valley, San Diego, California," dated 17 March (URS Project No. 27661044.10000).
- Woodward-Clyde Consultants, 1981. "Geotechnical Investigation for the Miguel to Mexico 230 kV Transmission Line (Tower Sites 4 through 48) for San Diego Gas and Electric Company, P.O. Box 1831, San Diego, California 92112," dated 21 October (WWC Project No. 51157S-SI01).

TABLES

Table 1. Summary of Site Information69kV Transmission Line TL6965 – Miguel Substation to Salt Creek Substation

PLS Structure #	Structure Longitude ^ª	Structure Latitude ^a	Pole Base Elevation ^a (feet)	Proximate Explorations	Reference	Exploration Date
42	116°59'3.994"W	32 ° 40'42.186"N	312.2	B-1 B-19 SL-00 B-1	URS, 2011 URS, 2005 URS, 2005 GEOCON, 2011	01/14/11 12/20/04 10 to 11/04 05/24/11
38	116°58'36.268"W	32 ° 40'29.275"N	493.0	B-2 SL-10 SL-1 B-6 B-2 B-3 B-4 4 5	URS, 2011 URS, 2005 GEOCON, 2011 GEOCON, 2011 GEOCON, 2011 GEOCON, 2011 GEOCON, 2011 WCC, 1981 WCC, 1981	01/14/11 10 to 11/04 NA 05/24/11 06/02/11 05/24/11 05/24/11 NA NA
29	116° 58'27.872"W	32° 39'42.261"N	584.8	B-1	Geosyntec, 2012	06/27/12
28	116° 58'26.332"W	32° 39'32.417"N	619.5	B-2	Geosyntec, 2012	06/29/12
27	116° 58'23.581"W	32 ° 39'14.835"N	630.3	B-3	Geosyntec, 2012	07/03/12
26	116° 58'21.527"W	32 ° 39'01.700''N	558.7	B-4	Geosyntec, 2012	06/29/12
25	116° 58'19.385"W	32° 38'48.007"N	503.4	B-5 13	Geosyntec, 2012 WCC, 1981	06/25/12 NA
24	116° 58'17.514"W	32° 38'36.049"N	544.1	B-6 14	Geosyntec, 2012 WCC, 1981	06/27/12 NA
23	116° 58'15.781"W	32° 38'24.786"N	551.6	B-7	Geosyntec, 2012	06/25/12

Geosyntec[▷]

Table 1. Summary of Site Information (Continued)69kV Transmission Line TL6965 – Miguel Substation to Salt Creek Substation

PLS Structure #	Structure Longitude ^a			Proximate Explorations	Reference	Exploration Date
22	116° 58'12.466"W	32 ° 38'21.456"N	563.5	B-8 15	Geosyntec, 2012 WCC, 1981	07/03/12 NA
2	116° 56'59.058"W	32 ° 37'16.031"N	540.5	B- 8	GEOCON, 2011	05/25/11
1	116° 56'46.648"W	32 ° 37'7.219"N	487.6	B-9	GEOCON, 2011	05/25/11
43	116° 56'55.562"W	32° 37'12.316"N	486.0	B-9	Geosyntec, 2012	06/27/12
44	116° 56'55.256"W	32° 37'12.091"N	483.0	B-9	Geosyntec, 2012	06/27/12

Notes:

a. The longitude, latitude, and pole base elevation from the Structure Record Table provided by SDG&E dated 18 April 2012.

b. NA = Not Available.

PLS Structure #	Layer Depth ^a (feet)	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)	E _{pmt} (ksi)	Shear Strength Reduction Factor, α	Surficial Discount Depth (feet)	Reginal Groundwater Depth (feet)
	0 to 10	115	30	50	1.5	0.8		
42	10 to 25	120	30	200	5.0	0.8	3	Not Encountered
	>25	125	30	400	5.0	0.8		
	0 to 5	115	30	50	1.5	0.8		
38	5 to 15	120	30	200	2.0	0.8	3	Not Encountered
	>15	125	30	400	5.0	0.8		
	0 to 5	115	30	50	1.5	1.0	- 3	Not Encountered
29	5 to 20	120	35	200	3.0	1.0		
2)	20 to 25	125	30	200	1.5	0.8		
	>25	130	37	500	5.0	1.0		
	0 to 5	115	30	50	1.5	1.0		
28	5 to 15	120	35	200	3.0	1.0	3	Not Encountered
	>15	125	37	500	5.0	1.0		
	0 to 5	115	30	50	1.5	0.8		
27	5 to 7	120	32	200	3.0	0.9	3	Not Encountered
	>7	125	37	500	5.0	1.0		

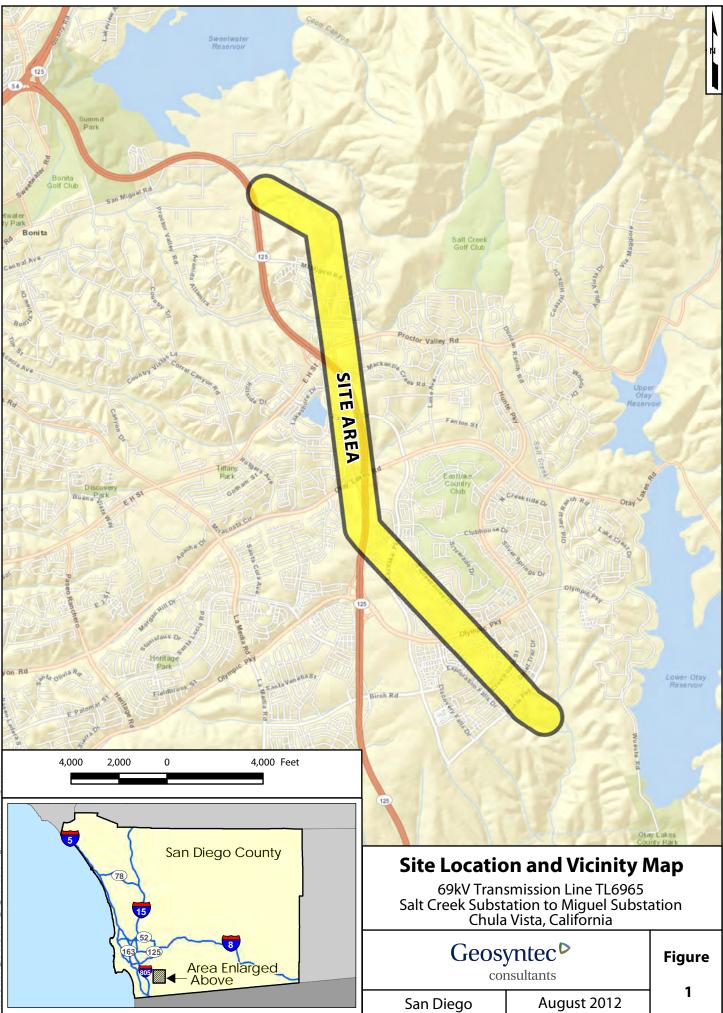
Table 2. Recommended Foundation Design Parameters69kV Transmission Line TL6965 – Miguel Substation to Salt Creek Substation

PLS Structure #	Layer Depth ^a (feet)	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)	E _{pmt} (ksi)	Shear Strength Reduction Factor, α	Surficial Discount Depth (feet)	Regional Groundwater Depth (feet)
	0 to 6	115	30	50	1.5	0.8		
26	6 to 11	120	30	200	1.5	1.0	3	Not Encountered
	>11	125	37	500	5.0	1.0		
	0 to 9	115	30	50	1.5	1.0		
25	9 to 20	125	30	200	1.5	0.8	3	11
25	20 to 25	125	35	200	2.0	1.0		
	>25	130	37	500	5.0	1.0		
	0 to 5	115	30	50	1.5	0.8	1	Not Encountered
24	5 to 15	125	30	200	1.5	0.8		
	>15	130	37	500	5.0	1.0		
	0 to 5	115	30	50	1.5	1.0		
23	5 to 10	125	30	200	1.5	0.8	3	Not Encountered
25	10 to 25	130	37	500	5.0	1.0	5	Not Elicountered
	>25	130	33	500	5.0	0.8		
	0 to 5	115	30	50	1.5	1.0		
22	5 to 10	125	30	200	1.5	0.8	3	Not Encountered
	10 to 25	130	37	500	5.0	1.0	5	
	>25	130	33	500	5.0	0.8		

Table 2. Recommended Foundation Design Parameters (Continued)69kV Transmission Line TL6965 – Miguel Substation to Salt Creek Substation

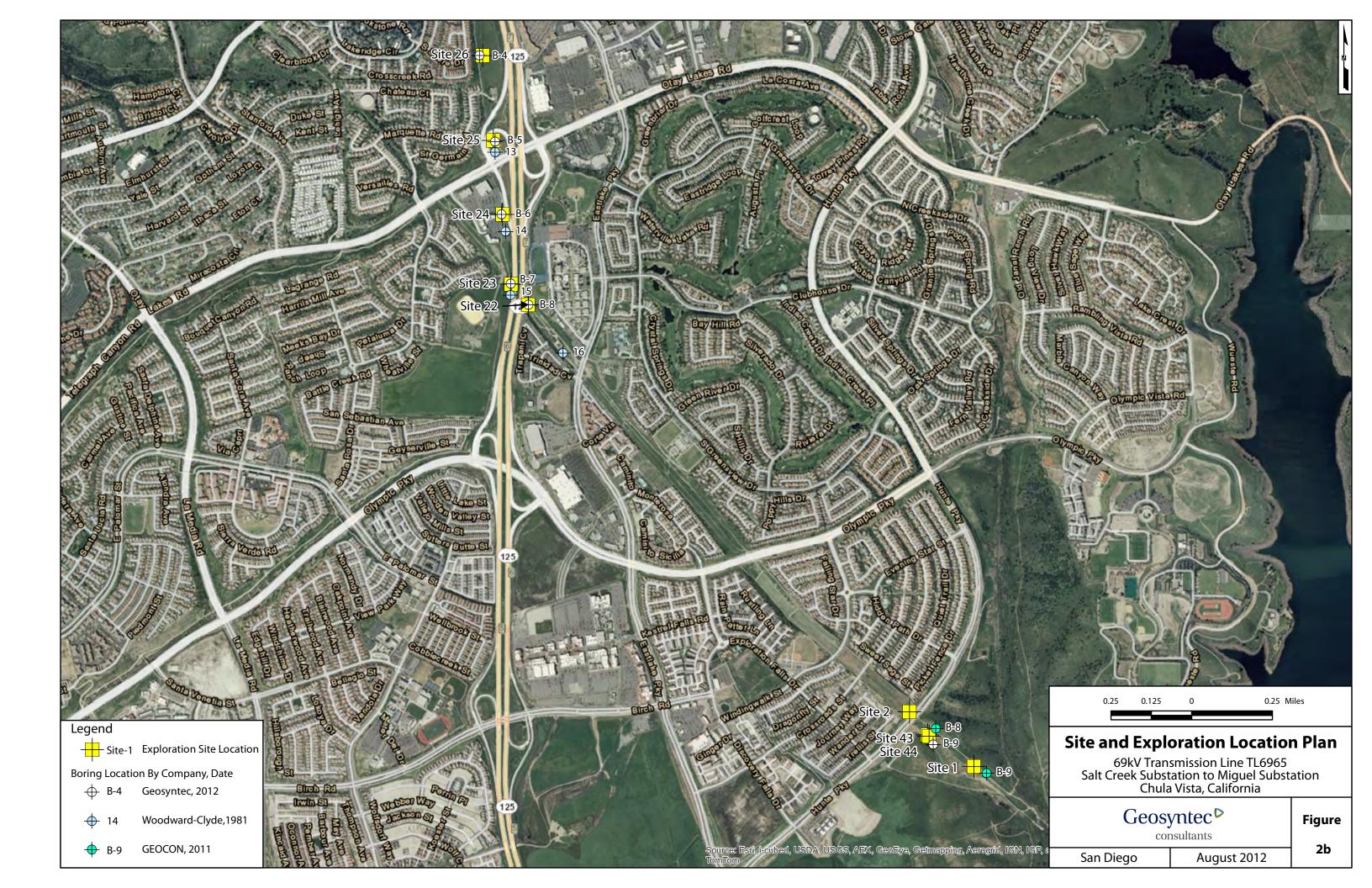
PLS Structure #	Layer Depth ^b (feet)	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)	E _{pmt} (ksi)	Shear Strength Reduction Factor, α	Surficial Discount Depth (feet)	Regional Groundwater Depth (feet)
	0 to 3	115	30	50	1.5	0.8		
2	3 to 10	120	35	200	3.0	0.9	3	Not Encountered
	>10	125	37	500	5.0	1.0		
1	0 to 4	115	30	50	1.5	0.8	- 3	Not Encountered
1	>4	120	37	500	5.0	1.0		
	0 to 5	115	30	50	1.5	0.8		
43	5 to 10	120	32	200	1.5	1.0	3	Not Encountered
	>10	130	37	500	5.0	1.0		
44	0 to 5	115	30	50	1.5	0.8		
	5 to 10	120	32	200	1.5	1.0	3	Not Encountered
	>10	130	37	500	5.0	1.0		

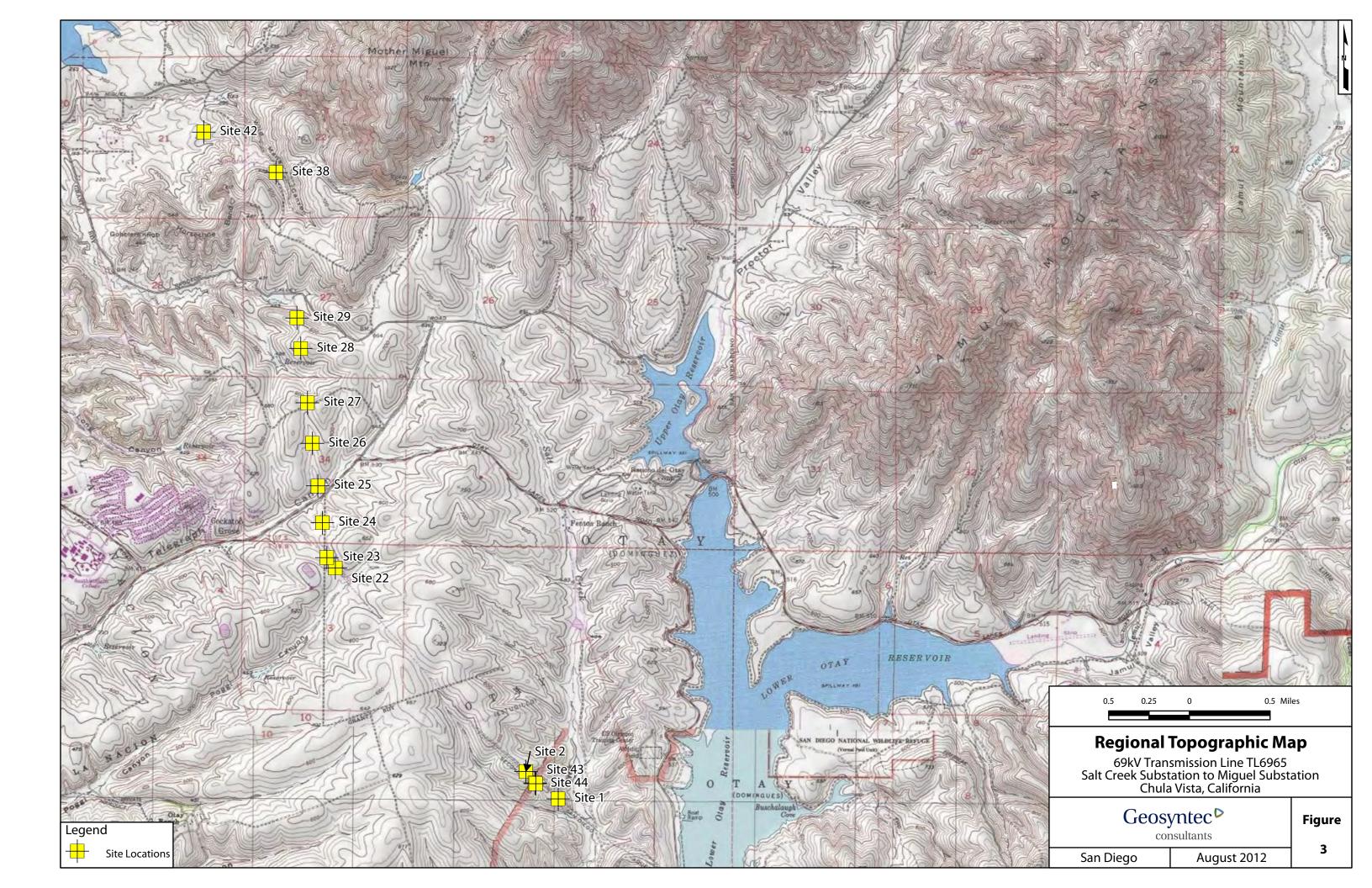
Table 2. Recommended Foundation Design Parameters (Continued)69kV Transmission Line TL6965 – Miguel Substation to Salt Creek Substation

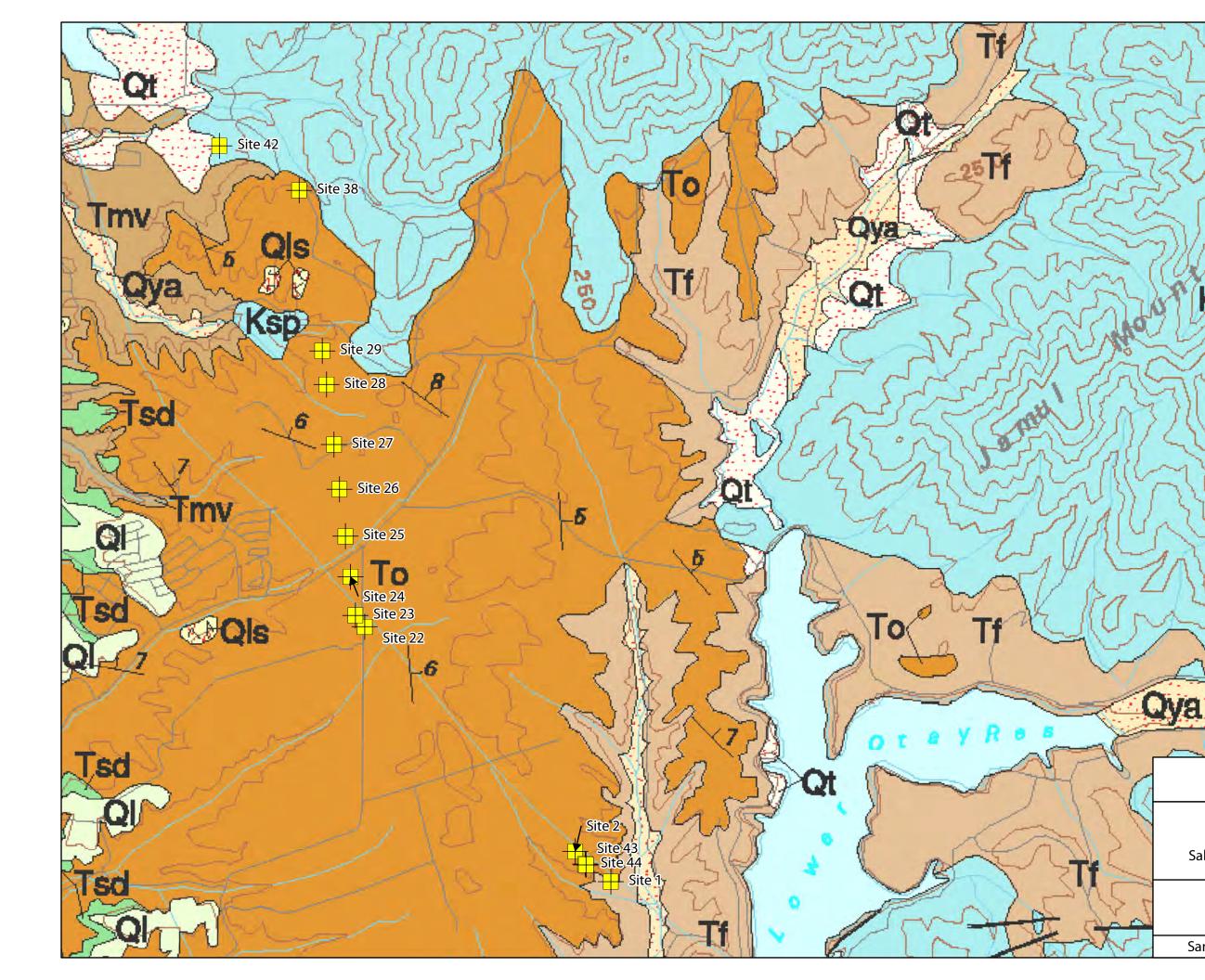

Notes:

a. Depth below existing grade.

b. pcf = pounds per cubic foot, psf = pounds per square foot, ksi = kips per square inch.




FIGURES



GIS\SC0368_SDGE\SC0368_26_Tieline\Tieline_SiteLocation.mxd;JLarson

Legend

Ksp

Site Locations

Stike and Dip of Bedding in Sedimentary Rocks

Geologic Map Units

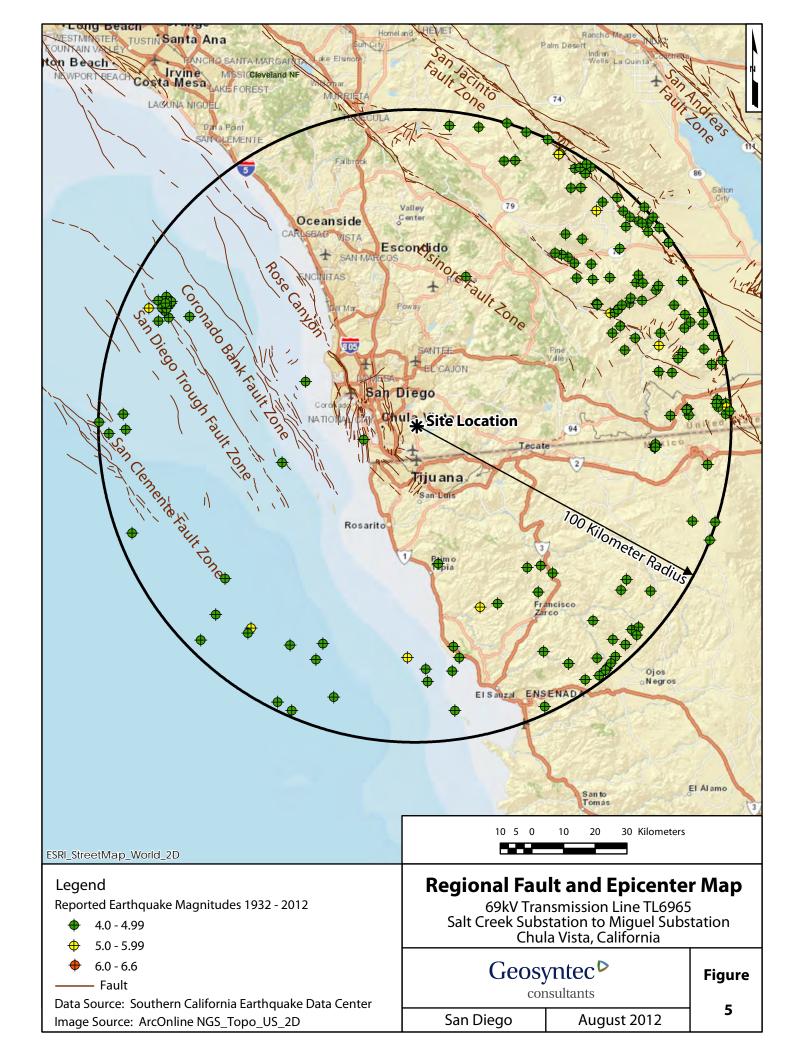
Qls - Landslide deposits (Quaternary) Ql - Lindavista Formation (Pleistocene or Pliocene) Qya - Young Alluvium (Holocene) Tsd - San Diego Formation (Pliocene) Tf - Fanglomerate (Pliocene and Miocene) To - Otay Formation (Oligocene) Tmv - Mission Valley Formation (Eocene) Qt - Terrace deposits (Pleistocene) Ksp - Santiago Peak Volcanics (Early Cretaceous) Reference USGS Geologic Raster Image Source: Preliminary Geologic Map of the El Cajon 30' x 60' Quadrangle, Southern California, Version 1.0, Compiled by V.R. Todd Open-File Report 2004-1361 Detailed Description of Map Units, version 1.0

0.5 0.25 0 0.5 Miles

Regional Geologic Map

69kV Transmission Line TL6965 Salt Creek Substation to Miguel Substation Chula Vista, California

Geosyntec [▶]	
consultants	


Figure

cor	nsultai

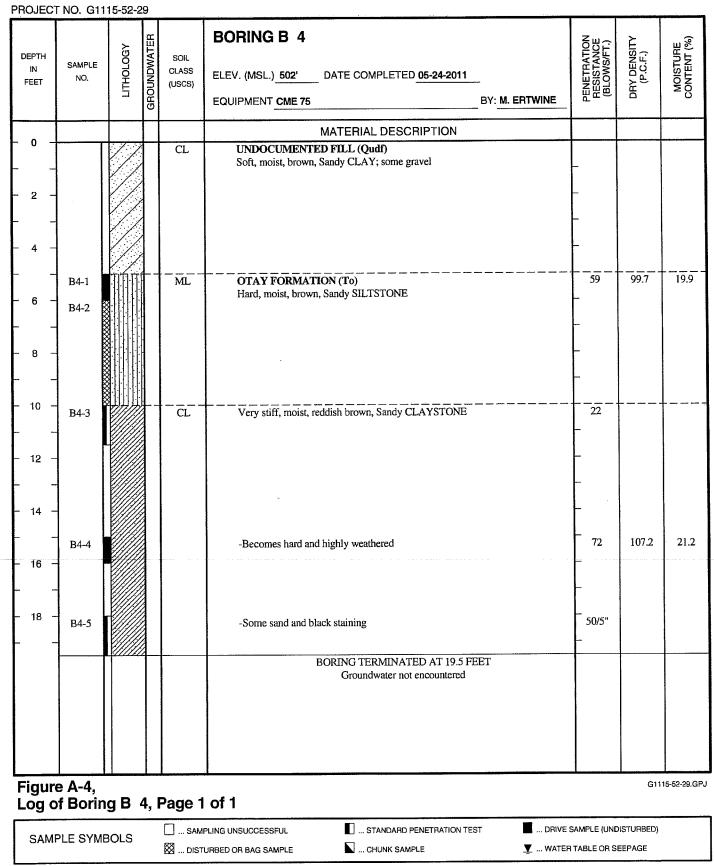
San Diego

August 2012

4

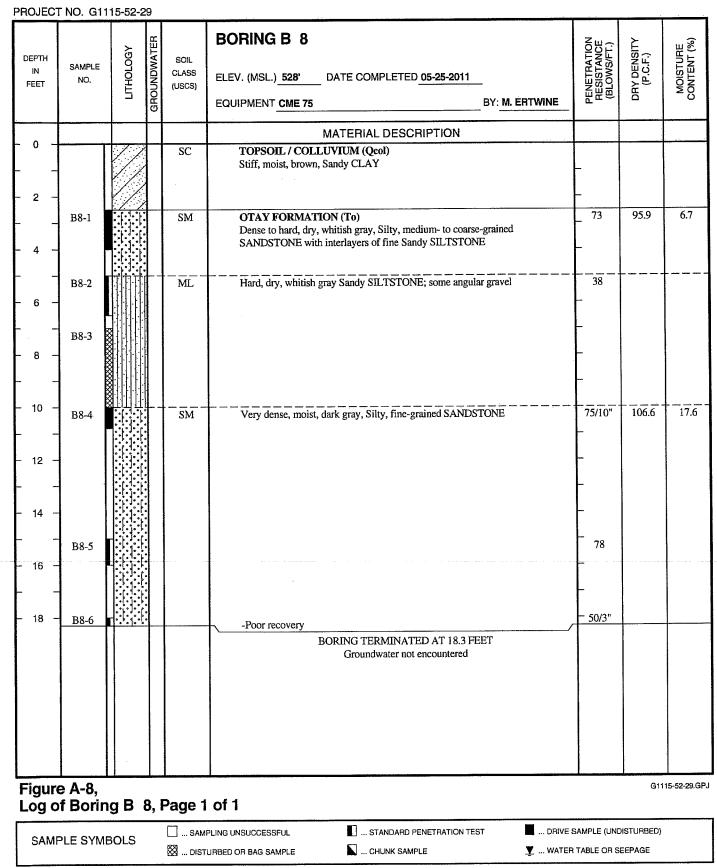
APPENDIX A

PREVIOUS INVESTIGATIONS


DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСҮ	GROUNDWATER	Soil Class (USCS)	BORING B 1 ELEV. (MSL.) 309' DATE COMPLETED 05-24-2011 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
		1			MATERIAL DESCRIPTION			
0 -				SC	COLLUVIUM (Qcol) Medium dense, moist, grayish brown, Clayey SAND; some gravel			
2 -								
4 -						_		
6 -	B1-1			CL	Hard, moist, gray to brown, Sandy CLAY	23	99.8	23.0
- 8 -	B1-2			SM	MISSION VALLEY FORMATION (Tmv) Dense, moist, yellowish to gray brown, Silty, fine- to coarse-grained SANDSTONE	43 -		
10	B1-3 B1-4			- _{CL} -	Hard, gray mottled yellowish brown, Silty CLAYSTONE; some fine subrounded gravels	86/9"	120.3	11.8
12 – – 14 –	D14					-		
_	B1-5				-Some black carbon staining within matrix	- 72		
- 16 -					амполнолого солоност от стоятия вологи и отности отношение отности от солото с от стоятия отности отности инност	_		
18 	B1-6			:	-Highly weathered	- _ ^{50/5"}	115.9	16.2
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered			
		-						
igure	e A-1,				-61		G111	5-52-29.0
_og o	fBoring	gB.	I, P					
SAMP	LE SYMB	OLS	!	_	LING UNSUCCESSFUL 📕 STANDARD PENETRATION TEST 📕 DRIVE S	SAMPLE (UNDI		

DEPTH IN FEET	SAMPLE NO.	ПТНОГОВУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 2 ELEV. (MSL.) <u>511'</u> DATE COMPLETED <u>06-02-2011</u> EQUIPMENT <u>MARL 5</u> BY: <u>M. ERTWINE</u>	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0 -					MATERIAL DESCRIPTION			
2 -	B2-1			SM	OTAY FORMATION (To) Medium dense, moist, grayish brown, Silty, fine- to medium-grained SANDSTONE	_		
- 4 -						-		
	Data		: 					
6 -	B2-2			MI.	Hard, moist, grayish brown, Sandy SILTSTONE	43 	93.5	25.3
8 -								
10 -	B2-3	ليا ليا ليا بو مر مر بر بيوم		SC	Medium dense, moist, brown, Clayey SANDSTONE; some gravels	14		
12 – –			******			-		
14 –		مرم برم برم مرم برم برو مرم مر				-		
- 16 -	B2-4			SM	Dense, moist, yellowish brown, Silty, medium- to coarse-grained SANDSTONE	48	111.1	10.4
-			•					
18 -	B2-5		•			- 23 -		
					BORING TERMINATED AT 19.5 FEET Groundwater not encountered			
igure	A-2, Boring	a R 4	2. F	Page 1	of 1		G111	15-52-29.0
			-, 1					

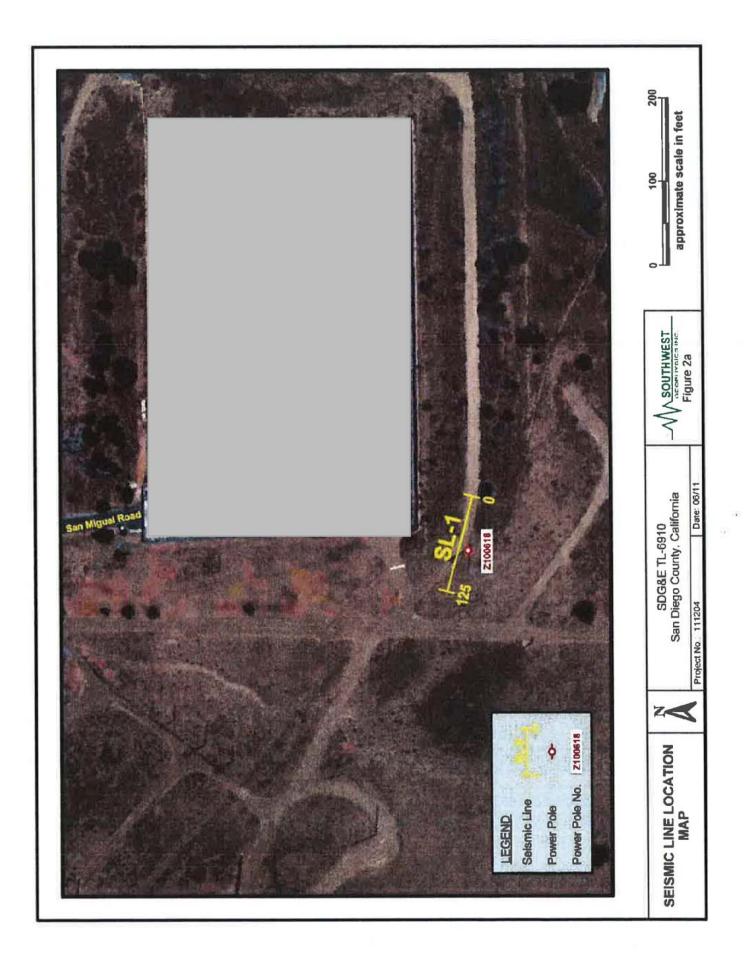
DEPTH		GΥ	ATER	SOIL	BORING B 3	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
IN FEET	SAMPLE NO.	гітногоду	MDN	CLASS	ELEV. (MSL.) 491' DATE COMPLETED 05-24-2011	ETRA ISTAI DWS/	P.C.F	DISTU
		Ē	GROUNDWATER	(USCS)	EQUIPMENT CME 75 BY: M. ERTWINE	BL(BL(DRY)	ΣÖ
			$\left - \right $		MATERIAL DESCRIPTION			
0	B3-1			SC	COLLUVIUM (Qcol) Medium dense, moist, grayish brown, Clayey, fine to medium SAND; some			
_					gravel to about 4 feet	-	:	
2 -						-		
-						L		
4							:	
4 -								
	B3-2	<i>911111</i>		CL	-Becomes reddish brown OTAY FORMATION (To)	42	112.0	12.5
6 -					Very stiff, moist, light reddish brown mottled gray, Sandy CLAYSTONE;	-		
_					some gravel and laminations of sand	-		
8	B3-3					_ 45		
Ŷ								
_	Γ					Γ		
10	B3-4	//////////////////////////////////////		SC	Very dense, moist, reddish brown, Clayey, fine-grained SANDSTONE;	53		
-		, <u>, , , , , , , , , , , , , , , , , , </u>			moderately cemented	-		
12 -			•			_		
_			, ,			L		
		×***	•					
14 -			?			-		
	B3-5			CL	Hard, moist, gray mottled reddish brown, Sandy CLAYSTONE	41		<u> </u>
16 -						-		
_						-		
18								
10	B3-6				-Becomes very hard and highly weathered	_ 50/5"	108.7	16.
_			1		BORING TERMINATED AT 19.5 FEET			
					Groundwater not encountered			
igure	⊨ A-3,			<u> </u>	<u></u>	<u> </u>	G111	15-52-29.
og o	f Borin	g B ;	3, I	Page 1	of 1			
04145	LE SYME				LING UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S	SAMPLE (UND	ISTURBED)	

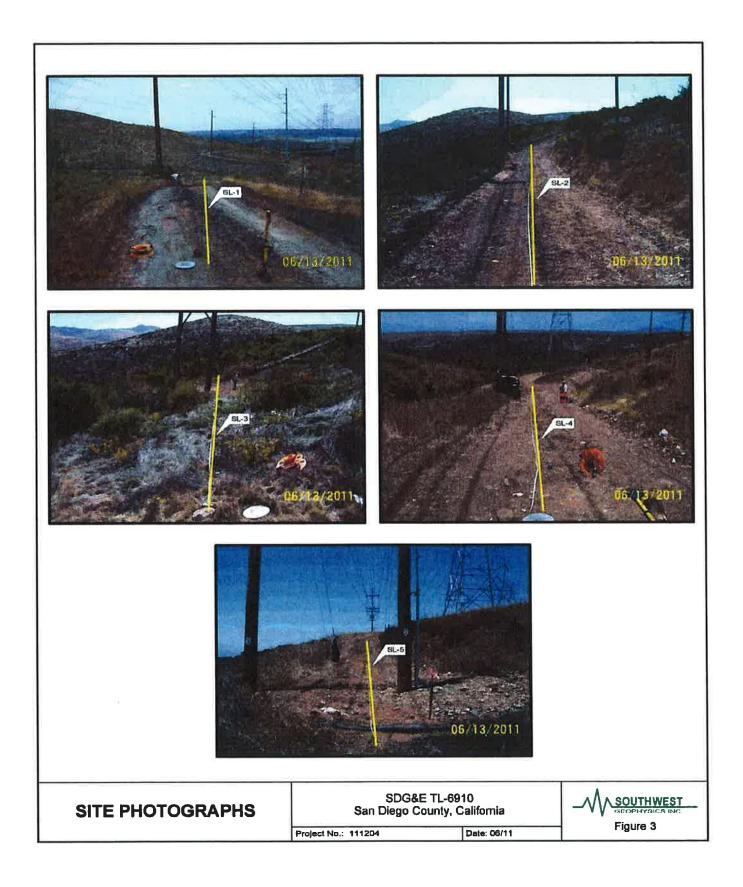


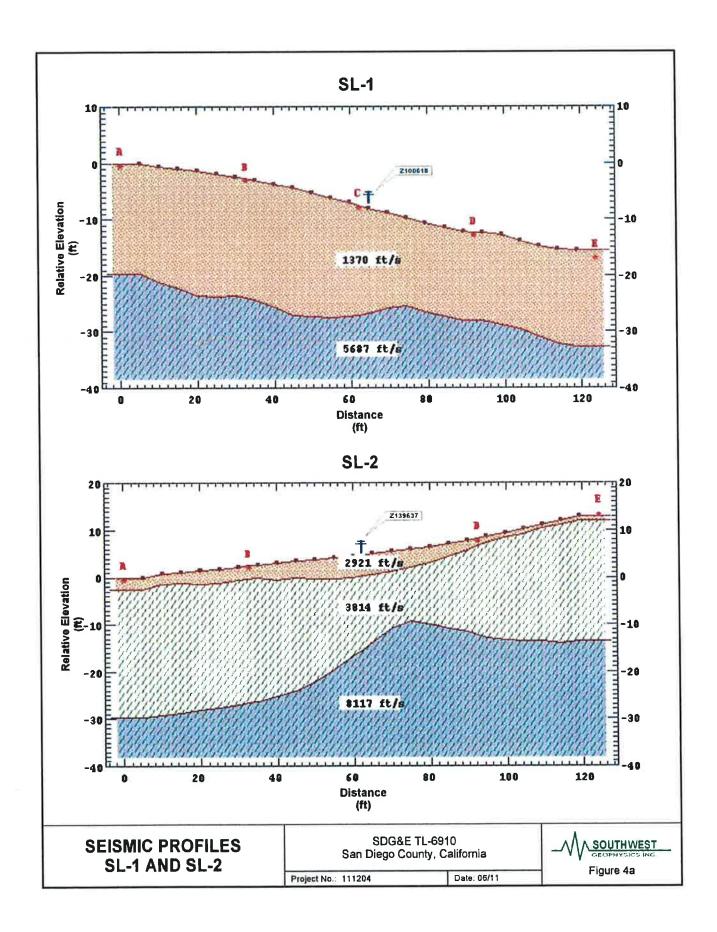
ROJEC	T NO. G11	15-52-2	29					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОБУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 6 ELEV. (MSL.) 447' DATE COMPLETED 05-24-2011 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			\square		MATERIAL DESCRIPTION			
0 -		17		CL	COLLUVIUM (Qcol)			
· _		//			Stiff, moist, dark brown, Sandy CLAY	-		
2 -		11				_		
L			×.					
-		//						
4 -						$\left - \right $		
-								
	B6-1		•	SM	OTAY FORMATION (To) Very dense, moist, grayish brown, Silty, fine-grained SANDSTONE;	80/9"	117.9	14.7
6 -	B6-2	8	•		moderately cemented	-		
_			•			-		
0			•					
8 -			•					
_			•			-		
10 -					Hard, moist, gray brown, Sandy CLAYSTONE	79		<u>+</u>
	B6-3			CL	Hard, moist, gray brown, Sandy CLA ISTONE	_ /3		
-								
12 -						-		
-						-		
						_		
14 -								
-	B6-4					50/5"		
16 -								
18 -	B6-5					62		
_	-							
			1		BORING TERMINATED AT 19.5 FEET	-		
					Groundwater not encountered			
igur .og o	e A-6, of Borin	g B (6, F	Page 1	of 1		G11	15-52-29.GF
		-				SAMPLE (UND	ISTURBED)	
SAM	PLE SYME	SOLS				TABLE OR SE	EEPAGE	

PROJEC	Г NO. G11	15-52-2	29					
DEPTH IN FEET	SAMPLE NO.	ЛЭОТОНЫ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 7 ELEV. (MSL.) 378' DATE COMPLETED 05-25-2011 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
_					MATERIAL DESCRIPTION		-	·
- 0 - - 2 - - 2 -				GP	UNDOCUMENTED (Qudf) Dense, dry, light brown, Sandy GRAVEL	-		
- 4 -		000	2					
	B7-1			CL	OTAY FORMATION (To) Very stiff, moist, light grayish brown, Sandy CLAY; trace fine gravel, highly weathered	42	101.7	22.0
- 8 -	B7-2				-Becomes hard, reddish brown, moist, light gray to reddish brown, Silty to Sandy CLAYSTONE; some small subrounded gravel	54		
	B7-3					-		
- 10 -	B7-4				-Large gravel in sampler, Poor Recovery, erroneous blow counts	50/3"		
- 12 - - 14 - 	B7-5				-Excavates to a Sandy CLAY with rounded gravel to about 14 feet	_ _ 90/9"		
- 16 -	-			<u> </u>	Very dense, damp, Silty, fine- to medium SANDSTONE; some gravels			
	- B7-6			SM	very dense, damp, Smy, me- to medium SAMDS FORE, some gravers	- 50/3"		
		• • • • •	r		BORING TERMINATED AT 18.3 FEET Groundwater not encountered			
Figur Log c	e A-7, of Borin	ıg B	7,	Page 1	l of 1		G11	15-52-29.GPJ
SAM	PLE SYMI	BOLS				SAMPLE (UND		

PROJEC:	T NO. G11	15-52-2	29					
DEPTH IN FEET	SAMPLE NO.	ЛЕНОГОВА	GROUNDWATER	SOIL CLASS (USCS)	BORING B 9 ELEV. (MSL.) 472' DATE COMPLETED 05-25-2011 EQUIPMENT CME 75 BY: M. ERTWINE	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION		-	
- 0 -			• • • • •	SM	OTAY FORMATION FANGLOMERATE (Tof) Dense, dry, olive to reddish brown, Silty, fine-coarse SANDSTONE; some gravel	-		
	B9-1		•			_ 50/6"		
- 4 -			•					
- 6 -	B9-2 B9-3		•		-Becomes very dense, moist, reddish to whitish brown	- 73 -		
	- 69-3		•			-		
- 8 -			•			F		
- 10 -	-		•		-Poor recovery	-		
- 12 -	- B9-5				-Becomes whitish gray	- _ 56		
- 14 -						-		
- 16 -								
- 18 -								
	B9-6				-Becomes gravelly SAND BORING TERMINATED AT 19.0 FEET	80/6"		
					Groundwater not encountered			
Figur Log c	e A-9, of Borin	g B	9,	Page 1	of 1		G11	15-52-29.GPJ
SAM	PLE SYME	BOLS			_	SAMPLE (UNE R TABLE OR S		


APPENDIX B


LABORATORY TESTING


Laboratory tests were performed in accordance with the generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected bulk, chunk, and ring samples were tested for their dry density moisture content and shear strength, The results of our laboratory tests are presented in tabular forms hereinafter The results of in-place density and moisture content tests are depicted on the boring logs in Appendix A.

	Dry Density	Moisture C	Content %)	Ultimate	Ultimate
Sample No.	(pcf)	Before Test	After Test	Unit Cohesion (psf)	Angle of Shear Resistance (degrees)
B1-1	99.8	23	33.5	340	10
B1-3	120.3	11.8	18.8	420	30
B2-2	93.5	25.3	36.9	600	25
B2-4	111.1	10.4	16.9	290	36
B3-2	112.0	12.5	19.1	780	36
B3-6	108.7	16.5	21.8	1080	35
B4-1	99.7	19.9	29.9	230	31
B4-4	107.2	21.2	27.8	610	29
B6-1	117.9	14.7	21.6	190	41
B7-1	101.7	22.0	26.6	770	21
B8-1	95.9	6.7	25.2	450	
B8-4	106.6	17.6	23.5	570	34
B11-1	118.3	8.1	13.3	600	38
B11-4	114.9	16.8	22.5	740	26
B15-1	111.1	7.2	17.6	780	35
B15-4	105.3	9.7	18.9	60	37

TABLE B-I SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS ASTM D 3080-03

URS, 2011

Project: TL 13826 Miguel to Proctor Valley		Key to Logs
Project Location: San Diego, CA Project Number: 27661044.10000		Sheet 1 of 1
Elevation, feet Type Number Graphic Log Graphic Log	DESCRIPTION	Water Content, % Dry Density, pcf DtHEL LESLS
	7	8 9 10
COLUMN DESCRIPTIONS		
 Elevation: Elevation in feet referenced to mean sea level (MSL) or site datum. Depth: Depth in feet below the ground surface. Sample Type: Type of soil sample collected at depth interval shown; sampler symbols are explained below. Sample Number: Sample identification number. Unnumbered sample indicates no sample recovery. Blows per foot: Number of blows required to advance driven sampler 12 inches beyond first 6-inch interval, or distance noted, using a 140-lb hammer with a 30-inch drop. Graphic Log: Graphic depiction of subsurface material encountered; typical symbols are explained below. Material Description: Description of material encountered; may include relative density/consistency, moisture, color, particle size; texture, weathering, and strength of formation material. Material Description: Description of material encountered; may include relative density/consistency, moisture, color, particle size; texture, weathering, and strength of formation material. Clayey SAND to sandy CLAY (SC/CL) Sandy silty CLAY (CH-CL) Sandy silty CLAY (CH-CL) 	 Iaboratory, expressed as periods of the second secon	 <u>s:</u> Comments and observations regarding y driller or field personnel. %<#200 sieve %<#200 sieve m Atterberg limits test, % (LL-PL), %
TYPICAL SAMPLER GRAPHIC SYMBOLS 2.5" ID sampler Standard Penetration sample Standard Penetration Standard Penetration sample Standard Penetration sample <td< td=""><td> ✓ (ATD) ✓ Static water level meatime after drilling ✓ Change in material pr ✓ Change in material pr ✓ Inferred contact betwee lithology Descriptions and stratum lines are nodified to reflect results of lab tests d at the time the borings were adva </td><td>ed at time of drilling and sampling asured in boring or well at specified operties within a lithologic stratum een strata or gradational change in interpretive; actual s.</td></td<>	 ✓ (ATD) ✓ Static water level meatime after drilling ✓ Change in material pr ✓ Change in material pr ✓ Inferred contact betwee lithology Descriptions and stratum lines are nodified to reflect results of lab tests d at the time the borings were adva 	ed at time of drilling and sampling asured in boring or well at specified operties within a lithologic stratum een strata or gradational change in interpretive; actual s.

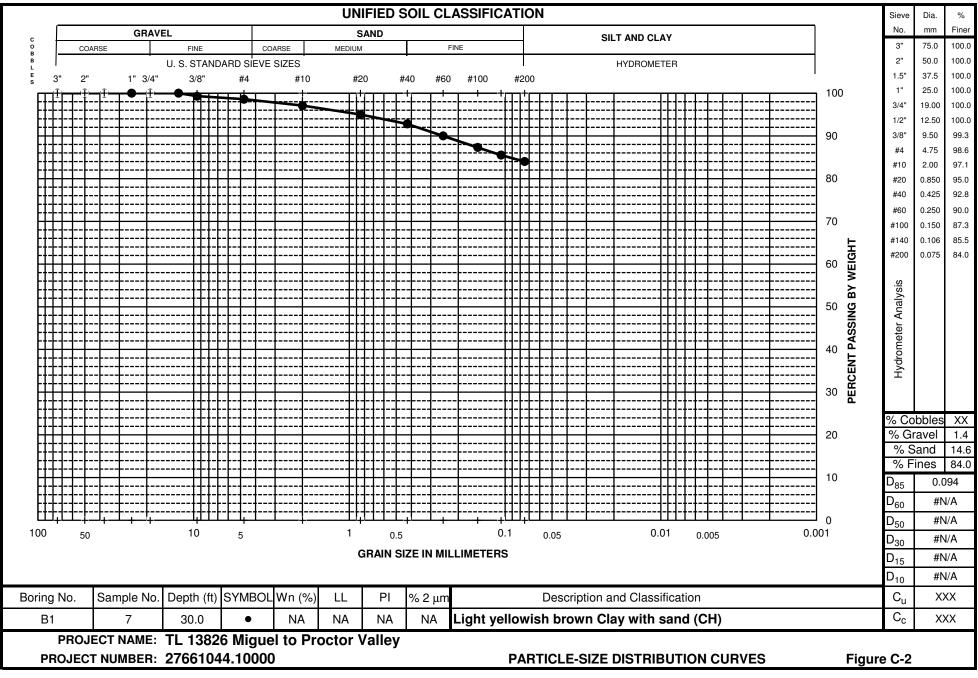
URS

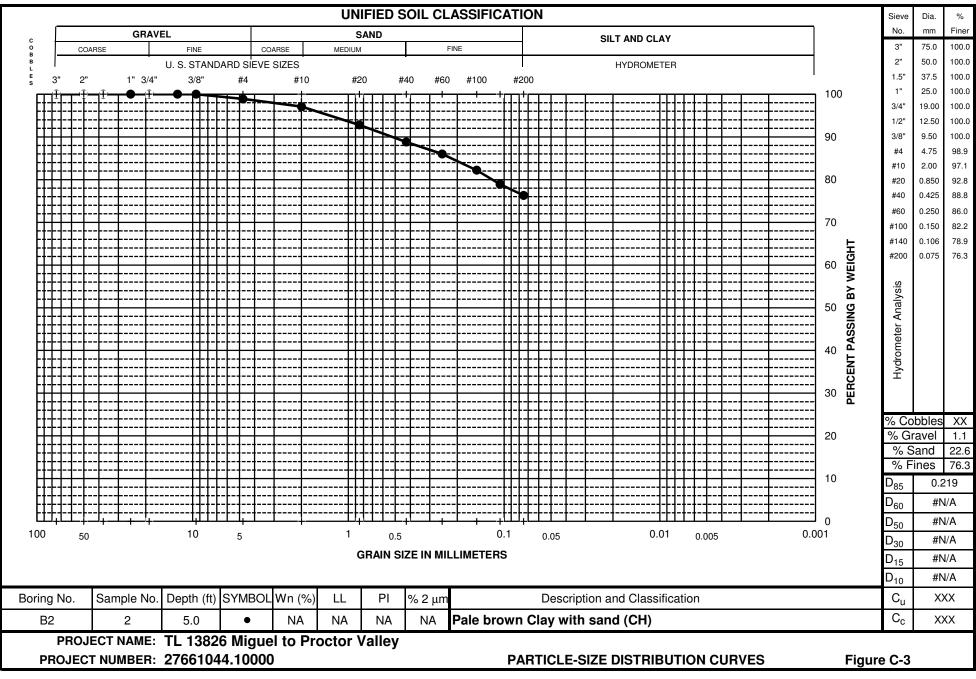
Log of Boring B-1

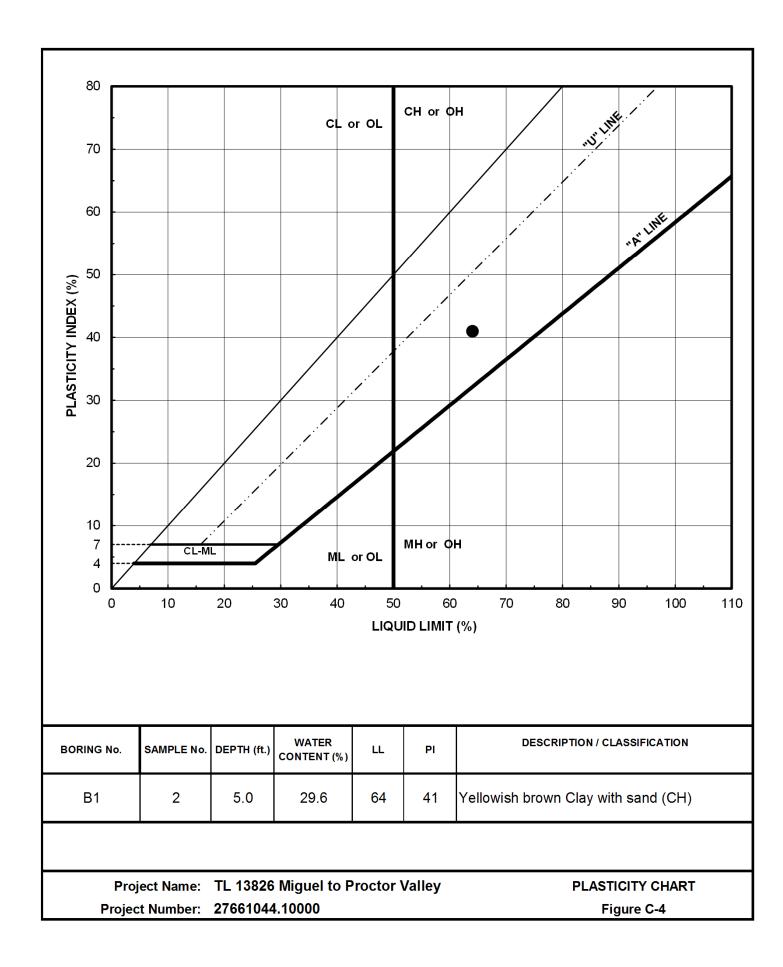
Sheet 1 of 1

Date(s) Drilled	01/14/11	Logged By	K. Shaner	Checked By	M. Hatch
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	7 inches	Total Depth of Borehole	41.5 feet
Drill Rig Type	ATC	Drilling Contractor	Tri-County Drilling, Inc.	Approximate Surface Elevation	277 feet
Water Leve Depth (Fee		Sampling Method(s)	SPT/2.5" ID	Hammer Data 140 lb	s/30-inch drop
Borehole Backfill	Soil cuttings	Location	See Site Plan		

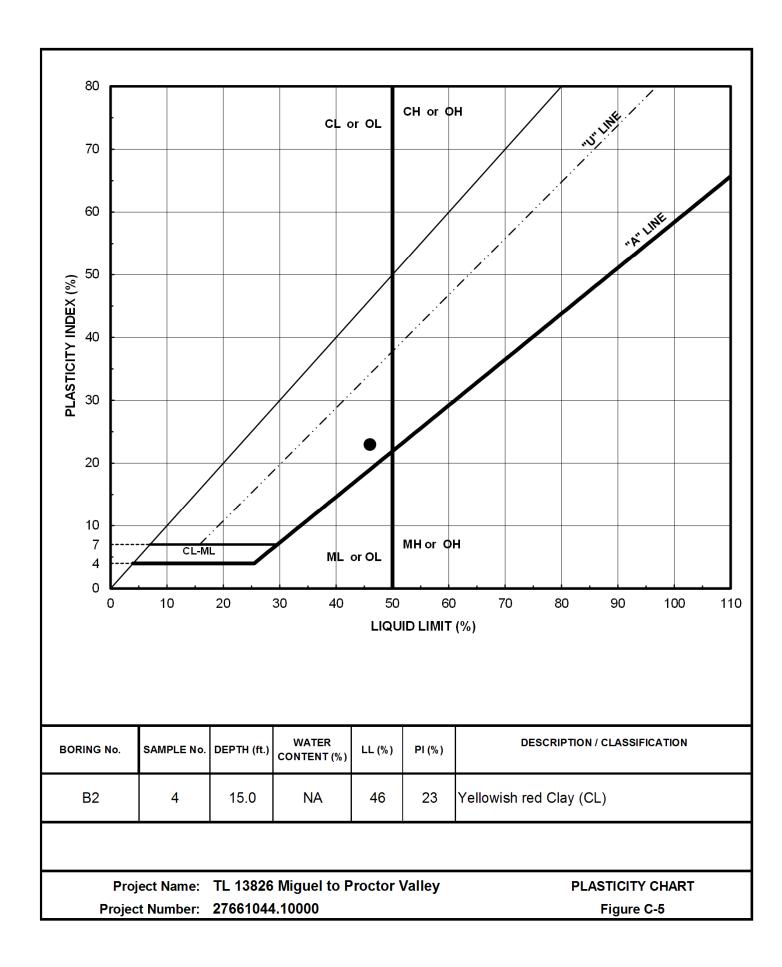
			Sampl	ES				cť	
Elevation, feet	Depth, feet	Type	Number	Blows per foot	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Density, pcf	REMARKS AND OTHER TESTS
	U 		1-1	9		ALLUVIUM Medium stiff to stiff, moist, dark yellowish brown, sandy lean CLAY (CL) -	-		
-270	5 -		1-2	21		 RESIDUAL SOIL Medium stiff, moist, yellowish brown, silty fat CLAY (CH), low plasticity, trace caliche, blocky structure 	- 30		WA(83), LL(64), PI(
	- - - -		1-3	40			- - - 16		SA(67)
-260	- 15 -		1-4	80		- - Becomes very dense, sandy cemented claystone, yellowish brown with gray seams, manganese staining	- - - 17		
	- 20 -		1-5	49		- - 	-		
-250	25- -		1-6	65			- 20		
	- 30- -		1-7	48		Very dense, yellowish brown, cemented CLAYSTONE with manganese staining, blocky structure	-		SA(84)
-240	35- -		1-8	85		- 	- - - 17		
	- - - -		1-9	71			- - - -		
	45-					URS	-		Figure B-2

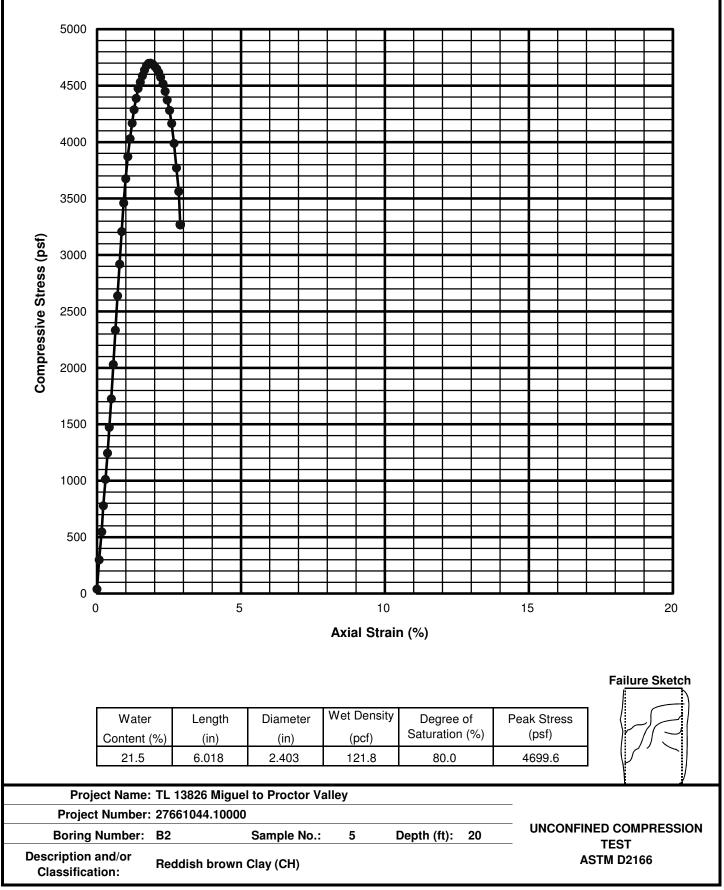

Log of Boring B-2


Sheet 1 of 1


Date(s) Drilled	01/14/11	Logged By	K. Shaner	Checked M. Hatch
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	7 inches	Total Depth of Borehole 31.5 feet
Drill Rig Type	ATC	Drilling Contractor	Tri-County Drilling, Inc.	Approximate Surface Elevation 481 feet
Water Leve Depth (Fee		Sampling Method(s)	SPT/2.5" ID	Hammer Data 140 lbs/30-inch drop
Borehole Backfill	Soil cuttings	Location	See Site Plan	

		SA	MPLE	ES				pcť	
Elevation, feet	Depth, feet	Type		Blows per foot	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Density, pcf	REMARKS AND OTHER TESTS
-480	-0					TOPSOIL Dense, moist, dark brown, clayey SAND to sandy CLAY (SC/CL), trace sand			
	-	2-'	1	15		COLLUVIUM Medium dense, moist, yellowish to reddish brown, silty, clayey SAND (SM-SC), some caliche	19		
	5-	2-2	2	27		Stiff, moist, reddish brown, sandy, silty CLAY (CH-CL)	-		SA(76), CORR
-470	- - 10 -	1-:	3	25		- - 	- - - 20		WA(63)
	- 15 -		4	27		SWEETWATER FORMATION Hard, moist, grayish brown, sandy, silty CLAYSTONE with manganese staining	-		LL(46), PI(23)
-460	20 - - -	1-	5	57		- Becomes very hard	-		UC
	25- - -	1-0	6	13		- - → Becomes very stoff, increased silt and sand content -	- - 30 -		
-450	30-	i ■ 1-5	7	50/6"		Becomes very hard	-		
	- - 35	-				Bottom of boring at 31.5 feet	- - -		
-440	40 - -	-				· · · ·	-		
<u> </u>	45-					URS	-		Figure B-3





CORROSIVITY TEST ANALYSIS

Project Number: 27661044	Boring No.:	B2
Project Name: TL 13826 Miguel to Proctor	Sample No.:	2
Project Engineer: KAS	Depth (ft):	5.0

Initial Visual Classification Symbol: CH

Resistivity Test: California Test Method 643

State of Specimen before Processing

X Passing soil through #8 sieve

x Moist State

Air Dried

Oven Dried at 60 C

Minus No. 8		
r ()		
s25		
117.74		
114.49		
99		
20.98		

Mininum Resistence value: 360 ohm-cm

pH of slurry: 8.10 Temperature : 21.8

Г	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
Weight of Soil in bowl (g):	318.93	318.15	325.32	331.25	
Weight of mixing bowl (g):	151.04	151.04	151.04	151.04	
Wet weight of Soil (g):	167.89	167.11	174.28	180.21	
Amount of water added (ml):	0	10	10	10	
Soil Box + Wet Soil (g), M5	239.99	262.47	270.64	272.56	
Weight of Soil Box (g), M6	130.40	130.40	130.40	130.40	
Wt. of Wet Soil for test (g), M7	109.59	132.07	140.24	142.16	
Volume of Soil Box (cm ³)	79.2	79.2	79.2	79.2	79.2
Est. Saturation (%)	41.8	70.2	86.7	94.6	
Resistivity Reading (ohm)	1,200	480	370	360	
Resistence (ohm-cm)	1,200	480	370	360	

Resistence = Soil Box Constant x Reading

pH Test :

50g wet weight of soil mixed with 50 mL of de-ionized water.

Sulfate Content:

100g of soil mixed with 300 mL of de-ionized water.	SO ₄ (ppm) : 42
recorded mg of SO_4 in sample, x, = 14	mg
soil / water ratio, r, = 3	
number of dilutions to obtain above value, d, = Dilution Equation, d > 0; SO ₄ = (($x / 80$)* ($r 80 * 2^{\circ}$	_ = mg/ L = ppm - r 80 * 2 ^(d-1)) + r 80 * 2 ^(d-1)
Chloride Content:	
100g of soil mixed with 300 mL of de-ionized water. mg/L of $CI^{-} = ((A-B) \times N \times 35453) \times 3$	CI⁻ (ppm) : <u>345</u>
$A = mL \text{ of } AgNO_3 \qquad \qquad A = 23$	
B = 23 mL of the blank N = 0.0493 N, normality of the titrant	Cl ⁻ (mg/L) = A * 5 * 3
Tested By: TJO Date	1/28/2011 Checked By:TJO

SNA (2007) corrosivity Miguel B02 005

Celsius

URS, 2005

Table A-1
Summary of Seismic Refraction and Augerability
Otay Mesa Power Purchasing Agreement

Structure No.	Apparent Compression Wave Velocity (feet/second)	Apparent Depth (feet)	Corresponding Boring	Geologic Unit a	Augerability ^{a,t}
	1200	0 to 10		RS/Qsw	e-m
00	4550	10 to 25		Wx Tsw	e-m
	6300+	25+		Tsw	r
	1175	0 to 8		RS/Qsw	e-m
01	4600	8 to 19		Wx Tsw	e-m
	6000+	19+		Tsw	r
	1200	0 to 9		RS/Qsw	e-m
02	4050	9 to 24		Wx Tsw	e-m
	6000	24+		Tsw	r
	1200	0 to 12.5		Wx To	e-m
10	2700	12.5 to 26		То	e-m
	3650	26+		Tsw	e-m
	1250	0 to 3.5		RS	e-m
20	2400	3.5 to 10	B-14	Wx To	e-m
	3150	10+		То	e-m
	1600	0 to 3		RS	e-m
40	2800	3 to 20		Wx To	e-m
	4000	20+		То	e-m
	1200	0 to 10	D 40	RS/Hwx Tsw	e-m
60	5100	10+	B-13 —	Wx Tsw	d
	1500	0 to 5		RS	e-m
80	2400	5 to 17		Wx To	e-m
	3500	17+		То	e-m
	1200	0 to 12		RS/Hwx To	e-m
100	3500	12 to 25		Wx To	e-m
	5400	25+		То	d
	1500	0 to 5.5		RS	e-m
120	3400	5.5 to 15		Wx To	e-m
	4700	15+		То	e-m
	1350	0 to 17		RS/HwxTsd	e-m
150	3000	17+		Tsd	e-m

Table A-1 (continued)Summary of Seismic Refraction and AugerabilityOtay Mesa Power Purchasing Agreement

Structure No.	Apparent Compression Wave Velocity (feet/second)	Apparent Depth (feet)	Corresponding Boring	Geologic Unit	Augerability ^{a,b}
	1500	0 to 4		RS	e-m
170	3300	4 to 14	B-12	Wx QI	e-m
	4600	14+		QI	e-m
	1200	0 to 7		RS	e-m
180	1700	7 to 20		Wx Tsd	e-m
	3300	20+		Tsd	e-m
	2500	0 to 4		RS	e-m
210	4650	4 to 18		Wx QI	e-m
	7100	18+		QI	d
	1600	0 to 4		Qsw	e-m
230	3300	4 to 15		Wx Tsd	e-m
	5350	15+		Tsd	d
	1200	0 to 3		Fill	e-m
250	3200	3 to 23		Wx QI	e-m
	6300	23+		QI	d
000	2200	0 to 5	D 11	Fill	e-m
260	4800	5+	B-11	QI	e-m
	1850	0 to 4		RS	e-m
270	3450	4 to 15	B-10	Wx QI	e-m
	4700	15+		QI	e-m
	1200	0 to 3		Qsw	e-m
300	2050	3 to 10	B-9	Wx Tsd	e-m
	3100	10+		Tsd	e-m
	1300	0 to 5		Qsw	e-m
310	3000	5 to 16	B-8	Wx Tsd	e-m
	6000	16+		Tsd	d
	1400	0 to 3		Fill	e-m
340	3600	3 to 24		Wx Qbp	e-m
	7400	24+		Qbp	d

Table A-1 (continued) Summary of Seismic Refraction and Augerability **Otay Mesa Power Purchasing Agreement**

Structure No.	Apparent Compression Wave Velocity (feet/second)	Apparent Depth (feet)	Corresponding Boring	Geologic Unit	Augerability ^{a,b}
	1300	0 to 6		RS	e-m
360	2700	6 to 31	B-6	Wx Qbp	e-m
	5400	31+		Qbp	d
	1200	0 to 6		RS/Wx Qbp	e-m
370	2300	6 to 14	B-5	Wx Qbp	e-m
	3800	14+		Qbp	e-m
390	1650	0 to 8	B-7	Qal / Qbp	e-m
390	4950	8+		Qbp	e-m
	1150	0 to 15		RS/Qbp	e-m
410	2600	15 to 23		Wx Qbp	e-m
	3900	23+		Qbp	e-m
430	1300	0 to 30	B-3 —	Fill/Qbp	e-m
430	3600	30+		Qbp	e-m
440	1800	0 to 22		Qal / Qbp	e-m
440	3750	22+		Qbp	e-m
	1125	0 to 4		Qal	e-m
450	1650	4 to 30	B-15	Qbp	e-m
	3400	30+		Qbp	e-m
	1175	0 to 19		Qal / Qbp	e-m
460	2600	19 to 29		Qbp	e-m
	4600	29+		Qbp	e-m
	1200	0 to 9		Fill / Wx Qbp	e-m
470	2050	9 to 20	B-1	Wx Qbp	e-m
	4300	20+		Qbp	e-m
480	1450	0 to 7	B-2	RS/Qbp	e-m
400	2500	7+		Qbp	e-m

Note:

a. RS = residual soil Hwx = highly weathered Wx = weathered

Tsw = Sweetwater Formation

To = Otay Formation

Tsd = San Diego Formation

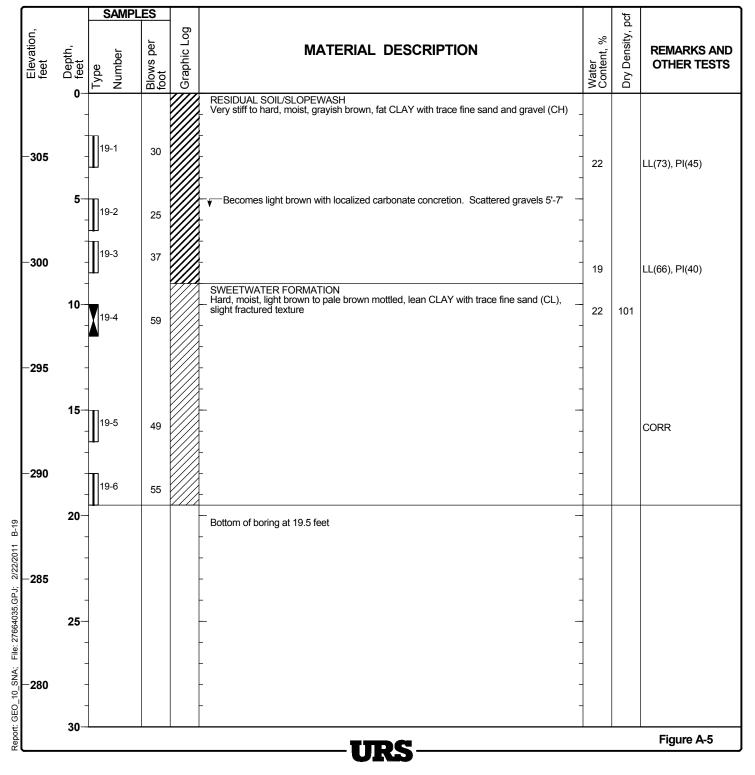
Qbp = Bay Point Formation Qal = Alluvium

Qsw = Slopewash QI = Lindavista Formation

b. Augerability Classifications:

e-m: Easy to moderate

- Difficult d:
- Refusal r:


c. See Section 5.2 for further discussion on augerability.

Project: OMPPA Project Location: San Diego County, CA Project Number: 27664035.00010

Log of Boring B-19

Sheet 1 of 1

Date(s) Drilled	12-20-04	Logged By	A. Greene	Checked By	J. Nevius
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	8"	Total Depth of Borehole	19.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	F&C Drilling	Approximate Surface Elevation	308' MSL
Water Leve Depth (Fee		Sampling Method(s)	ModCal/SPT	Hammer Data 140 lb	os/30" drop
Borehole Backfill	Soil cuttings	Location	STR 00		

WCC, 1981

2.3	
TABLE	
Ĩ	

RESULTS
TESTING
LABORATORY
OF
SUMMARY

	Blow Count/ft	34	26	26	63	63	23	41	50/4"	50/4"	- 100		10/4	50/4"	= /^^							
Direct Shear	Test Results	1,080	670))	620) 				c	•	1.280		500								
Dire	Test	ŝ	22	1	17	I				5	1	36)	42 7	2							
	Geologic* Formation	Tsw	Tsw	Tsw	Taw	Tsw	Residual clay/Tot	Residual clay/Tot	Tot	Tot	Tot	Tot	Tot	Tot	Tsv	Oal	ot -	Tsw/Ols	Teu	a a	Tsw_	C
	USCS Symbol	СН	CH	CC-SC	CH	CH	CH	CH	SM	SM	ML-CL	ML-CL	SM	SM	SC	SM-SP	cc-sc	CH	СН	25-25	gc-sc	
	% Passing #200 Sieve	60		45		65	75		25		58		28		11	ъ	27	83	92	37	45	
	Plasticity Index(%)	46		18		34	46		non-plastic		18			non-plastic				38	66			
4 	Limit(%)	64		35		52	62		d-uou		47			non-p.	I			54	96			
Der: Douci tr.	(lb/ft ³)	100	101	109	104	112	103	107	102	106	85	94	67	107								
Moisture	Content(%)	22	16	14	19	14	22	16	12	10	16	24	13	14	9	m	ъ	16	37	8	13	
Denth	(ft.)	4.0-4.5	8.5- 9.0	9.0-9.5	15.5-16.0	16.0-16.5	3.0- 3.5	9.0- 9.5	14.0-14.5	14.5-15.0	5.5- 6.0	6.0- 6.5	10.0-10.5	10.5-11.0	11.0-15.0	8.0-10.0	4.0-7.0	13.0-15.0	38.0-40.0	3.0- 6.0	12.0-15.0	
Tower	Site	9	9	9	9	9	15	15	15	15	22	22	22	22	25	31	32	33	33	37	48	
alams		6-1-4	6-2-3	6-2-4	6-3-3	6-3-4	15-1-4	15-2-4	15-3-3	15-3-4	22-1-3	22-1-4	22-2-3	22-2-4	25-1	31-1	32-1	33-2	33-3	37-1	48-2	

* See Section 3.1

.

D

Þ

D

D

þ

TABLE 3.1

SUMMARY OF TOWER SITE SOIL AND ROCK MATERIAL AND ANTICIPATED FOUNDATION TYPE

Tower <u>Site No.</u>	Subsurface Material Category	Expected Foundation Type	Notes
4	Tsw	DP	(a) (b) (h) (i)
5	Tot	DP	
6(A)	Tsw	DP	(a) (b) (h)
7	Tsw	DP	(a)
8	Tsw	DP	(a)
9	Tot	DP	(a)
10	Tot	DP	(a) (b)
11	Tot	DP	(a)
12	Tot	DP	(a)
13	Tot	DP	(a) (b) (d)
14	Tot	DP	(a) (b)
15(A)	Tot	DP	(a) (b)
16	Tot	DP	(b)
17	Tot	DP	
18	Tot	DP	(a)
19	Tot	DP	
20	Tot	DP	(a)
21	Tot	DP	(a)
22(A)	Tot	DP	(a) (b)
23	Tot	DP	(a) (h)

D

D

D

Ð

)

)

•

)

•

Þ

Þ

•

•

)

Ĵ

TABLE 3.1 (cont'd)

SUMMARY OF TOWER SITE SOIL AND ROCK MATERIAL AND ANTICIPATED FOUNDATION TYPE

Tower Site No.	Subsurface Material	Expected Foundation	N - + .
SILE NO.	Category	Туре	Notes
24	Tot	DP	(a)
25(A)	Tsw	DP	(b) (h)
26	Tsw	DP	(a) (b) (h) (i)
27	Tsw	DP	(a) (b) (h) (i)
28	Tsw	DP	(a) (b)
29	Tsw	DP	(b) (h) (i)
30(A)	Qt	DP	(b) (e)
31	Qal	DP	(a) (b) (c) (d) (e)
32	Qt	DP	(b) (d) (e)
33	Tsw/Qls	DP	(b) (g) (h) (i)
34	Tsw _c	DP	(a) (b) (e)
35	Tsw _c	DP	(b) (e)
36	Tsw _C	DP	(b) (e) (i)
37	Tsw _c	DP	(e)
38	Tsw _c	DP	(a) (b) (e)
39	Tsw _c	DP	(a) (b) (e)
40(A)	Jsp	RA	(a) (b) (h) (i)
41	Jsp	RA	(a) (b) (f)
42	Jsp	RA	(a) (b) (h)
43	Jsp	RA	(a) (b) (h)

F

Þ

•

•

)

•

Þ

)

)

TABLE 3.1 (cont'd)

SUMMARY OF TOWER SITE SOIL AND ROCK MATERIAL AND ANTICIPATED FOUNDATION TYPE

Tower Site No.	Subsurface Material Category	Expected Foundation Type	Notes
44	Jsp	RA	(a) (b) (h) (i)
45	Jsp	RA	(a) (b) (h) (i)
46	Jsp	RA	(a) (b) (f)
47	Tswc	DP	(a) (b) (e)
48	Tswc	DP	(a) (b) (e)

.

Project No. 51157S-SI01

NOTES FOR TABLE 3.1

)

•

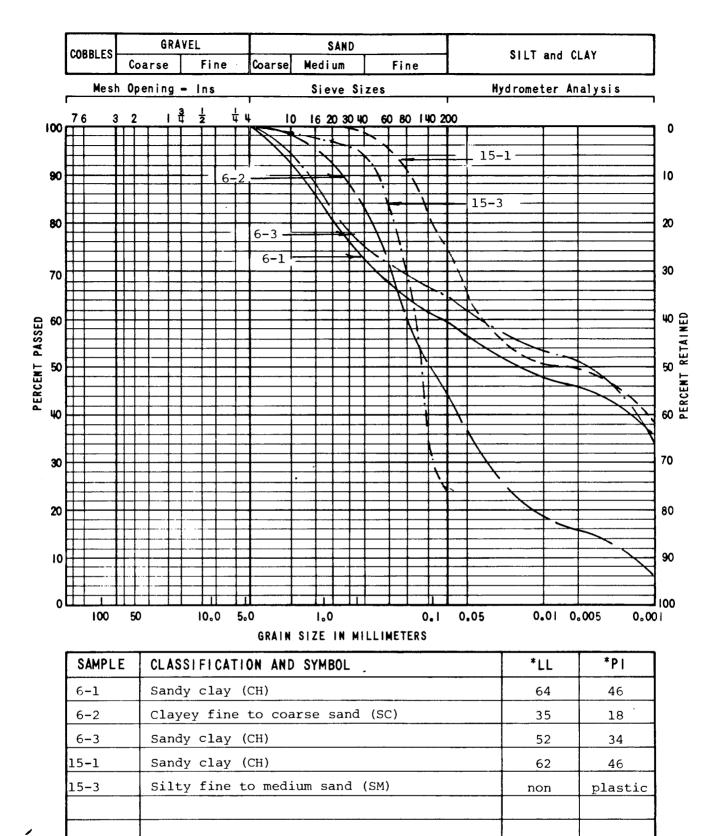
•

)

)

1.

)

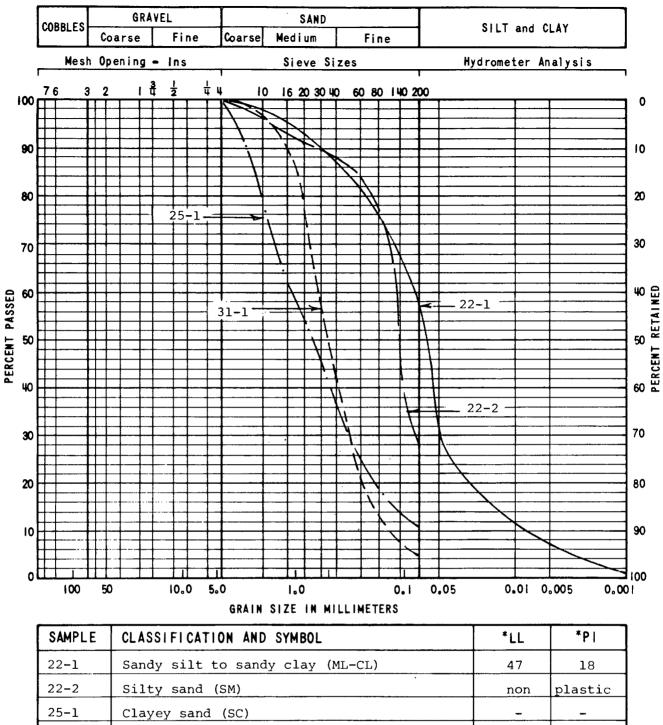

•

)

)

)

- (a) Colluvium, topsoils, loose plowed soils or loose boulders, generally less than 3 feet thick, present over formation soil/rock.
- (b) Potential for erosion.
- (c) In alluvial fan or valley, next to a drainage channel; potential for flooding.
- (d) Potential for seasonal perched or high water tables.
- (e) Subsurface soils contain cobbles and/or boulder-size material.
- (f) Some drilling may be possible; if so, use Jsp (soil) parameters.
- (g) Site located on landslide.
- (h) Steep slopes (generally in excess of 15 degrees).
- (i) Poor access.
- (A) Angle Tower.
- DP Drilled Pier.
- RA Rock Anchor.

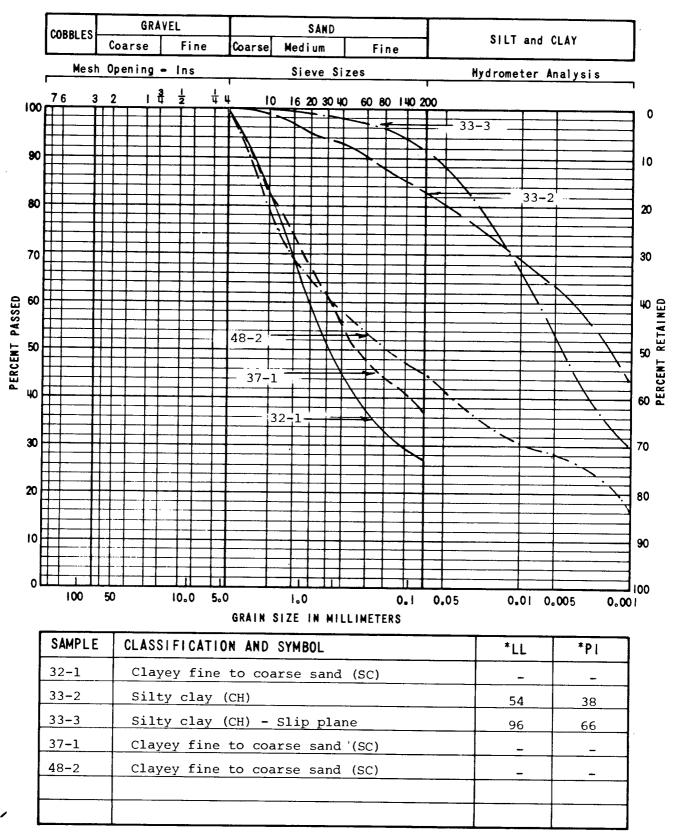


*LL - Liquid Limit

*PI - Plasticity Index

	GR	AIN SIZE DISTRIBUTION C	URVES	
	MIGUEL -	MEXICO 230 KV TRANSMIS	SION LINE	
DRAWN BY: ch	CHECKED BY	PROJECT NO: 511575-SIO3	DATE: 10-16-81	FIGURE NO: A-

WOODWARD-CLYDE CONSULTANTS



22-1	Sandy silt to sandy clay (ML-CL)	4 /	18
22-2	Silty sand (SM)	non	plastic
25 - 1	Clayey sand (SC)	-	-
31-1	Silty fine to medium sand (SM-SP)	_	_
		· · · · · · · · · · · · · · · · · · ·	<u>.</u>

*LL - Liquid Limit *PI - Plasticity Index

	GR	AIN SIZE DISTRIBUTION C	URVES	
	MIGUEL -	MEXICO 230 KV TRANSMIS	SION LINE	
DRAWN BY: ch	CHECKED BY:	PROJECT NO: 51157S-SIO3	DATE: 10-16-81	FIGURE NO: A-

UUUWAKU-CLYDE CU

*LL - Liquid Limit *PI - Plasticity Index

	GR	AIN SIZE DISTRIBUTION C	URVES	
	MIGUEL	- MEXICO 230 KV TRANSMI	SSION LINE	
DRAWN BY: ch	CHECKED BY:	PROJECT NO: 511575-SIO3	DATE: 10-16-81	FIGURE NO: A-3

WOODWARD-CLYDE CONSULTANTS

Tower Type:	CPT	Geo	<u>34 - 10.00</u> Ophysical Survey:			 No
			ated Subsurface Co		· ·	~
_			1 Seveloperd			f. T.
(chunder	- mit	5) erch	en). Deser	in line	Carra	<u>u u 1742</u>
Anticipated Gro	undwater Condi	tions	my side	ATTA	<u>z cza</u>	cice
Site Slope Condi	itione.		one within		tom GUI	-face
-		297 1	withink a	0	QU.	/***=
in the second		70/0 4	allowing a	ge		
	• • - • -			•••		
			ontrol Techniques	: <u> </u>	- porte	stiel
5 .c	gulley.	ic ac	ross site			
Ceologic Hazards	: mane	· · · · ·				
						· · · · · · · · · · · · · · · · · · ·
				<u> </u>		
oring Recommend	lation: <u>171</u>	me-s	ite too st	up_		
ccess: UNI	K dian	subst			1.4	
ccess: <u>URL</u>	k from	subs	fation a		1.00	A
	k fiam	Qubil			1.89	eh
	k finn	subs			<u></u>	al
ictures:	k fiam	Subs				
ictures:	k fiam	sukst				
ictures:	k fiam	suks!	Hation a			
ictures:	k fiam	sukst	Hation a			
'ictures:	k fiam	sukst	Hation a			
'ictures:	k fiam	Su kili	Hation a	Clas		, P /
ictures:	k fiam	<u>subs</u>	Hation a	Clas		, P /
ictures:	k fiam	<u>subs</u>	Hation a	Clas		, P /
victures:			Hation a	Clas		, P /
Pictures: btes: nspection Team:			Hation a	CIA		, P /

SUBSURFACE INVESTIGATION SUMMARY

Tower Site 4

ep [‡] h (f+)	Subsurface	Material	5 Seismi Veloc	c P-Wave ity (ft/sec)	. E	Borings	
D boring			т-4	T-4r			
5 -			1300	1300 ¥			
10 -			2900	3000			
15- - 20-							
25-				↓ ↓			

Auger Boring Sample 567 Mod CABlowcount

Bag Sample

ITTA	DT	12	T
-1H	ы	÷	Τ.

TOWER SITE INSPECTION SUMMARY

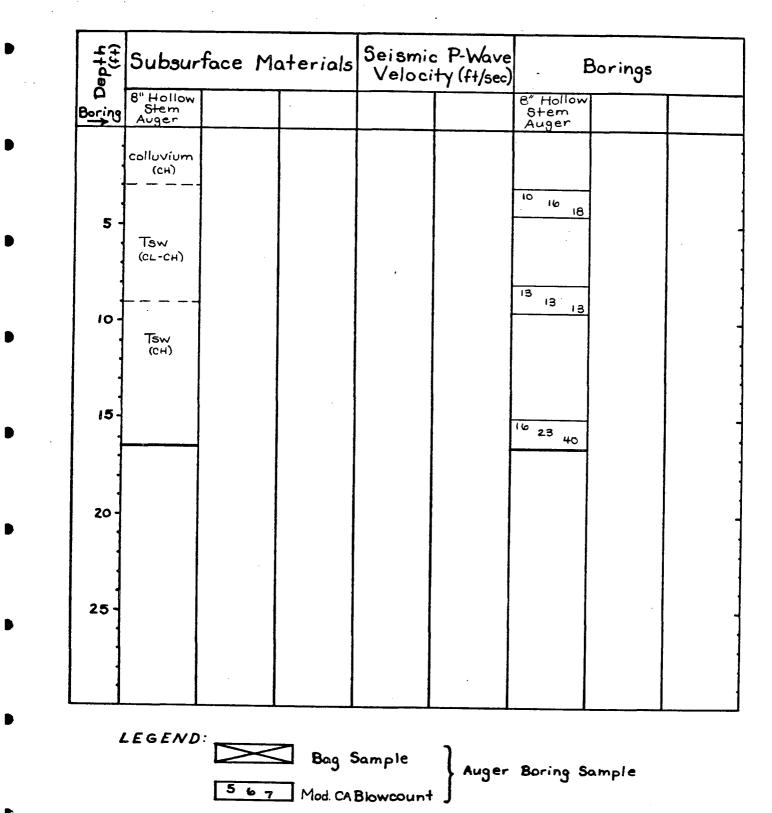
Tower Type:		Station				/	
)
Soil Descrip	tion of Sur	face and Anti	cipated Su	bsurface O	onditions:		
silty	to san	ly clay (<u>cc-sc)</u>	doully	el on	Otác,	Far.
Anticipated (Groundwater	Conditions:	Mane	within	CA7111.41	hem	f. c.d. x
- Site Slope Co							
		glat a	site a	era o	n top	19 1.	mall
		about	Subar	tation		C	
•							
Erosion Poter	ntial and Po	ossible Erosi	on Control	Techniques	s: no	re.	
				· · · · ·		<u> </u>	
Geologic Haza	ards:	none					
		······································					
Boring Recam	mendation:	ARUS d	use lit	a dia			
	dist ,	road y	2 pm			good	laca
	dist ,		2 pm			good	laca.
Access:	dist ,	road y	2 pm			good	l'accu
Boring Recomm Access: Pictures:	dist ,	road y	2 pm			good	l'acca.
Access:	and	road y level s	ite.	Cuby+		. good	l'accu
Access:	and	road y level s	ite.			9000	l'accu
Access:	and	road y	ite.	Cuby+	ation,		
Access:	and	road y level s	ite.	Cuby+	ation,	90000 roar! 5-5	
Access:	and	road y level s	ite.	Cuby+	ation,		
Access:	and	road y level s	ite.	Cuby+	ation,		
Access:	and	road y level s	ite.	Cuby+	ation,	roar!	e t
Access:	and	road y level s	ite.	Cuby+	ation,		e t
Access:	and	road y level s	ite.	Cuby+	ation,	roar!	

.

SUBSURFACE INVESTIGATION SUMMARY

Tower Site 5

5 Subsurface Materials Seismic P-Wave Borings Velocity (ft/sec) Boring T-5 T-5r 1400 1250 5 10 2000 1750 15 20 25


LEGEND: Bag Sample 5 6 7 Mod CABbowcount Bag Sample

> WCC, 5/1575

Tower No:	6	Station:	54 + 84.	.90
Tower Type:	CRS (PS	<u>r)</u> Geop	hysical Survey:	Yes No
		e and Anticipat		
_ querelly	day de	ulasid on	- Sweetwar	ter Em. clanstone pert
persibi	63-5'0	Colluvial d	episite.	
Anticipated Gr	oundwater Con	nditions: <u>M</u>	me within	100 feet
Site Slope Con	ditions:	moderatel	steen	uneven hillside
~		alape, 15	-	
•			10 acces	
				s: potential for
_ qu'lley	in An	a under	cutting .	lige
Geologic Hazar				V
		-		
Poring Poor		1. aline	111 1	<u> </u>
		trace my	auguait	- auger nig?
Access:	t road g	lom en	but at i an	steep hilksule
	ul			
Pictures:				
		·····		
Notes:			Sketch:	"HSA
			1	8"HSA BOPING
				₽ ↓ c
				PE
			N	" = usie
			- shallow	gulley 7
				~ ~ /
			1	A D
Inspection Tear	n: <u>DLS</u>	BB		r b
Date:7	115/81	·		15%
•				5/Bie

SUBSURFACE INVESTIGATION SUMMARY

Tower Site <u>6</u>

WCC, 511575

TABLE	Ι
-------	---

•

Tower No: 7 Station:	120 + 90.00			
Tower Type: <u>CPT</u> Geor		1	No	
Soil Description of Surface and Anticipat				
			1.	
1-2 ft soil coner conse	Ets B Al	ty any t	Clare,	5,000/1
(cl-sc) overlies Sweet				
Anticipated Groundwater Conditions:	tu table d	aper than	Several	her
Site Slope Conditions:				9.00
top of mes	a, near	flat V	uzace,	
less than	· 1% slop	C ····		
Erosion Potential and Possible Erosion Co	ntrol Techniques	:		
Boring Recommendation:			· · · · · · · · · · · · · · · · · · ·	
Access: 4000 und, love	site		· · · · · · · · · · · · · · · · · · ·	
Access: 4000 und, love	site		· · · · · · · · · · · · · · · · · · ·	
Access: <u>Good wood, loved</u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Access: <u>Good will set</u>	Sketch:			
Access: <u>Good will set</u>	Sketch:			
Boring Recommendation: Access: <u>Good And Jour</u> Pictures: Notes: <u>Good And Sata</u> <u>ine TSW anglomenate</u> <u>A Towor 6 Simpos</u>	Sketch:	20	 L	
Access: <u>Good word</u> , <u>lovel</u> Pictures:	Sketch:	-	с ц	
Access: <u>Good word</u> , <u>lovel</u> Pictures: Notes: <u>Good Aull Sett</u> <u>ine TSW conglomenate</u> <u>of Towor 6 is in pas</u>	Sketch:	ð 1 5-7	ب لا	
Access: <u>Good And, Ionel</u> Pictures: Notes: <u>Good And Sate</u> <u>ine TSW anglomenate</u> <u>A Towor 6 is imposs</u>	Sketch:	-	с р	
Access: <u>Good word</u> , <u>lovel</u> Pictures: Notes: <u>Good Aull Sett</u> <u>ine TSW conglomenate</u> <u>of Towor 6 is in pas</u>	Sketch:	-	с р 2	

SUBSURFACE INVESTIGATION SUMMARY

Tower Site _7___

5 Subsurface Materials Seismic P-Wave Borings Velocity (ft/sec) T-7r Т-7 Boring 1300 1300 5 2500 2500 1 10 15 5000 20 5500 25

LEGEND: Bag Sample 5 6 7 Mod CABbowcount Auger Boring Sample

> WCC, 511575

TOWER SITE INSPECTION SUMMARY

10wer 100:	<u> </u>	Station:	73+ 87.	80		
Tower Type: _	CPT	Geo	ophysical Survey:	Yes	No	<u> </u>
Soil Descript	ion of Surfac	e and Anticipa	ated Subsurface Co	nditions:		
avare =	andy in	An, Alla	tered pour	der ziz	id m	stall
Alent	- Thine	soil cou	12 (22') An	Tow da	metone	part.
Anticipated G	roundwater Co	onditions: M	one within	severa	1 hund	lad fr
Site Slope Co	nditions:	edge of a	mica sur	face, I	iven	10% 8
•						
Erosion Poten	tial and Poss	ible Erosion C	Control Techniques	· Mary	<u></u>	
Geologic Hazar	ds:	17.6			<u> </u>	
Boring Recomme	endation:	stane -	auar il -			
Boring Recomme	endation:	azəne –	auger if -	M. C.L.L.	ery	
_	endation:	szone –	auger if -	MCCL.	877 (J	
Access:	endation:	92 9 ne –	auger if .	M. C.L.L.		
Access:	endation:	328ne –	augur if -	VI CÉLL	er y	
Access:		Albre –	sketch:	<u>NICELLI</u>		
Access:				<u> </u>	er-y	
Access:				<u>MCCLI</u>	827 (J	
Access:				MCCL	527 Y	
Access:				mecent		
Access:					27- i J 	
Access:						
Access: Pictures: Votes:			Sketch:			

.

TABLE	1
-------	---

.

.

Type: <u>CPT</u> Geophy Description of Surface and Anticipated	ysical Survey: Yes No
Description of Surface and Anticipate	
	d Subsurface Conditions:
sitty clay (CH), 2-3' th	ich, douloged on Hay For
dissucation marks	
	one within several hundred of
	of prod ridge, 5%
on Potential and Possible Erosion Cont	trol Techniques: <u>NAME</u>
gic Hazards:	
g Recommendation:	
s: Intel gate on Pr	stor Ville Rd Anial
dencer	and the part of the second sec
res:	
	· · · · · · · · · · · · · · · · · · ·
:	Sketch:
	 •

TABLE	I
-------	---

TOWER SITE INSPECTION SUMMARY

	DT C	mbains! Amar	Vee	
Tower Type:	<u>, /~ /</u> Ged	physical Survey:	Yes	No V
Soil Description of S				
2-3 & silty	CHAY (CH) to,	scoil direles	d on	ame-
_Grained	sandstone	A CHAUF	m.	Ü
Anticipated Groundwat	er Conditions:	me within	Eneral 1	hundred &
Site Slope Conditions		Iside slope		6
	maa,	10% Westerly	, olipe	
Dession Detection 1				
Erosion Potential and	Possible Erosion C	ontrol Techniques:	Very Ior	v
Geologic Hazards:	Mane			
			····	
Boring Recommendation	:			
		u II, fina	is to cr	053
		4 11, fina	es to cr	<u> </u>
Access:Walk		4 11, fina	es to cr	053
Boring Recommendation Access:Walk		u 11, fence	es to cr	053
Access:Walk			es to cr	053
Access:Walk		<u> //, fenc</u>	es to cr	053
Access:Walk			es to cr	<u>055</u>
Access:Walk			es to cr	255
Access:Walk			es to cr	<u>css</u>
Access:Walk			es to cr	<u>с</u> С
Access:Walk			es to cr	<u>с</u> С D
Access:Walk			es to er	<u>с</u> С Д
Access:Walk			es to er	e 5 5
Access:Walk	fræme tom	Sketch: 	es to cr	C C D

TOWER SITE INSPECTION SUMMARY

Tower No:Station:		/
ower Type: <u>CTA</u> Geo	ophysical Survey: Yes 🗸	No
oil Description of Surface and Anticip		
plowed field, 2-3 feet of	2 silly CIAy (CH) 0	n CHAYI
sandstone		
Anticipated Groundwater Conditions:	none within 100	elect
Site Slope Conditions:		
edge of broad na	gc, wen 5-7%	slope
•		
rosion Potential and Possible Erosion (Control Techniques:	ie
eologic Hazards:		
condition		<u> </u>
oring Recommendation: Caw use	wee rig	
ccess: <u>Lash access</u> An		Rd
ccess: lasy access fr		Rd.
ccess: <u>Lasy access</u> fr good leveling		Rd.
ccess: lasy access fr		Rd.
ccess: <u>Lasy access</u> fr good leveling		Rd
ccess: <u>Lasy access</u> fr good leveling	om Rancho Janal	Rd.
otes: <u>Istimuted site</u>	om Rancho Janal	Rd.
otes: <u>estimated site</u>	om Rancho Janal	Rd.
otes: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>lotes: lastimated site</u> <u>lotetion from</u> <u>orthophoto all sta</u>	om Rancho Janal 	Rd.
otes: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>lotes: lastimated site</u> <u>lotetion from</u> <u>orthophoto all sta</u>	om Rancho Janal	Rd.
occess: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>estimated site</u> <u>location from</u> <u>orthophoto all sta</u> <u>and center pole are</u>	om Rancho Janal	L
otes: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>lotes: lastimated site</u> <u>lotetion from</u> <u>orthophoto all sta</u>	om Rancho Janal	R.d. L
occess: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>estimated site</u> <u>location from</u> <u>orthophoto all sta</u> <u>and center pole are</u>	<u>m Rancho Janal</u> 	L
occess: <u>lasy access</u> fr <u>your leveling</u> ictures: <u>otes: <u>estimated site</u> <u>lectetion from</u> <u>orthephoto</u> all sta <u>and center pele are</u> <u>missing</u></u>	om Rancho Janal	L
ccess: <u>lasy access</u> fr <u>good leveling</u> ictures: <u>otes: <u>estimated site</u> <u>location from</u> <u>orthophoto alleta</u> <u>and center pele are</u></u>	<u>m Rancho Janal</u> 	L

SUBSURFACE INVESTIGATION SUMMARY

Tower Site _11___

)ep [‡] h (f+)	Subsurface	Materials	Seismic Veloci	: P-Wave ty (ft/sec)	. E	Borings	
Boring			T-11	T-Ilr			
5 -			1275	1200			-
10-							-
15-			2750	3250			
20 -							-
25 -			¥	¥		•	

LEGEND: Bag Sample 5 6 7 Mod CA Blowcount Auger Boring Sample

wcc

.

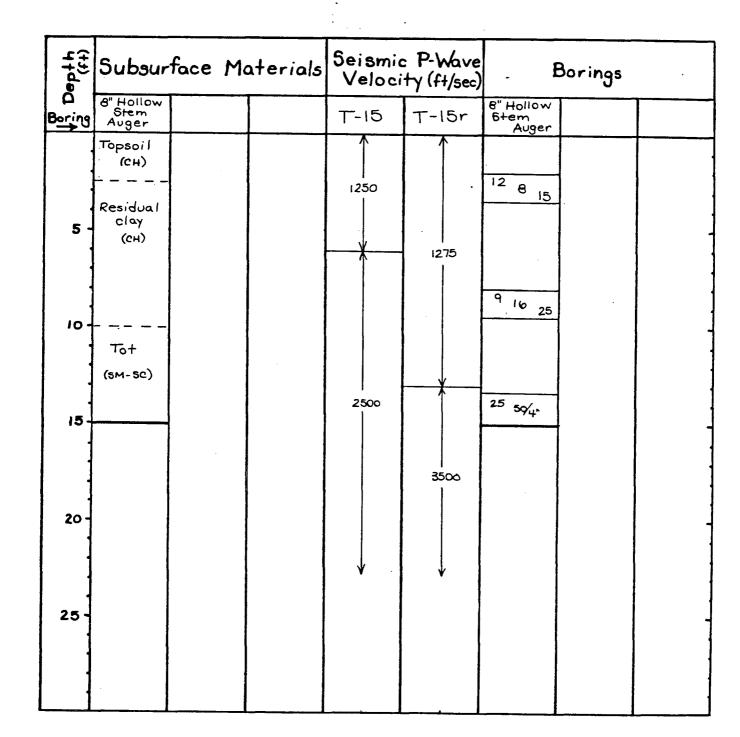
Tower No: _	12	Station:	136 + 52	200	
Tower Type:	CPT	Gec	physical Surve	y: Yes	No/
Soil Descrip	otion of Surface	e and Anticipa	ted Subsurface	Conditions:	
plowe	d field	silte	clar (CH)	2-3' +h	ich, doul
An1,	Otay Em	and	ston e	<u><u> </u></u>	ere, main
	Groundwater Cor			·	
Site Slope C			une wirth	m so f	46.7
		u store	BA brea	d even	- Intheid
			-		
		easterly	•	·	
Erosion Pote	ential and Possi	ble Erosion C	ontrol Techniqu	les:	
<u>محمد المحمد ا</u>					
Geologic Haz	ards: <u>Mon</u>	'e			
e 				· · · · · · · · · · · · · · · · · · ·	
Boring Recon	mendation:	none			
Access:	dist road	from (Hong Lakes	Rd, N	mat Cran
	plowed	field	-		•
Pictures:	<i>v</i>	U			
Notes:	I leg ste	aken do	Sketch:		······································
			— 1	s	
			N N	d d	C
					<u>b</u>
					mark. 10%
				a	slope
				р р	P
Increation M.		— —			D
Inspection Te	eam: <u>Dla k</u>	<u> 38</u>			

TOWER SITE INSPECTION SUMMARY

	T Comb	eical Summer	Vac	11-	
Tower Type:					<u> </u>
Soil Description of Surf					·····
silty clay (C	H), as much	h ar 3-5	feet of	T topse	oil an
Colluvium					
Inticipated Groundwater		•			15 belo
Site Slope Conditions:					
	rollar grai	ter of	shillo	- dr	
	higher than	rince of	Crawar		
	1-3% lasterly	stope			
rosion Potential and Po				or there	fial
for gulleying	a during 1	eary rain	ک		
eologic Hazards:	•	•			
				·····	
·					
oring Recommendation:	use wcc.	nig		<u> </u>	
		V	lung Rod		
ccess: <u>fences</u>	, no gate a	4 Otay La	kes Rd.		· · · · · · · · · · · · · · · · · · ·
ccess: <u>fences</u> on un		4 Otay La	kez Ret. westy		· · · · · · · · · · · · · · · · · · ·
Coring Recommendation: ccess: <i>fences</i> <i>On</i> cictures:	, no gate a	4 Otay La	kez Ret. westry		· · · · · · · · · · · · · · · · · · ·
ccess: <u>fences</u> on un	, no gate a	4 Otay La	kez Ret. wertz		
ccess: <u>fences</u> <u>on (in</u> ictures:	, no gate g	4 Otay La	kez Ret.		
otes: <u></u>	ited Enterpoint	14 Otmala	kez Ret.		
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	kes Ret.		ļ
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	kes Rol.	<i>U</i>	
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	kes Rol.	C	1 river
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	Derstry D	C	- Josen-
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	kes Ret.	C	- such to a
otes: <u></u>	ited Enterpoint	<u>y Ofm La</u> ses proj 	Derstry D	C A D	ton of down
otes: <u></u>	, no gate g ited Enterpoint Compression rich Soils	<u>y Ofm La</u> ses proj 	Derstry D	С А В В	Am form

TABLE I			
	TA	BLE	Ι

.


Tower No:	Station: $162 + 15.00$
Tower Type:CP	Geophysical Survey: Yes No _/
Soil Description of Surf	face and Anticipated Subsurface Conditions:
stowed field	Le silty clay topsoil (CH), 2-3'+1
Anelosed on	v Other Fur sandstone
	Conditions: More Withm 50 feet
Site Slope Conditions:	6
	gentle, enven slope at briad hillside, slope less than Sh
	hillside, slope less than sh
Erosion Potential and Po	ossible Erosion Control Techniques:
Geologic Hazards:	none
Boring Recommendation:	
Boring Recommendation:	
·	none - U.E. property
Access:	
·	
Access:	
Access:	
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property
Access: <u>funces</u> -	- U.E. property

.

Tower No: Station:	
Tower Type: <u>CRS (PI)</u> Ge	ophysical Survey: Yes / No
Soil Description of Surface and Anticip	ated Subsurface Conditions:
	Clay (CH); 2-3' + Inck dere
on Otay Fm. sand	leton
÷	
Anticipated Groundwater Conditions:	More within 10037
Site Slope Conditions: near la	rel site, bottom of kroad
draw	
•	
	Control Techniques: potertia
- for gullering due	inc heavy rains
Geologic Hazards:	
	· · · · · · · · · · · · · · · · · · ·
Boring Recommendation: <u>MOC</u> (WC	a ma
Boring Recommendation: <u>use</u> WC	a manduat made
Boring Recommendation: <u>MOC WC</u> Access: <u>OFAY Water distri</u>	c ng it aquiduct mad
Access:Ay Water Mistry	c ng it aquiduct mad
Access:Ay Water Mistry	c ng it aqueduct mad
Access:	it aquiduct mad
Access:	<u>C_MG</u> <u>cf_Aqueduct_Mad</u> Sketch:
Access:	it aquiduct mad
Access:	it aquiduct mad
Boring Recommendation: <u>MOC WC</u> Access: <u>HAY Water Mistry</u> Pictures: Notes: <u>good Mull Site</u>	
Access:	it aquiduct mad
Access:	Sketch:
Access:	
Access:	Sketch:

SUBSURFACE INVESTIGATION SUMMARY

Tower Site 15

LEGEND: Bag Sample

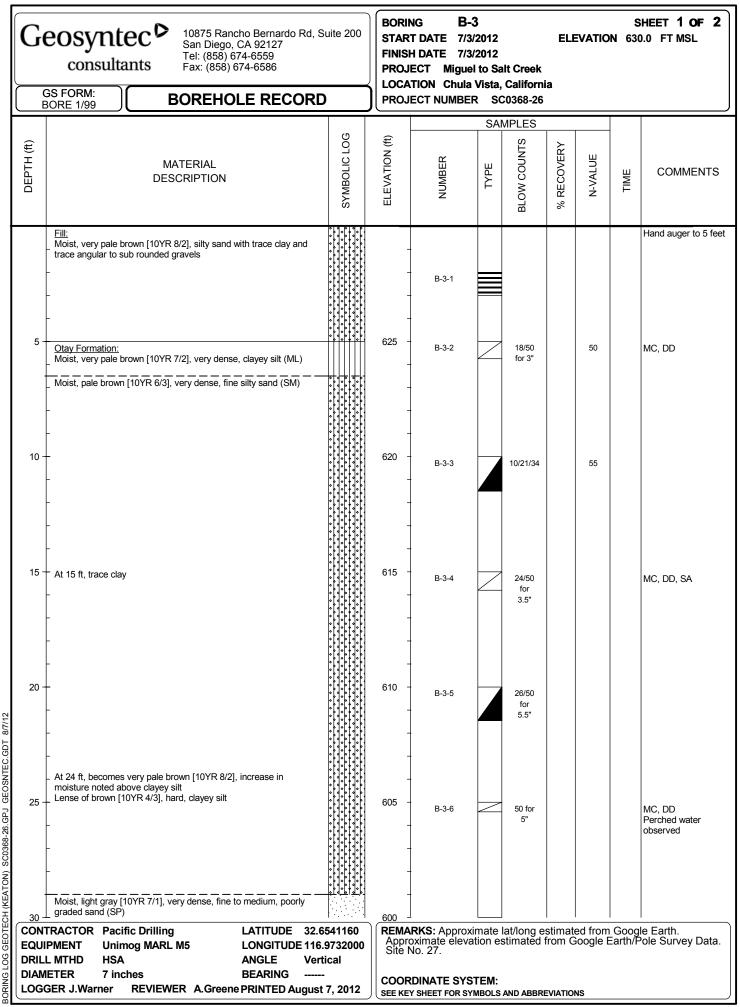
Auger Boring Sample

5 6 7 Mod CABlowcount

WCC, 5/1575

APPENDIX B

LOGS OF FIELD EXPLORATIONS


8/7/1 GDT GEOSNTEC. GPJ 26. SC0368

GEOTECH

	eosyn	Tal: (050)	Suite 200	FINISH PROJ	TDATE 6/2 IDATE 6/2	27/2012 27/2012 el to Sa	lt Creek		EVATIO		Sheet 1 of 2 4.0 ftmsl	
B	S FORM: ORE 1/99	BOREH	OLE RECOR	D		ECT NUMBE	ER SC	0368-26				1
DEPTH (ft)		MATERIAL DESCRIPTION	I	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN IAPE	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
	Otay Formatio Moist, very pal (SC)	<u>n:</u> le brown [10YR 7/3], clayey f	ine to very fine sand									Hand auger to 5 fe
5 -	- - - At 5 ft, contain - -	s trace angular gravels			- - 579 - - -	B-1-1 B-1-2		14/17/29		56		MC, DD
10 -	Moist, very pal	le brown [10YR 7/3], sandy le	ean clay (CL)		- 574 - -	B-1-3		13/20/24		44		MC, SA, LL, PI
15 -	Moist, very pal	e brown [10YR 8/3], very dei bedded clay lenses (SP/SC)	nse, poorly graded, fine	2	- 569 - - -	B-1-4		15/31/50		81		MC, DD
20 -	Moist, very pal (SM)	e brown [10YR 7/4], medium	dense silty fine sand		- 564 - -	B-1-5		10/10/14		24		MC, SA
- 25	- Moist, pale bro	own [10YR 6/3], hard, fine sa	 ndy silt (ML)		- - 559 - -	B-1-6		24/37/50		87		MC, DD
30	Moist, pale bro	wn [10YR 6/3], fine to very f	ine silty sand (SM)		- - 554 -							
ONT QUII RILL	_ MTHD H ETER 7	acific Drilling nimog MARL M5 Rig SA inches az REVIEWER A.Gree	BEARING	6.9743900 ertical 	 Approximate elevation estimated from Google Earth/Pole Survey Data. Site No. 29. COORDINATE SYSTEM: 							

	eosynt	Tel: (858) 6 Ants Fax: (858)	674-6559 674-6586		FINISH PROJ	NG B- T DATE 6/2 H DATE 6/2 ECT Migue TION Chula	27/2012 27/2012 of to Sa	llt Creek		SHEET 2 OF 2 ELEVATION 584.0 FT MSL			
	BS FORM: BORE 1/99	BOREHO	LE RECORD		PROJ	ECT NUMBE		0368-26]	
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS	
35 -	- - Moist, brownish y bentonite lenses y	ellow to pink [10YR 8/3], ha with sand and trace fine ang	rd clayey silt with ular gravel (ML)		- - 549 - - -	B-1-7 B-1-8		20/23/24 14/29/50 for 5"		47		MC, DD	
40 -	_	e in gravel and increase in sa at 41.5 feet. Boring backfille pentonite grout.			- 544 - - - 539 -	B-1-9		27/39/44		83			
					- - 534 - -								
					- 529 - - - -								
Equii Drill Diam	524 524 524 1 </td												

	Consultants BOREHOLE RECORD 10875 Rancho Bernardo Rd, S San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 BOREHOLE RECORD		FINISI PROJ LOCA	NG B-2 T DATE 6/2 H DATE 6/2 ECT Migue TION Chula ECT NUMBEI	7/2012 7/2012 I to Sa Vista,	2 alt Creek , Californi		EVATIC		HEET 1 OF 1 0.0 FT MSL
DEPTH (ft)	MATERIAL	SYMBOLIC LOG	ELEVATION (ft)		SA	MPLES	RECOVERY	TUE		COMMENTS
DEF	DESCRIPTION Otay Formation:	SYMBC	ELEVA	NUMBER	ТҮРЕ	BLOW COUNTS	% REC	N-VALUE	TIME	Hand auger to 5 feet
	Moist, white [10YR 8/1], very dense, fine silty sand (SM) At 4 feet, increase in very fine sands		-	B-2-1						
5 -	-		- 615 - -	B-2-2	2	50 for 5"				MC, DD, SA
10 -	Moist, light gray [10YR 7/2], very dense, poorly graded, fine grained sand with silt (SP/SM)		- - 610 -	B-2-3		40/50 for 5"				
	Moist, light gray [10YR 7/2], very dense fine silty sand (SM)		-	B-2-4	2	50 for 5"				MC, DD, SA
15 -	Encountered auger refusal at 17 feet. Boring backfilled with approximately 4.5 cubic feet of bentonite grout.		605 - - -	B-2-5		50 for 1"				
20 -	-		- 600 - -							
25 -	-		- - 595 -							
25 - CON EQUI DRIL DIAM LOGO	-		- - -							
30 - CON EQUI DRIL	TRACTOR Pacific Drilling LATITUDE 32.6 IPMENT Limited Access Rig LONGITUDE 116. L MTHD HSA ANGLE Vert	.9739800 ical	590 REMA Appro Site N	RKS: Approxi oximate eleva No. 28.	 mate tion e	lat/long e stimated	stimat from G	 ed from Google	l Goog Earth/F	le Earth. ole Survey Data.
	IETER 7 inches BEARING GER N.Godinez REVIEWER A.Greene PRINTED August		11	DINATE SYS		AND ABBRI	EVIATIO	NS		

GEOTECH (KEATON) SC0368-26.GPJ GEOSNTEC.GDT 00

g

	COSYNTEC consultants BOREHOLE RECORD		FINISI PROJ LOCA	NG B-3 T DATE 7/3/ H DATE 7/3/ ECT Migue TION Chula ECT NUMBE	/2012 /2012 I to Sa Vista,	Californi	ornia -26				
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS	
35 -	Moist, brown [10YR 4/3], very dense, fine to medium grained silty sand, with interbedded claystone lenses (SM) Moist, light gray [10YR 7/1], very dense, fine to medium grained, poorly graded silty sand, sand-silt (SM/SP) Bottom of boring at 41.0 feet. Boring backfilled with approximately 9.4 cubic feet of bentonite grout topped with soil cuttings.		595 - - 595 - - - 590 - - - - - - - - - - - - - - - - - - -	B-3-7		50 for 6" 50 for 5.5" 23/50 for 6"				MC, DD	
CON	TRACTOR Pacific Drilling LATITUDE 32.63	541160	580 - - - 575 - - - - - - - - - - - - - - - - - - -	RKS: Approxi	imate	lat/long e	stimat	ed from	Goog	le Earth.	
EQUI DRIL DIAM	PMENT Unimog MARL M5 LONGITUDE 32.6 PMENT Unimog MARL M5 LONGITUDE 116.9 L MTHD HSA ANGLE Verti ETER 7 inches BEARING GER J.Warner REVIEWER A.Greene PRINTED August	9732000 ical	COOR	ARS: Approxi Dximate eleva No. 27. DINATE SYS	TEM:				Earth/F	le Earth. Yole Survey Data.	

Ge	consult		Suite 200	FINISI PROJ	NG B- T DATE 6/2 H DATE 6/2 ECT Migue TION Chula	29/2012 29/2012 el to Sa	lt Creek		EVATIC		SHEET 1 OF 1 7.0 FT MSL
	SS FORM: SORE 1/99	BOREHOLE RECOR	D		ECT NUMBE						
DEPTH (ft)		MATERIAL DESCRIPTION	SVMBOLIC LOG	ELEVATION (ft)	NUMBER	SAM	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
5 -	-	n [7.5YR 6/3], low plasticity sandy clay (CL)		- - - 562 -	B-4-1 B-4-2		50 for 5"				Hand auger to 5 fe
10 -	- Moist, white [7.5 - - Interbedded clay	YR 8/1], very dense, very fine silty sand (SM)		- - 557 - - -	B-4-3 B-4-4		10/40/50 for 5" 50 for 5"				MC, SA MC, DD
15 -	- - Moist, pale brow -	n [10YR 6/3], very hard, lean clayey sand (SC)		- 552 - - -	B-4-5		50 for 6"				MC, LL, PI
20 -	Moist, very pale (SM)	brown [10YR 7/3], very dense, silty fine sand		- 547 - -	B-4-6		50 for 2"				MC, DD
25 -	_ sand with trace o	brown [10YR 7/4], very dense, poorly graded fine coarse sand (SP)		- - 542 - -	B-4-7		50 for 5"				
-	Encountered aug	s fine to very fine sand with trace gravel ger refusal at 27.2 feet. Boring backfilled with 1 cubic feet of bentonite grout.		-	B-4-8		50 for 2"				MC, DD
equii Drill Diam	LMTHD HSA Eter 7 in	ited Access Rig LONGITUDE 110	6.9728070 rtical 	Appro Site 1	RKS: Approx oximate elev No. 26. DINATE SYS	ation es STEM:	stimated	from G	Google	n Gooc Earth/f	le Earth. Pole Survey Data

	consult		Suite 200	FINISI PROJ	T DATE 6/2 H DATE 6/2	25/2012 el to Sa	2 nit Creek		EVATIC		Sheet 1 of 2 4.0 ft MSL
G B	S FORM: ORE 1/99	BOREHOLE RECORD			ECT NUMBE	ER SO	0368-26			1	1
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
-	<u>Alluvium (Qal):</u> Moist, dark browr debris (SC)	n [10YR 2/3], clayey fine sand with some plant		-	B-5-1						Hand auger to 5 fee
5 -	sand to fine sand	/R 4/3], medium dense clayey, fine to coarse with trace clay (SC)		499 - - -	B-5-2		8/12/17		29		MC, DD
	. Moist, pale browr rounded gravels ([10YR 6/3], stiff sandy lean clay with some sub (CL)		- 494 - - - -	B-5-3		5/5/6		11		¥
15	At 15 feet, becom [10YR 7/2], sandy	nes moist, pale yellow [2.5Y 8/2], to light gray / lean clay with angular gravels (CL)		489 - - - -	B-5-4		9/10/11		21		MC, DD, SA
20		wn [10YR 4/2], medium dense fine to medium sub-rounded to angular gravels (SC)		484 - - - -	B-5-5		9/14/15		29		
25	dense, interbedde	YR 3/4], to very pale brown [10YR 8/5], very ed well sorted siltstone and sandy claystone with ngular breccia (SC)		479 - - - -	B-5-6		23 for 5"				MC, DD
equif Drill Diame	ACTOR Paci MENT Unir MTHD HSA ETER 7 ind ER J.Warner	nog MARL M5 LONGITUDE 116 ANGLE Ver	.9205000 tical -	COOR	RKS: Appro oximate elev lo. 25. DINATE SY o SHEET FOR S	STEM:				l n Gooc Earth/l	∣ gle Earth. Pole Survey Data

	•	Itel: (858 Itants Fax: (858	ancho Bernardo Rd, Su o, CA 92127) 674-6559 3) 674-6586 OLE RECORD		FINISI PROJ LOCA	NG B- T DATE 6/2 H DATE 6/2 ECT Migue TION Chula ECT NUMBE	25/2012 25/2012 el to Sa i Vista,	2 alt Creek , Californi		EVATIC		SHEET 2 OF 2 4.0 FT MSL
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
35 -	6/3], very der clayey sand (- Bottom of bor	ish brown [10YR 5/4], to light y nse, poorly graded, fine to med SC) ring at 41.5 feet. Boring backt t of bentonite grout topped wit	lium sand (SP) and		469 - - - 469 - - - - - - - - - - - - - - - - - - -	B-5-9		36 for 4"		56		MC, DD
EQUI DRIL DIAN	ONTRACTOR Pacific Drilling LATITUDE 32.6466660 QUIPMENT Unimog MARL M5 LONGITUDE 116.9205000 RILL MTHD HSA ANGLE Vertical IAMETER 7 inches BEARING OGGER J.Warner REVIEWER A.Greene PRINTED August 7, 2012 REMARKS: Approximate lat/long estimated from Google Earth.											

G LOG GEOTECH (KEATON) SC0368-26.GPJ GEOSNTEC.

G	eosynt _{consult}		4-6559	uite 200	FINISI PROJ	T DATE 6/2 H DATE 6/2	27/2012 27/2012 27/2012 el to Sa	lt Creek		EVATIO		HEET 1 OF 2 4.0 FT MSL
	GS FORM: BORE 1/99	BOREHOL	E RECORD						6]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
		aggregate base over moist, grading aggregate base over moist, grading and the second state of the second s			-	B-6-1						Hand auger to 5 feet
5 -	Otay Formation: Moist, very pale l	brown [10YR 7/4], very dense	fine sandy silt (ML)		- 539	B-6-2		50 for 5"				MC, DD
10 -	-				- 534 - - -	B-6-3		15/25/36		61		MC, SA
15 -	- Moist, white [10Y - - -	/R 8/1], very dense poorly grad	led fine sand (SP)		- 529 - - - -	B-6-4		50 for 5"				MC, DD
20 -	Moist, pale brown sand (SC)	n [10YR 6/3], very dense, very	fine to fine clayey		524 - - -	B-6-5		12/23/29		52		MC, LL, PI
25 - CONT EQUI DIAM LOGO	- At 25 ft, slight de - - -	crease in fines			519 - - - -	B-6-6		27/50 for 2"				MC, DD
30 J CONT EQUI DRILI DIAM	LMTHD HSA IETER 7 in	mog MARL M5	COOR	RKS: Approx oximate elev DINATE SYS	STEM:				i Goog Earth/F	le Earth. Pole Survey Data.		

	eosyn consul		Suite 200	FINISI PROJ	IG B T DATE 6/2 I DATE 6/2 ECT Migue TION Chula	27/2012 27/2012 el to Sa	lt Creek		EVATIO		SHEET 2 OF 2 4.0 FT MSL
	GS FORM: BORE 1/99)		ECT NUMBE	R SC	0368-26]
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN	APLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
35 -	_ (CL) - - - _ _ Moist, pale brov	vrown [10YR 7/2], hard lean clay with trace sand vn [10YR 6/3], to light brownish gray [10YR 6/2], y fine to fine clayey sand (SC)		- - 509 - - -	B-6-7 B-6-8		15/23/50 for 6" 19/50 for 4"				MC, DD, LL, PI
40 -		g at 40.5 feet. Boring backfilled with approximately f bentonite gravel and 0.8 cubic feet of concrete.		- 504 - - - 499 - -	B-6-9		50 for 6"				
				- - 494 - - -							
				489 - - - -							
Equi Drili Diam	LMTHD HS ETER 7 in	imog MARL M5 LONGITUDE 116.	.9715860 tical -	Appro COOR	RKS: Approx oximate eleve DINATE SYS	ation es STEM:	stimated	from G	Soogle I	i Goog Earth/F	le Earth. Pole Survey Data.

	consult		Suite 200	BORIN STAR FINISH PROJI LOCA		SHEET 1 OF 2 552.0 FT MSL					
	S FORM: ORE 1/99	BOREHOLE RECOR	D			•					
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
-	Fill: Moist, dark grayi with sub-rounder	sh brown [10YR 4/2], fine to medium clayey sand, d gravels		-	B-7-1						Hand auger to 5 fe
5		brown [10YR 2/2], to grayish brown [10YR 5/2], ean clay, with sub-rounded gravels and some		547 - - -	B-7-2		7/10/15		25		MC, DD, SA
10 -	Otay Formation: Moist, very pale fine to medium s	brown [10YR 7/4], medium dense, poorly graded and with silt (SP/SM)		- 542 - - -	B-7-3		8/8/7		15		
- 15 -	_ At 15 ft, become	s light gray [2.5YR 7/2], and very dense			B-7-4		15/36 for 3"				MC, DD
20 -	Moist, pale brow sand with trace o	n [10YR 6/3], medium dense, fine to medium lay (SP/SC)		- 532	B-7-5		10/13/17		30		
25 -	Moist, light gray	[2.5 YR 7/2], hard sandy lean clay (CL)		- 527 - - -	B-7-6		29 for 3"				MC, DD, SA
30 -	Moist, yellowish silty sand (SM)	brown [10YR 5/4], medium dense, fine to medium	6403000	522	RKS: Approx	ximate	lat/long e	stimat	ed from		gle Earth.
RILL	MTHD HS	mog MARL M5 LONGITUDE 116 A ANGLE Ver ches BEARING REVIEWER A Greene PRINTED Augus	rtical 	COOR	oximate elev lo. 23. DINATE SY: SHEET FOR S	STEM:				∟arth/l	gle Earth. Pole Survey Data

	COSYNI consult			FINIS PROJ	IG B- T DATE 6/2 I DATE 6/2 ECT Migue TION Chula ECT NUMBE	lt Creek Californi		EVATIC		SHEET 2 OF 2 2.0 FT MSL	
	30RE 1/99		,								
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	БАГ	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
35 -	- Moist, pale yellov dense, poorly gra	v [2.5YR 8/2], to light gray [2.5YR 7/2], very aded, fine to medium sand (SP)		- - - 517 - - -	B-7-7 B-7-8		9/12/14 26 for 4"		26		MC, DD
40 -	- Bottom of boring 10.0 cubic feet o	at 41.5 feet. Boring backfilled with approximately f bentonite grout/chips.		- 512 - - - 507 - - -	B-7-9		28/38/40		78		
				- 502 - - -							
				- 497 - - - -							
EQUI DRILI DIAM	LMTHD HSA	mog MARL M5 LONGITUDE 116.	Appro Site N	RKS: Approx oximate eleva lo. 23. DINATE SYS or SHEET FOR SY	ation es STEM:	stimated f	from G	Soogle I	i Goog Earth/F	l le Earth. Yole Survey Data.	

	Consultants 10875 Rancho Bernardo Rd, S San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 CONDELIOLE DECODER		FINIS PROJ LOCA	T DATE 7/3/ H DATE 7/3/ ECT Migue TION Chula	/2012 /2012 I to Sa Vista,	Californi		EVATIC		SHEET 1 OF 2 4.0 FT MSL
	BORE 1/99 BOREHOLE RECORD) 								
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ff)	NUMBER	IA B	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
	<u>Fill:</u> Moist, dark yellowish brown [10YR 3/4] to dark grayish brown									Hand auger to 5 feet
5 -	Colluvium: Moist, very dark brown [10YR 2/2], hard fat clay (CH)		- - - 559 -	B-8-1		9/13/18		31		
	- - - <u>Otay Formation:</u>		-	В- 6 -2		9/13/18		31		MC, DD, LL, PI
10 -	Moist, white [10YR 8/1] to yellowish brown [10YR 5/4], medium dense, clayey sand with carbonate nodules (SC) - -		554 -	B-8-3		5/9/11		20		
15 -	Moist, light brownish gray [10YR 6/2] very dense, fine clayey sand (SC) - -		549 - - - -	B-8-4		22/50 for 5.5"				MC, DD, SA
20 -	Moist, pale brown [10YR 6/3], fine sand with silt (SP/SM) At 20.3 feet, light gray 2" to 3" sandstone layer		544 - - - -	B-8-5		21/21/24		45		
25 -	- At 26 ft, becomes brown [10YR 5/3], and increase in fine to medium sand - -		539 - - - - 534 -	B-8-6		50 for 5"				MC, DD
CONT EQUI DRILI	IRACTOR Pacific Drilling LATITUDE 32.6 PMENT Unimog MARL M5 LONGITUDE 116. L MTHD HSA ANGLE Vert ETER 7 inches BEARING	Appro Site 1			lat/long e stimated t	stimat from C	ed from Google I	n Goog Earth/F	le Earth. Pole Survey Data.	
	GER J.Warner REVIEWER A.Greene PRINTED August	012 COORDINATE SYSTEM: SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS								

GLOG GEOTECH (KEATON) SCO

	Consult Consult GS FORM: BORE 1/99			FINISI PROJ LOCA	NG B- T DATE 7/3 H DATE 7/3 ECT Migue TION Chula ECT NUMBE	/2012 /2012 I to Sa Vista,	Californi		EVATIC		SHEET 2 OF 2 4.0 FT MSL
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
35 -	with trace silt (SC At 35.5 ft, becom graded fine sand Moist, light gray graded sand with Bottom of boring	prown [10YR 3/4], very dense clayey fine sand C/SM) hes pale brown [10YR 6/3], very dense, poorly with trace silt		- - - 529 - - - - - - - - - - - - - - - - - - -	B-8-7 B-8-8 B-8-9		19/28/41 37/50 for 2" 30/50 for 3"		69		MC, DD
				- 519 - - - -							
				514 - - - - 509 -							
EQUI DRIL DIAN	L MTHD HSA	MOG MARL M5 LONGITUDE 1 A ANGLE V	16.9701210 ertical 	COOR	RKS: Approx oximate eleva No. 22. DINATE SYS	TEM:				Goog Earth/F	le Earth. Yole Survey Data.

IG LOG GEOTECH (KEATON) SC0368-26.GPJ GEOSNTEC.GD1

	eosynt consult		BORING B-9 SHEET 1 OF 1 START DATE 6/27/2012 ELEVATION 480.0 FT MSL FINISH DATE 6/27/2012 PROJECT Miguel to Salt Creek LOCATION Chula Vista, California									
	SS FORM: SORE 1/99	BOREHOLE	RECORD			ECT NUMBE	R SC	0368-26]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN LABE	MPLES BLOW COUNTS	% RECOVERY	N-VALUE	TIME	COMMENTS
-	<u>Colluvium:</u> Moist, very dark trace fine sand a -	brown [10YR 2/2], medium dense, nd fine gravel (CL)	lean clay with		-	B-9-1						Hand auger to 5 feet
5 -	Moist, brown [7.5 sand with coarse	5YR 5/2], medium dense, clayey fir sand and gravels (SC)	ne to medium		475 - - - -	B-9-2		8/8/17		25		
10 -	<u>Otay Formation:</u> Moist, light yellov medium sand wi	vish brown 2.5YR 6/4], very dense, th angular coarse sand (SC) gritsto	, fine to one		470 -	B-9-3	2	21/50 for 5"				MC, DD, SA
-	 Trace fine grave 	l, becomes cemented			-	B-9-4		25/50 for 3"				Difficult drilling, added approx. 5 gallons of water to assist drilling
15 -		countered at 15.2 feet. Boring bac 0 cubic feet of bentonite grout.	kfilled with		465 - - -	B-9-5		50 for 2"				
					- 460 - -							
					- 455 - -							
					450							
Equii Drill Diami	LMTHD HSA ETER 7 in	mog MARL M5 LOI A AN	TITUDE 32.62 NGITUDE 116.9 GLE Verti ARING NTED August	9490720 cal	Appro Site N	RKS: Approx oximate eleva los. 43 and 4 DINATE SYS (SHEET FOR S)	ation es 44. STEM:	stimated	from G	Soogle I	n Goog Earth/I	le Earth. Pole Survey Data.

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

Excel Geotechnical Testing, Inc. "Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537 Fax: (770) 910 7538

Test Results Summary

Project Name: Miguel To Salt Creek TL6956 Project No.: 558

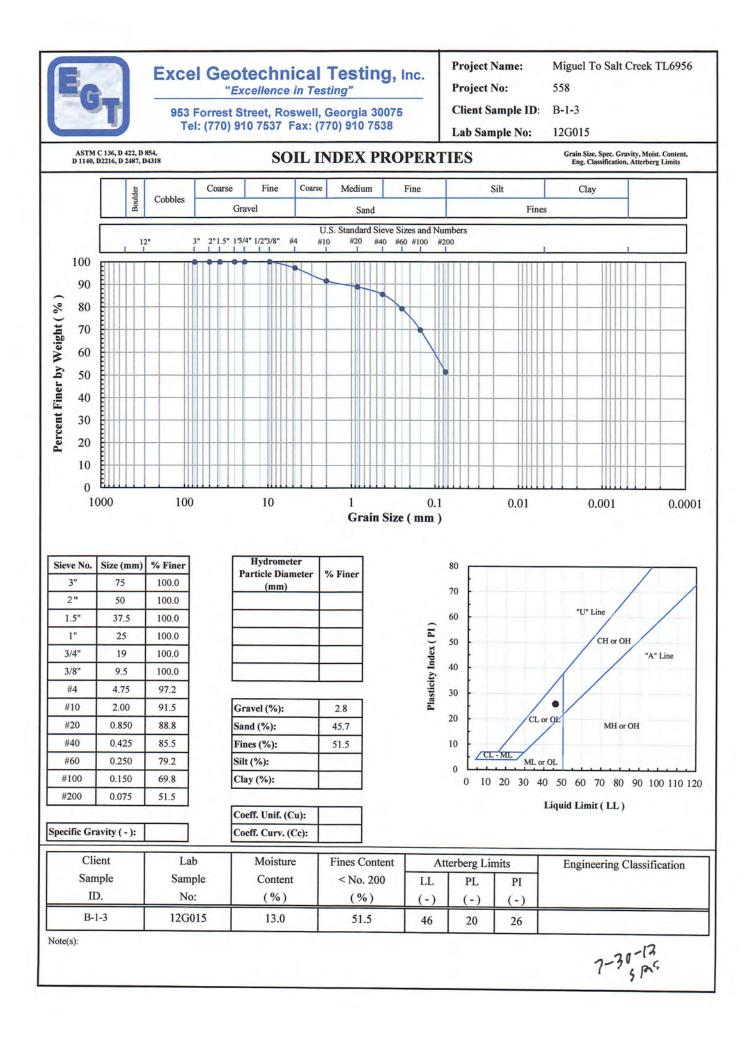
Sample Info	rmation					Test I	nformation					
Site ID	Lab No.	Moisture Content ASTM	Grain Size Analysis ASTM D 422			Atterberg Limits ASTM D 4318			Modifie	Weight ⁽¹⁾ d ASTM 1937	Engineering Classification ASTM	Remark
		D 2216	Gravel Content	Sand Content	Fines Content	LL	PL	PI	Dry Unit Moist	Moisture Content	D 2487	
(-)	(-)	(%)	(%)	(%)	(%)	(-)	(-)	(-)	(pcf)	(%)	(-)	
B-1-2	12G014								112.6	15.3		-
B-1-3	12G015	13.0	2.8	45.7	51.5	46	20	26				
B-1-4	12G016					-			111.6	15.2		
B-1-5	12G017	4.0	0.8	68.9	30.3							
B-1-6	12G018								118.8	13.0		
B-1-8	12G019								87.8	33.7		
B-2-2	12G020		0.0	68.4	31.6				105.0	13.0		
B-2-4	12G021		0.1	84.7	15.2				101.3	8.7		
B-3-2	12G022								94.5	20.7		
B-3-4	12G023		0.8	67.3	31.9				116.2	12.2		
B-3-6	12G024								110.6	11.0		
B-3-8	12G025								111.6	10.3		
B-4-3	12G026	16.4	2.4	60.5	37.1							
B-4-4	12G027								105.0	16.0		
B-4-5	12G028	14.8				47	24	23				
B-4-6	12G029								104.3	13.3		-
B-4-8	12G030								101.0	11.1		
B-5-2	12G031								112.7	9.5		
B-5-4	12G032		2.4	43.2	54.4				95.3	23.7		
B-5-6	12G033								114.8	15.9		
B-5-8	12G034						-		111.2	11.9		-
B-6-2	12G035	-							111.2	12.8		
B-6-3	12G035	15.5	0.0	45.5	54.5				111.4	12.0		
B-6-4	12G030	10.0	0.0	10.0	57.5				104.7	7.2		
B-6-5	12G037	16.2				48	25	23	104.7	7.2		
B-6-6	12G038	10.2				40	23	25	114.0	10.0		
B-6-8	12G039	17.5				56	22	22	114.2	10.8		
B-7-2	12G040	17.5	1.2	38.8	60.0	50	23	33	107.7	17.5		
B-7-2 B-7-4	12G041 12G042		1.2	50.0	00.0				106.7	19.9		
B-7-4 B-7-6			0.1	29.5	71.4				111.2	18.2		
	12G043		0.1	28.5	71.4				105.1	14.0		
B-7-8	12G044								106.5	15.2		
B-8-2	12G045					65	26	39	102.6	22.5		
B-8-4	12G046		0.0	73.4	26.6				105.0	21.4		

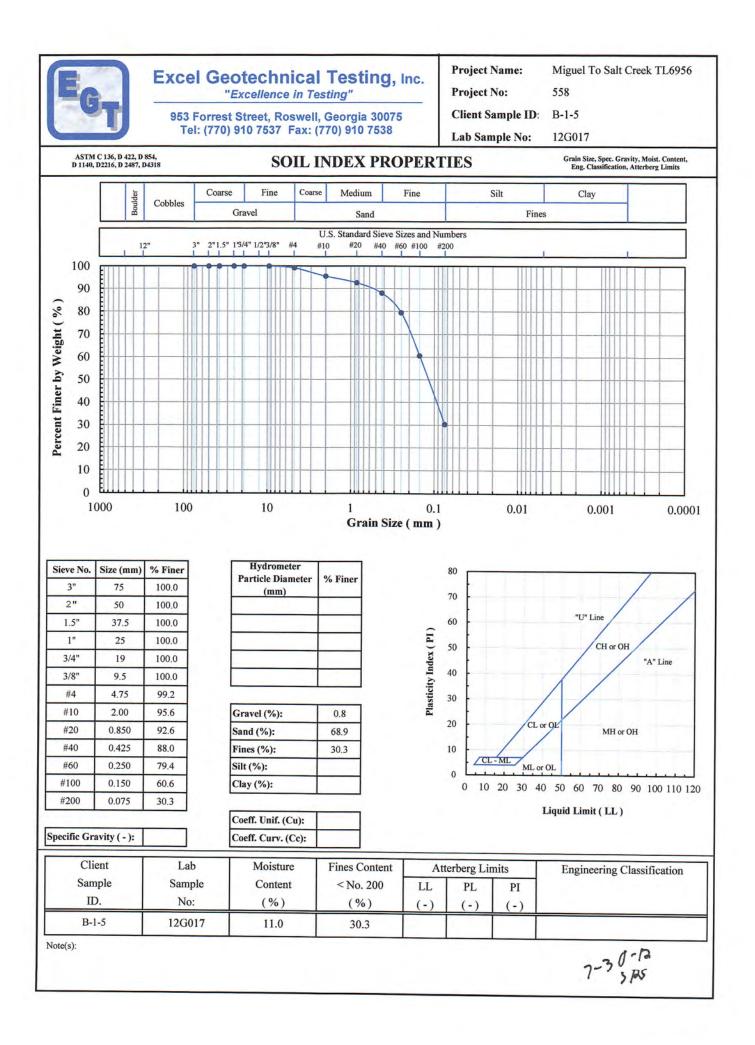
Notes:

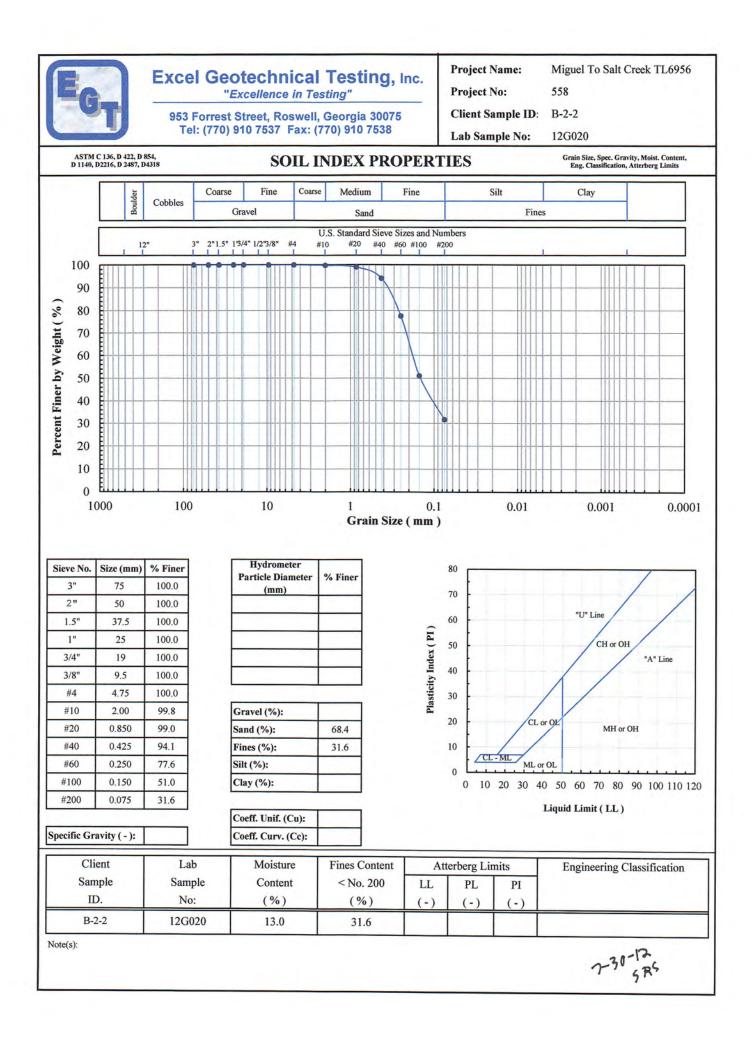
1 - Some of the samples may be disturbed and thus the values obtained may not be accurate.

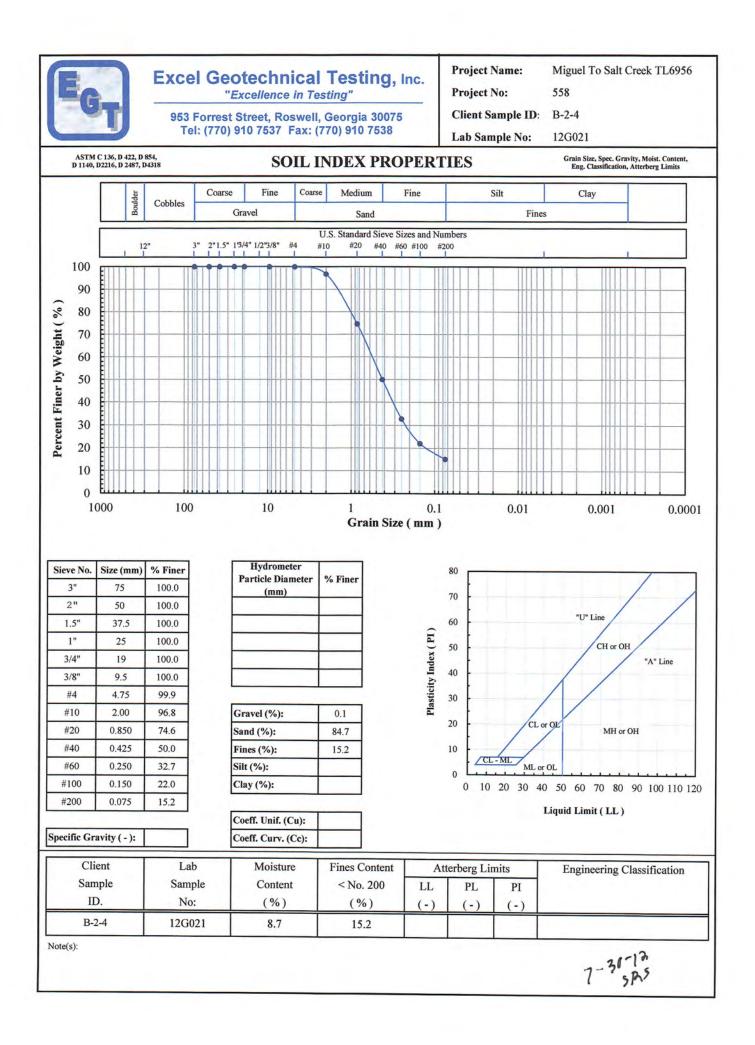
7-30-13 7-5R5

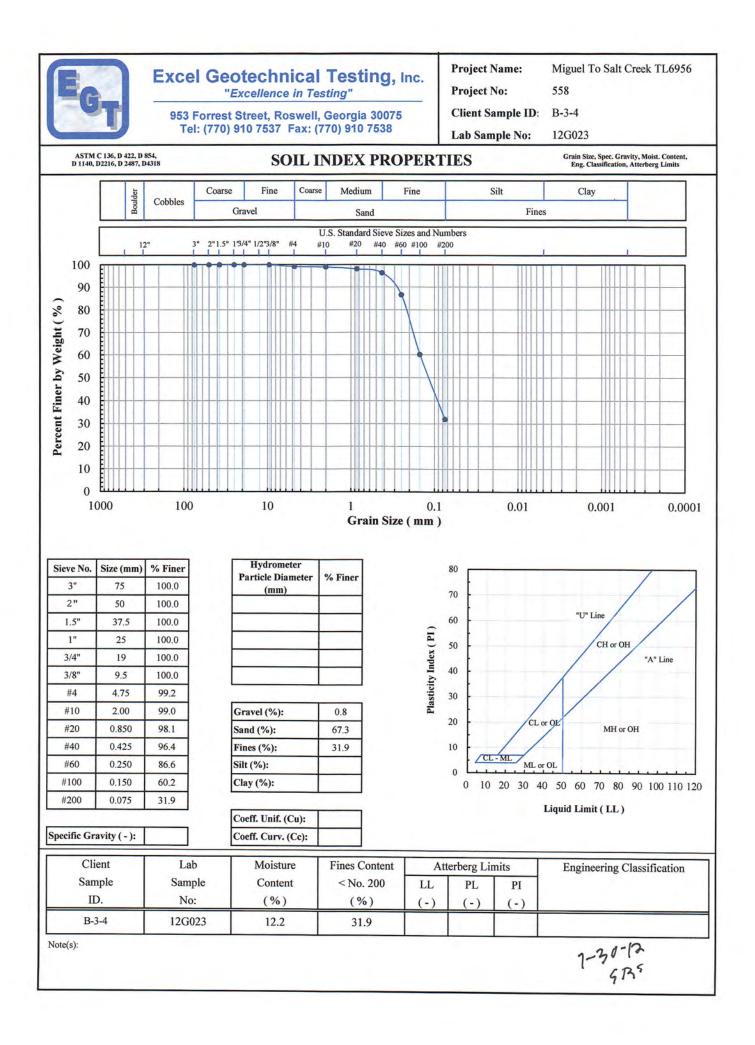
Excel Geotechnical Testing, Inc. "Excellence in Testing"


953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537 Fax: (770) 910 7538


Test Results Summary


Project Name: Miguel To Salt Creek TL6956


Project No.: 558


Sample Information		Test Information										
Site ID	Lab No.	Moisture Content ASTM	ASTM D 422			Atterberg Limits ASTM D 4318			Modifie	Weight ⁽¹⁾ d ASTM 1937	Engineering Classification ASTM	Remark
		D 2216	Gravel Content	Sand Content	Fines Content	LL	PL	PI	Dry Unit Weight	Moisture Content	D 2487	
(-)	(-)	(%)	(%)	(%)	(%)	(-)	(-)	(-)	(pcf)	(%)	(-)	
B-8-6	12G047								96.2	18.8		
B-8-8	12G048								100.6	23.4		
B-9-3	12G049		6.7	66.1	27.2				118.0	10.3		
s: ome of the	samples may l	be disturbed	and thus th	e values ob	tained may n	ot be accur	rate.				7-30-12 5RS	



